GROUP ACTIONS ON SPHERE BUNDLES OVER SPHERES

By Hiromichi Matsunaga

Introduction.

In a previous paper [8], we studied group actions on S^k -bundles over S^n in cases of (1) $k < n \leq 8$, (2) $k \geq n$ and (3) k = n-1, $n \equiv 0 \mod 4$. It is the purpose of this paper to estimate degrees of symmetry of bundle spaces and to construct group actions on semistable bundles over spheres.

Using Ku-Mann-Sicks-Su's theorems [5], [6], we shall give some estimation for upper bounds on degrees of symmetry in §1. In §2, we shall construct generators of stable groups $\pi_{4s-1}(SO)$ which yield group actions on bundle spaces. Some theorems due to Kervaire [4] provide an information on generators of semistable groups $\pi_i(SO(n))$. In §3 we shall obtain some group actions on semistable sphere bundles over spheres. I would like to thank Professor S. Sasao for helpful conversations.

§1. Degree of symmetry.

For a closed connected smooth manifold M, the degree of symmetry of M denoted by N(M) is defined as the upper bound of the dimensions of all compact Lie groups which act effectively and smoothly on M. Then we have next propositions.

PROPOSITION 1. Let B be an S^k -bundle over S^n , where $n \ge 9$. Then B can not be a homotopy sphere.

Proof. If B is a sphere, then by 28.2 and 28.6 in [9], we have k=n-1, and n=1, 2 or $n\equiv 0 \mod 4$, where the key point is that a fibre S^k is contractible to a point in B, then we can replace the standard sphere in [9] by a homotopy sphere. Since n=4s and $s\geq 3$, the space B has a cell complex structure $B=S^{n-1}\bigcup_{2m\leq n-1}\bigcup_{e^{2m-1}}\bigcup_{e^{2m-1}}$ (cf. 3 in [7]), which is a contradiction.

PROPOSITION 2. Suppose that an S^k -bundle over S^n admits a cross section or k < n-1, then we have

$$N(B) \leq \frac{1}{2}n(n+1) + \frac{1}{2}k(k+1)$$
 for $n+k \geq 19$.

Received January 8, 1982

Proof. If the bundle B admits a cross section or k < n-1, then the cohomology group $H^n(B, Q)$ with rational coefficient is non zero. Hence by Theorem 1 in [5] we obtain the proposition.

PROPOSITION 3. Let B be an S^{n-1} -bundle over S^n , where $n \ge 10$. Suppose that B is not homotopically equivalent to the product $S^{n-1} \times S^n$, then we have

$$N(B) \leq n^2 - 1$$
.

Proof. Suppose that $N(B) > n^2 - 1$, then $N(B) > (1/4)(2n-1)^2 + (1/2)(2n-1)$. By theorem 2 in [6], $B = \partial(D^k \times X)$, $k \ge n+1$, where D^k denotes a k-disk and X is a compact manifold with possibly boundary.

Case of $\partial X \neq \emptyset$.

Consider the homology exact sequence of the pair $(D^k \times X, B)$:

$$\longrightarrow H_{i+1}(D^k \times X) \longrightarrow H_{i+1}(D^k \times X, B) \longrightarrow H_i(B) \longrightarrow H_i(D^k \times X) \longrightarrow .$$

We have isomorphisms $H_{i+1}(D^k \times X, B) \approx H_{i+1}(S^k \wedge (X/\partial X)) \approx H_{i-k+1}(X/\partial X)$ and $H_i(D^k \times X) \approx H_i(X)$. When i=n-1, we have an exact sequence

$$\longrightarrow H_{n-k}(X/\partial X) \longrightarrow H_{n-1}(B) \longrightarrow H_{n-1}(X) \longrightarrow H_{n-k-1}(X/\partial X) \longrightarrow .$$

Since the dimension of the manifold X is less than or equal to n-1, we have $H_{n-1}(X)=0$, and $H_{n-k}(X/\partial X)\approx H_{n-k-1}(X/\partial X)=0$, because $k\geq n+1$. Thus $H_{n-1}(B)=0$. On the other hand, if B yields a cross section then $H_{n-1}(B)\approx Z$, and by the proposition 1, B can not be a sphere, hence $H_{n-1}(B)\neq 0$ if B does not yield any cross section. Thus any way we have $H_{n-1}(B)\neq 0$, which is a contradiction. Case of $\partial X=\emptyset$.

