BOUND OF THE DEFICIENCIES OF ALGEBROID FUNCTIONS WITH NEGATIVE ZEROS

By Tsuneo Sato

1. Nevanlinna [3] showed that

$$
\varlimsup_{r \rightarrow \infty} \frac{N(r, a)+N(r, b)}{T(r, f)} \geqq k(\lambda)>0
$$

for any meromorphic function f of finite nonintegral order λ and any two values a, b.

Here k is a function of λ alone, and a problem of some forty year's standing is that of finding the exact value of $k(\lambda)$. Nevanlinna himself conjectured that the best possible choice of $k(\lambda)$ is

$$
k(\lambda)= \begin{cases}\frac{|\sin \pi \lambda|}{q+|\sin \pi \lambda|} & (q \leqq \lambda \leqq q+1 / 2), \\ \frac{|\sin \pi \lambda|}{q+1} & (q+1 / 2<\lambda \leqq q+1),\end{cases}
$$

where q is a nonnegative integer.
For the best known bounds on $k(\lambda)$ when $\lambda>1$, see the results of Edrei and Fuchs in [1].

Recently, Hellerstein and Williamson [2] have obtained a complete answer when they restricted themselves to the class of entire functions with negative zeros.

Their results is the following :
ThEOREM A Let $f(z)$ be an entire function of genus q, order λ and lower order μ, having only negative zeros. Then for any ρ satisfying

$$
\mu \leqq \rho \leqq \lambda
$$

we have

$$
\varlimsup_{r \rightarrow \infty} \frac{N(r, 0)}{T(r, f)} \geqq \begin{cases}\frac{|\sin \pi \rho|}{q+|\sin \pi \rho|} & (q \leqq \rho \leqq q+1 / 2), \\ \frac{|\sin \pi \rho|}{q+1} & (q+1 / 2<\rho \leqq q+1) .\end{cases}
$$

These bounds are best possible.
Received October 31, 1980.

Theorem B Let $f(z)$ be an enture function of genus q, order λ and lower order μ, having only negative zeros. Then for any ρ satisfying

$$
\mu \leqq \rho \leqq \lambda
$$

we have

$$
\lim _{r \rightarrow \infty} \frac{N(r, 0)}{T(r, f)} \leqq \begin{cases}\frac{|\sin \pi \rho|}{q+|\sin \pi \rho|} & (q \leqq \rho \leqq q+1 / 2), \\ \frac{|\sin \pi \rho|}{q+1} & (q+1 / 2<\rho \leqq q+1) .\end{cases}
$$

In particular, if either λ or μ is a positive integer,

$$
\lim _{r \rightarrow \infty} \frac{N(r, 0)}{T(r, f)}=0 .
$$

These bounds are best possible.
The purpose of this paper is to extend thses theorems to n-valued entire algebroid functions with negative zeros.

Let $f(z)$ be an n-valued transcendental entire algebroid function defined by an irreducible equation

$$
\begin{equation*}
f^{n}+A_{1}(z) f^{n-1}+\cdots+A_{n-1}(z) f+A_{n}(z)=0 \tag{1.1}
\end{equation*}
$$

where A_{1}, \cdots, A_{n} are entire functions without common zeros.
To formulate our theorems, we define the genus q of an entire algebroid function $f(z)$, as follows:

Let

$$
\begin{equation*}
A_{j}(z)=z^{l} \rho^{P} e^{P_{j}^{(z)}} \Pi_{j}(z), \tag{1.2}
\end{equation*}
$$

where $\Pi_{j}(z)$ is the canonical product formed by the zeros of $A_{j}(z), l_{j}$, is a nonnegative integer. Let q_{\jmath} be the genus of $A_{\rho}(z)$ and d_{ρ} the degree of $P_{\jmath}(z)$. Put $q=\max _{\jmath} q_{\jmath}, d=\max _{\jmath} d_{\jmath}$. Let s_{\jmath} be the genus of $\Pi_{j}(z)$. Put $s=\max _{\jmath} s_{\jmath}$. By the definition of genus

$$
q_{\jmath}=\max \left(d_{\jmath}, s_{\jmath}\right)
$$

Thus

$$
q=\max (d, s)
$$

Then q is called the genus of the entire algebroid function $f(z)$.
We shall prove the following extension of Hellerstein and Williamson's theorems:

ThEOREM 1. Let $f(z)$ be an n-valued transcendental algebroid entire function of genus q, order λ and lower order μ. Assume that $f(z)=a_{\jmath}, \jmath=1, \cdots, n$, have their roots only on the negative real axis.