In this case $B=S^{k-1}\times X$ and $k-1\geq n$. By the proposition 1, B can not be a sphere, then X is a positive dimensional manifold. Thus k-1=n and X is an n-1 dimensional manifold. We have $H_{n-1}(X)\approx Z$. Since $H_i(B)=0$ for 0<i< n-1, by Künneth formula, $H_i(X)=0$ for 0<i< n-1. Hence X is a homology sphere. Since X is simply connected it is a homotopy sphere, which contradicts the assumption.

§2. Stable bundles.

In the previous paper [8], we studied group actions on S^k -bundles over S^n for $k \ge n$. Now using Barratt-Mahowald's formula, we can construct large group actions on these bundle spaces

PROPOSITION 4. Any S^{q+1} -bundle over S^{q+1} admits an SO((1/2)(q+1))-action if q is odd and an SO((1/2)q)-action if q is even, where $q \ge 23$.

Proof. By Theorem 2 in [2], the homomorphism $\pi_q(SO(n)) \rightarrow \pi_q(SO(q+2))$ is epimorphic if $q \leq 2(n-1)-1$ and $n \geq 13$, where the homomorphism is the one

induced by the inclusion map $SO(n) \subset SO(q+2)$. The structure group of the bundle can be reduced to SO((1/2)(q+3)) if q is odd and SO((1/2)q+2) if q is even and $q \ge 23$. By the inclusion maps

$$SO\left(\frac{1}{2}(q+3)\right) \times SO\left(\frac{1}{2}(q+1)\right) \subset SO(q+2) \quad \text{for odd } q,$$

$$SO\left(\frac{1}{2}q+1\right) \times SO\left(\frac{1}{2}q\right) \subset SO(q+2) \quad \text{for even } q,$$

we have required actions.

Next we consider stable sphere bundles over S^{4k} for $k \ge 3$. Here we shall take an analogy of [1] with a view to construct actions.

Let $\varepsilon_7: S^7 \to SO(8)$ be the map defined by $\varepsilon_7(x)(y) = xy$ for $x, y \in S^7$, where the multiplication in S^7 is that of Cayley numbers. Further, let $\varepsilon_{k-1}: S^{k-1} \to SO(k), k \equiv 1, 2, 4 \mod 8$ be the map which gives a respresentative of a generator of the stable group $\pi_{k-1}(SO)$ by the inclusion map $SO(k) \to SO$. Clearly the bundle $S^{k-1} \to B \to S^k$ corresponding to ε_{k-1} admits an S^1 -action for k=1, 2, an S^3 -action for k=4 and a G_2 -action for k=8 [8]. The map ε_{k-1} defines a complex over the k-disk D^k ,

$$E(\varepsilon_{k-1}): 0 \longrightarrow D_1^k \times R^k \xrightarrow{\varepsilon_{k-1}} D_2^k \times R^k \longrightarrow 0 \quad (\text{cf. Lemma 10.1 in [1]}).$$

Denote by ε_{k-1}^* : $S^{k-1} \rightarrow SO(k)$ the map given by $\varepsilon_{k-1}^*(x)$ =the transposed matrix of $\varepsilon_{k-1}(x)$ for $x \in S^{k-1}$. Let

$$E(\tilde{\varepsilon}_{8+k-1}): 0 \longrightarrow F_1 \longrightarrow F_0 \longrightarrow 0,$$

be the complex over $D^{*} \times D^{*}$, which is defined by

$$F_1 = D^8 \times D^k \times (R^8 \otimes R^k \oplus R^8 \otimes R^k), \qquad F_0 = D^8 \times D^k \times (R^8 \otimes R^k \oplus R^8 \otimes R^k)$$