Then there is at least one a_{ν} among different finite numbers a_{\jmath}, satısfying

$$
\varlimsup_{r \rightarrow \infty} \frac{n N\left(r ; a_{\nu}, f\right)}{T(r, f)} \geqq \begin{cases}\frac{|\sin \pi \rho|}{q+|\sin \pi \rho|} & (q \leqq \rho \leqq q+1 / 2), \\ -\frac{|\sin \pi \rho|}{q+1} & (q+1 / 2<\rho \leqq q+1)\end{cases}
$$

for any ρ with $\mu \leqq \rho \leqq \lambda$.
TheOrem 2. Let $f(z)$ be an n-valued transcendental algebroid entire function of genus q, order λ and lower μ. Assume that $f(z)=a_{j}, j=1, \cdots, n$, have their roots only on the negative real axis.

Then there is at least one a_{ν} among different finite numbers a_{y}, satisfying

$$
\lim _{r \rightarrow \infty} \frac{N\left(r ; a_{\nu}, f\right)}{T(r, f)} \leqq \begin{cases}\frac{|\sin \pi \rho|}{q+|\sin \pi \rho|} & (q \leqq \rho \leqq q+1 / 2), \\ \frac{|\sin \pi \rho|}{q+1} & (q+1 / 2<\rho \leqq q+1)\end{cases}
$$

for any ρ with $\mu \leqq \rho \leqq \lambda$. These bounds are best possible.
2. Preliminaries. We put

$$
\begin{aligned}
& A(z)=\max \left(1,\left|A_{1}\right|, \cdots,\left|A_{n}\right|\right), \\
& g(z)=\max \left(1,\left|g_{1}\right|, \cdots,\left|g_{n}\right|\right), \\
& g_{\imath}(z)=F\left(z, a_{\nu}\right), \quad \nu=1, \cdots n,
\end{aligned}
$$

where $F(z, f)=0$ is the defining equation of f. We put

$$
\mu(r, A)=\frac{1}{2 n \pi} \int_{0}^{2 \pi} \log A\left(r e^{i \theta}\right) d \theta
$$

Then Valiron [6] showed that

$$
\begin{equation*}
T(r, f)=\mu(r, A)+O(1) . \tag{2.1}
\end{equation*}
$$

Further Ozawa [4] showed that

$$
\begin{equation*}
\mu(r, g)=\mu(r, A)+O(1) \tag{2.2}
\end{equation*}
$$

Hence from $(2,1)$ and $(2,2)$ we have

$$
\begin{equation*}
T(r, f)=\mu(r, g)+O(1)=\frac{1}{n} m(r, g)+O(1)=\frac{1}{n} T(r, g)+O(1) \tag{2.3}
\end{equation*}
$$

Evidently we have

$$
\begin{aligned}
T\left(r, g_{\nu}\right) & =m\left(r, g_{\nu}\right) \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|g_{\nu}\left(r e^{2 \theta}\right)\right| d \theta \leqq \frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+} \sum_{\nu=1}^{n}\left|g_{\nu}\left(r e^{i \theta}\right)\right| d \theta
\end{aligned}
$$

$$
\leqq \frac{1}{2 \pi} \int_{0}^{2 \pi} \log g\left(r e^{2 \theta}\right) d \theta+\log n=T(r, g)+\log n
$$

and hence

$$
\max _{\nu} T\left(r, g_{\nu}\right) \leqq T(r, g)+\log n
$$

On the other hand we get

$$
\begin{aligned}
\sum_{\nu=1}^{n} T\left(r, g_{\nu}\right) & =\sum_{\nu=1}^{n} \frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|g_{\nu}\left(r e^{2 \theta}\right)\right| d \theta \geqq \frac{1}{2 \pi} \int_{0}^{2 \pi} \max _{\nu} \log ^{+}\left|g_{\nu}\left(r e^{\imath \theta}\right)\right| d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left(\max _{\nu}\left|g_{\nu}\left(r e^{2 \theta}\right)\right|\right) d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log g\left(r e^{2 \theta}\right) d \theta \\
& =T(r, g) .
\end{aligned}
$$

Hence

$$
\max _{\nu} T\left(r, g_{\nu}\right) \leqq T(r, g)+O(1) \leqq \sum_{\nu=1}^{n} T\left(r, g_{\nu}\right)
$$

From (2.3) we have

$$
\begin{equation*}
\max _{\nu} T\left(r, g_{\nu}\right) \leqq n T(r, f)=n \max _{\nu} T\left(r, g_{\nu}\right) . \tag{2.4}
\end{equation*}
$$

Next since

$$
\begin{equation*}
g_{\nu}(z)=\sum_{j=0}^{n} a_{\nu}{ }^{n-\jmath} A_{\nu}(z), \quad\left(A_{0}(z) \equiv 1\right), \quad \nu=1, \cdots, n \tag{2.5}
\end{equation*}
$$

are entire functions, let

$$
g_{\nu}(z)=z^{m \nu} e^{Q_{\nu}(z)} G_{\nu}(z),
$$

where $G_{\nu}(z)$ is the canonical product formed by the zeros of $F\left(z, a_{\nu}\right), m_{\nu}$ is a nonnegative integer. Let p_{ν} be the genus of $g_{\nu}(z)$ and c_{ν} the degree of $Q_{\nu}(z)$. Put $p=\max _{\nu} p_{\nu}, c=\max _{\nu} c_{\nu}$. Let t_{ν} be the genus of $G_{\nu}(z)$, then $p_{\nu}=\max \left(c_{\nu}, t_{\nu}\right)$. Then in view of (2.5) we have

$$
q=\max _{j} q_{j} \geqq p_{\nu} .
$$

Hence

$$
\begin{equation*}
q \geqq p . \tag{2.6}
\end{equation*}
$$

On the other hand by solving the given equations (2.5) we have

$$
A_{j}(z)=\sum_{\nu=1}^{n} b_{\nu, j} g_{\nu}(z), \quad \jmath=1, \cdots, n,
$$

which implies similarly

$$
\begin{equation*}
p=\max _{\nu} p_{\nu} \geqq q_{\jmath}, \tag{2.7}
\end{equation*}
$$

and hence

$$
p \geqq q .
$$

Combining (2.6) and (2.7) we deduce

$$
\begin{equation*}
p=q \tag{2.8}
\end{equation*}
$$

3. Proof of Theorem 1. Let

$$
\begin{equation*}
g_{\nu}(z)=z^{m_{\nu}} e^{Q_{\nu}(z)} G_{\nu}(z) \tag{3.1}
\end{equation*}
$$

Now the same arguments as in [2] does work. We assume then that

$$
p_{\nu}<\rho<p_{\nu}+1
$$

By the main lemma of Hellerstein and Williamson we know that

$$
\begin{equation*}
T\left(r, G_{\nu}\right)=\frac{1}{\pi} \int_{C_{\nu}(r)} \log \left|G_{\nu}\left(r e^{i \theta}\right)\right| d \theta \tag{3.2}
\end{equation*}
$$

where $C_{\nu}(r)$ is defined as follows:

$$
C_{\nu}(r)=\left\{\theta \in[0, \pi]: \log \left|G_{\nu}\left(r e^{\imath \theta}\right)\right| \geqq 0\right\}
$$

Then the well known lemma due to Edrei and Fuchs [1] we can write

$$
\begin{equation*}
\log \left|G_{\nu}\left(r e^{i \theta}\right)\right| \leqq \log \left|P_{\nu, R}\left(r e^{i \theta}\right)\right|+o\left(r^{p_{\nu}}\right)+14\left(\frac{r}{R}\right)^{p_{\nu}+1} T\left(2 R, G_{\nu}\right) \tag{3.3}
\end{equation*}
$$

where if $\left\{a_{\mu}\right\}_{\mu=1}^{\infty}$ denotes the zeros of $G_{\nu}(z)$,

$$
\begin{equation*}
P_{\nu, R}(z)=\prod_{\left|a_{\mu}\right| \leqq R}\left(1+\frac{z}{\left|a_{\mu}\right|}\right) \exp \left(-\frac{z}{\left|a_{\mu}\right|}+\cdots+\frac{(-1)^{p_{\nu}}}{p_{\nu}} \frac{z^{p_{\nu}}}{\left|a_{\mu}\right|}\right) \tag{3.4}
\end{equation*}
$$

and where

$$
\begin{equation*}
0<r=|z| \leqq \frac{R}{2} \tag{3.5}
\end{equation*}
$$

From (3.2) and (3.3) we have

$$
T\left(r, G_{\nu}\right) \leqq \frac{1}{\pi} \int_{C_{\nu}(r)} \log \left|P_{\nu, R}\left(r e^{i \theta}\right)\right| d \theta+O\left(r^{p_{\nu}}\right)+14\left(\frac{r}{R}\right)^{p_{\nu}+1} T\left(2 R, G_{\nu}\right)
$$