and

$$\begin{split} \tilde{\varepsilon}_{8+k-1}(x_1, x_2) &= \frac{1}{2} \begin{pmatrix} 1 \otimes \varepsilon_{k-1}(x_2) & \varepsilon_7(x_1) \otimes 1\\ \varepsilon_7^*(x_1) \otimes 1 & -1 \otimes \varepsilon_{k-1}^*(x_2) \end{pmatrix}; \quad S^{8+k-1} \longrightarrow SO(16k) \,, \\ \text{for } (x_1, x_2) &\in D^8 \times S^{k-1} \cup S^7 \times D^k = S^{8+k-1} \,. \end{split}$$

By (10.4) in [1], we have $\chi(E(\tilde{\varepsilon}_{8+k-1})) = \chi(E(\varepsilon_7)) \cdot \chi(E(\varepsilon_{k-1})))$, where χ is the Euler characteristic of a complex. Due to Bott periodicity $\chi(E(\tilde{\varepsilon}_{8+k-1})))$ gives a generator of the group $KO(S^{8+k})$ and determines an S^{16k-1} -bundle over S^{8+k} , say $B^{(8+k,16k-1)}$. Then we have

THEOREM 5. The bundle $B^{(8+k,16k-1)}$ admits a G_2 -action for k=1, a $G_2 \times S^3$ -action for k=2, a $G_2 \times S^3$ -action for k=4 and a $G_2 \times G_2$ -action for k=8.

Proof. Consider the case k=4. For $(x_1, x_2) \in S^7 \times S^3$, $(y_0 \otimes y'_1 \oplus y_1 \otimes y'_0) \in R^8 \otimes R^4 \oplus R^8 R^4$, we define an action of $(g, q) \in G_2 \times S^3$ by

$$(g, q) \{ (x_1, x_2), (y_0 \otimes y'_1 \oplus y_1 \otimes y'_0) \}$$

= $\{ (g(x_1), qx_2q^{-1}), (g(y_0) \otimes qy'_1q^{-1} \oplus g(y_1) \otimes qy'_0q^{-1}) \},$

then the clutching map $\tilde{\varepsilon}_{11}$ is compatible with the action (cf. §1 in [8]). Remainder cases k=1, 2 and 8 are treated similarly.

COROLLARY 6. The generator of $\pi_{8l+k-1}(SO(16^l \cdot k))$ gives a stable sphere bundle admitting a $(G_2)^l$ -action for k=1, a $(G_2)^l \times S^1$ -action for k=2, a $(G_2)^l \times S^3$ -action for k=4 and a $(G_2)^{l+1}$ -action for k=8.

Proof. These generators are given inductively by the map

$$\frac{1}{2} \begin{pmatrix} 1 \otimes \tilde{\varepsilon}_{8(l-1)+k-1} & \varepsilon_7 \otimes 1 \\ \\ \varepsilon_7^* \otimes 1 & -1 \otimes \tilde{\varepsilon}_{8(l-1)+k-1}^* \end{pmatrix} \colon S^{8l+k-1} \longrightarrow SO(16^l \cdot k) \,.$$

Then we can construct desired actions analogously as the theorem.

§ 3. Semistable bundles.

The group structure of $\pi_{ss+r}(SO(8s+r-k))$ has given by the table in [4] for $s \ge 1$ and $-1 \le k \le 4$. Here we shall give generators of these groups in order to obtain some information for the proof of the existence of group actions. We use the surjectivity of $j_*: \pi_i(SO(n)) \rightarrow \pi_i(SO)$ by Barratt-Mahowald, then the restriction $s \ge 4$ is required. In order to obtain generators, we shall depend on the followings:

- (1) the homotopy exact sequence associated to the fibering $SO(n-1) \rightarrow SO(n) \rightarrow S^{n-1}$,
- (2) boundary formulas of Theorems 1, 2 and 3, and Lemma 1 in [4]. Relations for generators of stable groups given by Lemma 2 in [4],
- (3) the properties of characteristic maps given by 23.4, 24.3 and 24.5 in [9], and the structure of tangent bundles which is given by 27.8-27.11 in [9],
- (4) the distributive law in homotopy groups of spheres,

$$(\beta_1+\beta_2)\circ(E\alpha)=\beta_1\circ(E\alpha)+\beta_2\circ(E\alpha).$$

Let $j^{(n,n-l)}: SO(n-l) \rightarrow SO(n)$ be the inclusion map. If $x \in \pi_j(SO(n))$ yields $y \in \pi_i(SO(n-l))$ such that $j^{(n,n-l)}_*(y) = x$, then we use a symbol $x^{(-l)}$ for y. Further we use the following symbols:

 τ_{n-1} ; the characteristic map of the tangent bundle of S^n ,

 ε_{4s-1} ; one of the generators of $\pi_{4s-1}(SO(4s))$ such that $j_*^{(4s+1,4s)}(\varepsilon_{4s-1})$ gives the generator of the stable group $\pi_{4s-1}(SO(4s+1))$,

- η_n ; the generator of the stable group $\pi_{n+1}(S^n)$,
- θ_n ; the generator of the stable group $\pi_{n+2}(S^n)$,
- ν_n ; the generator of the stable group $\pi_{n+3}(S^n)$.

Now the generators of $\pi_{8s+r}(SO(8s+r-k))$, for $-1 \leq k \leq 4$, $0 \leq r \leq 7$, $s \geq 4$ are given by the following table (1).