Hence we get

$$
\begin{aligned}
T\left(r, G_{\nu}\right)+m\left(r, e^{Q_{\nu}}\right) \leqq & \frac{1}{\pi} \int_{C_{\nu}(r)} \log \left|P_{\nu, R}\left(r e^{\imath \theta}\right)\right| d \theta+O\left(r^{p_{\nu}}\right)+O\left(r^{c_{\nu}}\right) \\
& +O(\log r)+14\left(\frac{r}{R}\right)^{p_{\nu}+1} T\left(2 R, G_{\nu}\right)
\end{aligned}
$$

in view of (3.1). Since $G_{\nu}(z)$ has only negative zeros, then

$$
r^{p_{\nu}}=o\left(T\left(r, G_{\nu}(z)\right)\right) \quad(r \longrightarrow \infty)
$$

Thus, since we are assuming $c_{\nu} \leqq p_{\nu}$,

$$
\begin{equation*}
T\left(r, g_{\nu}\right) \leqq \frac{1}{\pi} \int_{C_{\nu}(r)} \log \left|P_{\nu, R}\left(r e^{i \theta}\right)\right| d \theta+O\left(r^{P_{\nu}}\right)+14\left(\frac{r}{R}\right)^{p_{\nu}+1} T\left(2 R, g_{\nu}\right) \tag{3.6}
\end{equation*}
$$

If we let $N_{\nu, R}(t, 0)=N\left(t, 1 / P_{\nu, R}\right)$, then by the definition of $H_{p_{\nu}}$ as given in [2],

$$
\begin{align*}
& \frac{1}{\pi} \int_{C_{\nu(r)}} \log \left|P_{\nu, R}\left(r e^{2 \theta}\right)\right| d \theta \\
& \quad=\chi_{\nu}(r) N_{\nu, R}(r, 0)+(-1)^{p \nu} \int_{0}^{\infty} N_{\nu, R}(t, 0) H_{p_{\nu}}\left(t, r, \alpha_{1}, \cdots, \alpha_{p_{\nu}+1}\right) d t \tag{3.7}
\end{align*}
$$

where

$$
\chi_{\nu}(r)= \begin{cases}1 & \text { for } \quad \alpha_{p_{\nu}+1}=\pi \\ 0 & \text { for } \\ \alpha_{p_{\nu}+1}<\pi\end{cases}
$$

Now

$$
N_{\nu, R}(t, 0)= \begin{cases}N_{\nu}(t, 0)=N\left(t, 1 / g_{\nu}\right) & \text { if } t \leqq R \tag{3.8}\\ N_{\nu}(R, 0)+n_{\nu}(R, 0) \log t / R & \text { if } t>R\end{cases}
$$

If follows easily from (3.6)-(3.8) that

$$
\begin{gathered}
T\left(r, g_{\nu}\right) \leqq \chi_{\nu}(r) N_{\nu}(r, 0)+(-1)^{p_{\nu}} \int_{0}^{R} N_{\nu}(t, 0) H_{p_{\nu}}\left(t, r, \alpha_{1}, \cdots, \alpha_{p_{\nu}+1}\right) d t \\
+O\left(r^{p_{\nu}}\right)+A\left(\frac{r}{R}\right)^{p_{\nu}+1} T\left(2 R, g_{\nu}\right)
\end{gathered}
$$

where A is a positive absolute constant.
Taking the maximum over ν in the both side, we obtain

$$
\begin{aligned}
T(r, f) \leqq & \max _{\nu} \chi_{\nu}(r) n N\left(r ; a_{\nu}, f\right) \\
& +\max _{\nu}(-1)^{p_{\nu}} \int_{0}^{R} n N\left(t ; a_{\nu}, f\right) H_{p_{\nu}}\left(t, r, \alpha_{1}, \cdots, \alpha_{p_{\nu}+1}\right) d t \\
& +O\left(r^{q}\right)+A\left(\frac{r}{R}\right)^{q+1} T(2 R, f)
\end{aligned}
$$

in view of (2.4) and (2.8).
For the simplicity, we put

$$
k(\rho)= \begin{cases}\frac{|\sin \pi \rho|}{q+|\sin \pi \rho|} & (q \leqq \rho \leqq q+1 / 2), \\ \frac{|\sin \pi \rho|}{q+1} & (q+1 / 2<\rho \leqq q+1) .\end{cases}
$$

Assume that for all ν

$$
\varlimsup_{r \rightarrow \infty} \frac{n N\left(r ; a_{\nu}, f\right)}{T(r, f)}<k(\rho) .
$$

Then

$$
\frac{n N\left(r ; a_{\nu}, f\right)}{T(r, f)}<k(\rho)-\varepsilon \equiv U, \quad \varepsilon>0
$$

for $r \geqq r_{0}$. Put $\max _{\nu} \mathcal{\chi}_{\nu}(r)=\chi(r)$. Thus

$$
\begin{align*}
& T(r, f)<\chi(r) U T(r, f)+\max _{\nu}(-1)^{p_{\nu}} U \int_{r_{0}}^{R} T(t, f) H_{p_{\nu}}\left(t, r, \alpha_{1}, \cdots, \alpha_{p_{\nu}+1}\right) d t \\
&+O\left(r^{q}\right)+A\left(\frac{r}{R}\right)^{q+1} T(2 R, f) . \tag{3.9}
\end{align*}
$$

Now we make use of the notion of Pólya peaks of the first kind, order ρ, for $T(t, f)$.

It is possible to find three positive sequences $\left\{a_{m}\right\},\left\{A_{m}\right\}$ and $\left\{r_{m}\right\}$ such that

$$
\begin{equation*}
\lim _{r \rightarrow \infty} a_{m}=\lim _{r \rightarrow \infty} \cdot \frac{A_{m}}{r_{m}}=\lim _{m \rightarrow \infty} \frac{r_{m}}{a_{m}}=\infty \tag{3.10}
\end{equation*}
$$

and we can choose m_{0} so large that for $m>m_{0}$

$$
r_{m}>a_{m} \geqq r_{0} \quad \text { and } \quad A_{m} \geqq 4 r_{m} .
$$

Fix $m \geqq m_{0}$ and set

$$
r=r_{m}, \quad R=R_{m}=\frac{1}{2} A_{m}
$$

With this choice of r and $R, r_{m} \leqq \frac{1}{2} R_{m}$, we deduce that

$$
\begin{align*}
\max _{\nu} & (-1)^{p_{\nu}} \int_{r_{0}}^{R_{m}} T(t, f) H_{p_{\nu}}\left(t, r_{m}, \alpha_{1}, \cdots, \alpha_{p_{\nu}+1}\right) d t \\
& \leqq \max _{\nu}(-1)^{p_{\nu}} \int_{a_{m}}^{A_{m}} T(t, f) H_{p_{\nu}}\left(t, r_{m}, \alpha_{1}, \cdots, \alpha_{p_{\nu}+1}\right) d t \\
& +\max _{\nu}(-1)^{p_{\nu}} \int_{r_{0}}^{a_{m}} T(t, f) H_{p_{\nu}}\left(t, r_{m}, \alpha_{1}, \cdots, \alpha_{p_{\nu}+1}\right) d t \\
& \leqq \max _{\nu}(-1)^{p_{\nu}}(1+o(1)) T\left(r_{m}, f\right) \int_{a_{m}}^{A_{m}}\left(\frac{t}{r_{m}}\right)^{\rho} H_{p_{\nu}}\left(t, r_{m}, \alpha_{1}, \cdots, \alpha_{p_{\nu}+1}\right) d t \\
& +\max _{\nu}(-1)^{p_{\nu}} \int_{r_{0}}^{a_{m}} T(r, f) H_{p_{\nu}}\left(t, r_{m}, \alpha_{1}, \cdots, \alpha_{p_{\nu}+1}\right) d t . \tag{3.11}
\end{align*}
$$