				Table	(1)			
$r \setminus l$	'n	-1		0			1	_
0	Z_{2}	$+Z_{2}$	Z_{2}	$+Z_{2}$	$+Z_2$	Z_2	+.	Z_2
	τ_{8s} ,	$\varepsilon_{8s-1}\eta$	$\tau_{8s-1}^{(-1)}$, $\varepsilon_{8s}^{(-1)}$	$^{(-1)}_{8s-1}\eta_{8s-1}, \tau$	$s_{s-1}\eta_{ss-1}$	$arepsilon_{8s-1}^{(-2)}\gamma$	$s_{s-1}, (\tau_s)$	$(-1)^{(-1)}$
1	Z	$+Z_{2}$	Z_2	$+Z_{2}$		Z_2	+	$Z_2 + Z_2$
	τ_{ss+1} ,	$\varepsilon_{8s-1} heta_s$	$\varepsilon_{8s-1}^{(-1)}\theta_{8s-1}$	$\tau_{8s}\eta_{8}$	8	$ au_{8s-1} heta$	$s_{s-1}, \tau_{ss}^{(-)}$	$(\tau^{(1)})_{8s}, \varepsilon_{8s-1}^{(-2)} \theta_{8s-1}$
2	Z_2		Z_4			Z_{8}		
	$ au_{8s+2}$		$ au_{8+2}^{(-1)}$			$ au_{8s+2}^{(-2)}$		
3	Ζ	+Z	Z			Ζ		
	ε_{ss+s} ,	$ au_{8s+3}$	$\varepsilon_{8s+3}^{(-1)}$			$\varepsilon_{8s+3}^{(-2)}$		
4	Z_2		Z_2	$+Z_{2}$		Z_2		
	$ au_{8s+4}$		$ au_{88+4}^{(-1)},$	$ au_{8s+3}$	η_{ss+s}	(au_{8s+3})	788+3)(-1))
5	Ζ		Z_2			Z_2	+2	Z_2
_	$ au_{8s+5}$		$ au_{8s+4}\eta_{8s}$	3+4		$ au_{8s+3} heta$	$s_{s+3}, \tau_{ss}^{(-)}$	$^{(1)}_{+4}\eta_{8s+4}$
6	Z_2		Z_4			Z_{8}		
_	τ_{8s+6}		$\tau_{8s+6}^{(-1)}$			$\tau_{8s+6}^{(-2)}$		
7	Z	+Z	Z			Z		
	888+7,	788+7	E 88+7		······	888+7		
				Table	(1)			
$r \setminus k$	•	2		3			4	1
0	Z_{12}		$+Z_2$	Z_{2}			Z_2	
	$\tau_{8s-3}\nu_{8s}$	-3,	$\varepsilon_{8s-1}^{(-3)}\eta_{8s-1}$	$\varepsilon_{8s-1}^{(-4)}\eta_{8s-1}$	-1	ε	$s_{8s-1}^{(-5)}\eta_{8s-1}$	1
1	Z_2		$+Z_2$	Z_2			Z_2	
	$(au_{8s-1} heta_s$	ss-1) ⁽⁻¹⁾ ,	$arepsilon_{8s-1}^{(-3)} heta_{8s-1}$	$arepsilon_{8s-1}^{(-4)} heta_{8s-1}$	1	ε	$e_{8s-1}^{(-5)}\theta_{8s-1}$	1
2	Z_{24}		$+Z_{8}$	Z_{8}			Z_8	
	$\tau_{8s-1}\nu_{8s}$	-1,	$ au_{8s+2}^{(-3)}$	а		C	l ⁽⁻¹⁾	
3	Ζ		$+Z_2$	Ζ	$+Z_{2}$		Z	$+Z_{2}$
	$arepsilon_{8s+3}^{(-3)}$,		$ au_{8s} u_{8s}$	$\varepsilon_{8s+3}^{(-4)}$,	$(au_{8s}^{(-1)} u_{8s})$	8	(-5) 8\$+3,	$(\tau_{ss}^{(-1)}\nu_{ss})^{(-1)}$
4	Z_{12}			0		()	
	$ au_{8s+1} u_{8s}$	+1						
5	Z_2		$+Z_{2}$	Z_{2}		2	Z_2	
	$ au_{8s+2} u_{8s}$	$_{+2}$ (τ_{8s+}	$(\gamma_{8s+3})^{(-1)}\eta_{8s+4}$	$((\tau_{8s+3}\eta_8)$	$(s+3)^{(-1)} \eta_{8s+s}$	$(^{-1)}($	$(au_{8s+3}\eta_8$	$(s+3)^{(-1)} \eta_{8s+4}^{(-2)}$
6	Z_4		$+Z_{24d}$	Z_{8}		ź	8	
_	(<i>b</i>)		(<i>c</i>)	$ au_{88+6}^{(-4)}$		τ	(-5) 88+6	
7	Z		$+Z_{2}$	$Z_{(n)}$	$+Z_2$	ź		$+Z_2$
	$\varepsilon_{8s+7}^{(-3)}$		$ au_{8s+4} u_{8s+4}$	$\varepsilon_{8s+7}^{(-4)},$	$\tau_{8s+4}^{(-1)}\nu_{8s+4}$	ε	(-b) 8s+7;	$(\tau_{8s+4}^{(-1)}\nu_{8s+4})^{(-1)}$

Table (1)

We have some relations on these generators:

$$\begin{aligned} \tau_{8s}^{(-1)} &\simeq T_{4s+1}': \ S^{8s} \longrightarrow U(4s) \qquad ((5) \ \text{of} \ 24.2 \ \text{in} \ [9_{-}]', \\ \tau_{8s}^{(-1)} &\simeq T_{4s+3}': \ S^{8s+2} \longrightarrow U(4s+1), \\ \tau_{8s} &\circ \theta_{8s} = 4\tau_{8s+2}^{(-2)}, \\ \tau_{8s+2}^{(-3)} &\simeq T_{2s+1}': \ S^{8s+2} \longrightarrow Sp(2s) \qquad (24.11 \ \text{in} \ [9]), \\ j_{*}^{(8s, 8s-1)}(a) &= 6\tau_{8s-1} \circ \nu_{8s-1} + \tau_{8s+2}^{(-3)}, \\ \tau_{8s+4}^{(-1)} \circ \nu_{8s} &= T_{4s+1}' \circ \nu_{8s}: \ S^{8s+4} \longrightarrow U(4s), \\ \tau_{8s+4}^{(-1)} &\simeq T_{4s+5}': \ S^{8s+4} \longrightarrow U(4s+2), \\ \tau_{8s+4}^{(-1)} &\simeq T_{4s+7}': \ S^{8s+6} \longrightarrow U(4s+3), \\ b &= -\tau_{8s+6}^{(-3)} + 3\tau_{8s+3} \circ \nu_{8s+3}, \qquad c = \tau_{8s+2}^{(-3)} - \tau_{8s+3} \circ \nu_{8s+3} \\ \tau_{8s+6}^{(-3)} &\simeq T_{2s+2}': \ S^{8s+6} \longrightarrow Sp(2s+1), \\ \tau_{8s+4}^{(-1)} &\simeq T_{4s+5}' \circ \nu_{8s+4}: \ S^{8s+7} \longrightarrow U(4s+2). \end{aligned}$$

Now we investigate group actions on a bundle space $D_1^n \times S^k \cup_7 D_2^n \times S^k$, where the action is to be compatible with the identification $(x, y) \equiv (x, \gamma(x)y)$ for $(x, y) \in S^{n-1} \times S^k$. We describe our results as a Table (2). In the table, each group denotes the one which is admitted by any bundle corresponding to a characteristic map in each block on the Table (1).

Proof of the results on the table (2).

We have a decomposition $\eta_{8s-1} = \eta_2 * 1(S^{8s-4})$: $S^{8s} = S^3 * S^{8s-4} \rightarrow S^{8s-1} = S^2 * S^{8s-4}$, where η_2 is the Hopf map $S^3 \rightarrow S^2$ and $1(S^{8s-4})$ denotes the identity map of S^{8s-4} . η_2 is invariant under the principal S^1 -action on S^3 , then η_{8s-1} is also S^1 -invariant. By Satz of 6.4 in [3] we have

$$\tau_{ss}(gx)(gy) = g\tau_{ss}(x)(y)$$
 for $(x, y) \in S^{ss} \times S^{ss}$, $g \in SO(2)$.

Since $\varepsilon_{ss-1} \circ \eta_{ss-1}$ is homotopic to $\varepsilon_{ss-1}^{(-2)} \circ \eta_{ss-1}$ in SO(8s+1),

$$\varepsilon_{8s-1} \circ \eta_{8s-1}(gx) \tau_{8s}(gx)(gy) = \varepsilon_{8s-1}^{(-2)} \circ \eta_{8s-1}(x) g\tau_{8s}(x)(y)$$

= $g\varepsilon_{8s-1}^{(-2)} \circ \eta_{8s-1}(x) \tau_{8s}(x)(y)$.

Hence the bundle space with the characteristic map $\tau_{ss} + \varepsilon_{ss-1} \circ \eta_{ss-1}$ admits an SO(2)-action. This is the result for (r, k) = (0, -1).

Similar argument is valid for (r, k) = (0, 0), (0, 1), (0, 2), (1, -1), (1, 0), (1, 1).By the surjectivity of the homomorphism $j_*: \pi_{8s-1}(SO(4s+1)) \rightarrow \pi_{8s-1}(SO(8s-3))$, we have

				1 41010 (7)		:
$r \backslash k$!	0	П	2	3	4
0	SO(2)	SO(2)	SO(2)	SO(2)	$SO(4s-4) \times SO(2)$	$SO(4s-5) \times SO(2)$
	SO(2)	SO(2)	SO(2)		$SO(4s\!-\!4)\! imes\!SO(2)$	$SO(4s-5) \times SO(2)$
2	SO(8s+2)	U(4s)	Sp(2s)	$Sp(2s) \cap SO(8s-6)$		
n		SO(4s)	SO(4s-1)			
4	SO(8s+4)	U(4s)		$SO(8s-5) \times S^{3}$	$SO(8s+6) \times SO(8s+1)$	$SO(8s+6) \times SO(8s)$
വ	SO(8s+5)	$SO(8s+1) \times SO(2)$	SO(2)	SO(2)		
9	SO(8s+6)	U(4s+2)	Sp(2s+1)	$Sp(2s+1) \cap SO(8s-3)$	SO(2)	SO(2)
2		SO(4s+2)	SO(4s+1)			
		roup actions on an	S ^{88+r-k-1} -bun	dle over S ^{88+r+1} .		