Thus

$$
\begin{align*}
\chi\left(r_{m}\right) & +\max _{\nu}(-1)^{p_{\nu}} \int_{a_{m}}^{A_{m}}\left(\frac{t}{r_{m}}\right)^{\rho} H_{p_{\nu}}\left(t, r_{m}, \alpha_{1}, \cdots, \alpha_{p_{\nu}+1}\right) d t \\
& \leqq \max _{\nu}\left\{\chi_{\nu}\left(r_{m}\right)+(-1)^{p_{\nu}} \int_{0}^{\infty} s^{\rho} H_{p_{\nu}}\left(s, 1, \alpha_{1}, \cdots, \alpha_{p_{\nu}+1}\right)\right\} d t \\
& =\max _{\nu} \frac{(-1)^{p_{\nu}} \frac{\left.\left.\sin p_{\nu}+1\right) / 2\right]}{\sin } \sum_{\nu=0}\left(\sin \alpha_{2 \jmath+1} \rho-\sin \alpha_{2 j} \rho\right)}{} \quad=\max _{\nu}\left\{\frac{p_{\nu}}{|\sin \pi \rho|}+(-1)^{p_{\nu}} \frac{\sin \alpha_{p_{\nu}+1} \rho}{|\sin \pi \rho|}\right\} .
\end{align*}
$$

From (3.9), (3.11) and (3.12) we have

$$
\begin{align*}
T\left(r_{m}, f\right) \leqq & \leqq(1+o(1)) T\left(r_{m}, f\right) \max _{\nu}\left\{\frac{p_{\nu}}{|\sin \pi \rho|}+(-1)^{p_{\nu}} \frac{\sin \alpha_{p_{\nu}+1} \rho}{|\sin \pi \rho|}\right\} \\
& +\eta\left(a_{m}, r_{m}, A_{m}\right) \tag{3.13}
\end{align*}
$$

where

$$
\begin{aligned}
\eta\left(a_{m}, r_{m}, A_{m}\right)= & O\left(r_{m}^{q}\right)+A\left(\frac{2 r_{m}}{A_{m}}\right)^{q+1} T\left(A_{m}, f\right) \\
& +\max _{\nu}(-1)^{p_{v}} \int_{r_{0}}^{a_{m}} T(t, f) H_{p_{\nu}}\left(t, r_{m}, \alpha_{1}, \cdots, \alpha_{p_{\nu}+1}\right) d t
\end{aligned}
$$

By (3.11) and the definition of Pólya peaks of the first kind, order ρ, we can see

$$
\eta\left(a_{m}, r_{m}, A_{m}\right)=o\left(T\left(r_{m}, f\right)\right) \quad(m \longrightarrow \infty)
$$

by means of the same process as in [2].
Hence in view of (3.13) we get

$$
\begin{equation*}
1 \leqq U(1+o(1)) \max _{\nu}\left\{\frac{p_{\nu}}{|\sin \pi \rho|}+(-1)^{p_{\nu}} \frac{\sin \alpha_{p_{\nu}+1} \rho}{|\sin \pi \rho|}\right\}+o(1) \quad(m \longrightarrow \infty) . \tag{3.14}
\end{equation*}
$$

If $p_{\nu}<\rho \leqq p_{\nu}+1 / 2$, then

$$
(-1)^{p_{\nu}} \sin \alpha_{p_{\nu}+1} \rho \leqq(-1)^{p_{\nu}} \sin \pi \rho=|\sin \pi \rho| .
$$

Thus for $p_{\nu}<\rho \leqq p_{\nu}+1 / 2$, consequently for $q<\rho \leqq q+1 / 2$ (3.14) implies

$$
1 \leqq U\left\{\frac{q}{|\sin \pi \rho|}+1\right\} .
$$

By definition of U we have

$$
1 \leqq(k(\rho)-\varepsilon) \frac{q+|\sin \pi \rho|}{|\sin \pi \rho|}=1-\varepsilon \cdot k(\rho)<1
$$

which is a contradiction. If $p_{\nu}+1 / 2<\rho \leqq p_{\nu}+1$, then $(-1)^{p_{\nu}} \sin \alpha_{p_{2}+1} \rho \leqq 1$. Consequently for $q+1 / 2<\rho \leqq q+1$ (3.14) implies

$$
1 \leqq U\left\{\frac{q+1}{|\sin \pi \rho|}\right\}
$$

which is a contradiction. Hence Theorem 1 follows.
4. Proof of Theorem 2. When $\mu=\lambda$, we are able to prove with slightly modification of proof in the case $\mu<\lambda$, with remark for making of sequence of Pólya peaks of the second kind.