Table (2)

GROUP ACTIONS ON SPHERE BUNDLES OVER SPHERES

$$\mathfrak{s}_{\mathfrak{s}\mathfrak{s}-1}^{(-4)} \circ \eta_{\mathfrak{s}\mathfrak{s}-1}(g_1 x)(g_2 y) = g_2 \mathfrak{s}_{\mathfrak{s}\mathfrak{s}-1}^{(-4)} \eta_{\mathfrak{s}\mathfrak{s}-1}(x)(y) \quad \text{for } (x, y) \in S^{\mathfrak{s}r} \times S^{\mathfrak{s}r-4},$$

$$(g_1, g_2) \in SO(2) \times SO(4s-4).$$

Then we have the result for (r, k) = (0, 3). Similar argument is valid for (r, k) = (0, 4), (1, 3), (1, 4), (4, 2).

Since we can obtain similar results for $\{T'\}$ and $\{T''\}$ to Satz of 6.4 in [3], using the relations on generators, group actions are obtained in the cases of (r, k)=(2, -1), (2, 0), (2, 1), (6, -1), (6, 0), (6, 1).

By the decomposition $\tau_{ss-1} \circ \nu_{ss-1} = \tau_{ss-1} \circ (\nu_4 * 1(S^{ss-6}))$, and the relation $\tau_{ss+2}^{(-3)} \simeq T_{2s+1}''$, we have

$$\tau_{ss-1} \circ \nu_{ss-1}(gx)T''_{2s+1}(gx)(gy) = \tau_{ss-1} \circ \nu_{ss-1}(gx)(gT''_{2s+1}(x)(y))$$

= $g\tau_{ss-1} \circ \nu_{ss-1}(x)(y)$,
for $(x, y) \in S^{ss+2} \times S^{ss-1}$, $g \in Sp(2s) \cap SO(8s-6)$,

where the action is given by $g(x_1, x_2; t) = (x_1, gx_2; t)$ for $x_1 \in S^7$, $x_2 \in S_8^{s-6}$, $0 \le t \le 1$. Hence we have proved the cases of (2, 2) and similarly (6, 2).

Since $\tau_{8s+6}^{(-7)} \neq 0$, we have group actions in the cases of (6, 3), (6, 4).

We can obtain group actions for remainder cases. For empty blocks, I have not yet obtained group actions for general bundles (cf. § 3 in [8]).

References

- [1] M.F. ATIYAH, R. BOTT AND A. SHAPIRO, Clifford modules, Topology, 1. Suppl. 1 (1964), 3-38.
- [2] M.G. BARRATT AND M.E. MAHOWALD, The meta stable homotopy of O(n), Bull. Amer. Math. Soc. 70 (1964), 758-760.
- [3] F. HIRZEBRUCH AND K. H. MAYER, O(n)-Mannigfaltigkeiten, exotische Sphären und Singularitäten, Springer, Lecture Notes in Math. 57 (1968).
- [4] M.A. KERVAIRE, Some nonstable homotopy groups of Lie groups, Illinois J. Math. 4 (1960), 161-169.
- [5] H.T. KU, L.N. MANN, J.L. SICKS AND J.C. SU, Degree of symmetry of a product manifolds, Tras. Amer. Math. Soc. 146 (1969), 133-149.
- [6] H. T. KU, L.N. MANN, J.L. SICKS AND J.C. SU, Degree of symmetry of closed manifolds, Springer, Lecture Notes in Math. 298 (1972), 430-436.
- [7] H. MATSUNAGA, A note on the differentable structures of total spaces of sphere bundles over spheres, Osaka J. Math. 2 (1965), 63-69.
- [8] H. MATSUNAGA, S¹-actions on sphere bundles over spheres, Mem. Fac. Sci. Shimane Univ. 15 (1981), 9-16.
- [9] N. STEENROD, The topology of fibre bundles, Princeton, 1951.

Department of Mathematics, Shimane University