Then it is enough to prove when $\mu<\lambda$. We assume, therefore, that

$$
\begin{equation*}
p_{\nu}<\mu_{\nu} \leqq \rho \leqq \lambda_{\nu}<p_{\nu}+1 \tag{4.1}
\end{equation*}
$$

for the canonical products $G_{\nu}(z)$ of genus p_{ν}.
In view of the definition of $T\left(r, G_{\nu}\right)$ we know that if $\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \cdots, \alpha_{p_{\nu}+1}^{\prime}$ are any $p_{\nu}+1$ numbers satisfying

$$
\begin{aligned}
& \frac{2 \jmath-1}{2\left(p_{\nu}+1\right)} \pi<\alpha_{\jmath}^{\prime}<\frac{2 \jmath-1}{2 p_{\nu}} \pi, \quad j=1, \cdots, p_{\nu} ; \\
& \frac{2 p_{\nu}+1}{2\left(p_{\nu}+1\right)} \pi<\alpha_{p_{\nu}+1}^{\prime} \leqq \pi
\end{aligned}
$$

then,

$$
T\left(r, G_{\nu}\right) \geqq \begin{cases}\sum_{\imath=1}^{\left(p_{\nu}+1\right) / 2} \frac{1}{\pi} \int_{\alpha_{2 \imath-1}^{\prime}}^{\alpha_{2 \imath}^{\prime}} \log \left|G_{\nu}\left(r e^{i \theta}\right)\right| d \theta & \text { if } p_{\nu} \text { is odd }, \tag{4.2}\\ \sum_{i=0}^{p_{\nu} / 2} \frac{1}{\pi} \int_{\alpha_{22}^{\prime}}^{\alpha_{2+1}^{\prime}} \log \left|G_{\nu}\left(r e^{i \theta}\right)\right| d \theta & \text { if } p_{\nu} \text { is even. }\end{cases}
$$

From Shea's Lemma [5] we see that (4.2) implies,

$$
T\left(r, G_{\nu}\right) \geqq \chi_{\nu}\left(\alpha_{p+1}^{\prime}\right) N_{\nu}(r, 0)+(-1)^{p_{\nu}} \int_{0}^{\infty} N_{\nu}(t, 0) H_{p_{\nu}}\left(t, r, \alpha_{1}^{\prime}, \cdots, \alpha_{p_{\nu}+1}^{\prime}\right) d t,
$$

where

$$
\chi_{\nu}\left(\alpha_{p_{\nu}+1}^{\prime}\right)=\left\{\begin{array}{lll}
1 & \text { if } & \alpha_{p_{\nu}+1}^{\prime}=\pi \\
0 & \text { if } & \alpha_{p_{\nu}+1}^{\prime}<\pi
\end{array}\right.
$$

Hence

$$
\begin{aligned}
T\left(r, G_{\nu}\right)+m\left(r, e^{Q_{\nu}(2)}\right) \geqq & \chi_{\nu}\left(\alpha_{p+1}^{\prime}\right) N_{\nu}(r, 0)+O\left(r^{c \nu}\right)+O(\log r) \\
& +(-1)^{p_{\nu}} \int_{0}^{\infty} N_{\nu}(t, 0) H_{p_{\nu}}\left(t, r, \alpha_{1}^{\prime}, \cdots, \alpha_{p_{\nu}+1}^{\prime}\right) d t .
\end{aligned}
$$

This implies

$$
T\left(r, g_{\nu}\right) \geqq \chi_{\nu}\left(\alpha_{p_{\nu}+1}^{\prime}\right) N_{\nu}(r, 0)+O\left(r^{c \nu}\right)+(-1)^{p_{\nu}} \int_{0}^{\infty} N_{\nu}(t, 0) H_{p_{\nu}}\left(t, r, \alpha_{1}^{\prime}, \cdots, \alpha_{p_{\nu}+1}^{\prime}\right) d t
$$

Taking maximum over ν in the both sides

$$
\begin{aligned}
& n T(r, f) \geqq \max _{\nu} \chi_{\nu}\left(\alpha_{p_{\nu}+1}^{\prime}\right) n N\left(r ; a_{\nu}, f\right)+O\left(r^{c}\right) \\
& \quad+\max _{\nu}(-1)^{p_{\nu}} \int_{0}^{\infty} n N\left(t ; a_{\nu}, f\right) H_{p_{\nu}}\left(t, r, \alpha_{1}^{\prime}, \cdots, \alpha_{p_{\nu}+1}^{\prime}\right) d t
\end{aligned}
$$

in view of (2.4).
Assume that for all ν

$$
\varliminf_{r \rightarrow \infty} \frac{N\left(r ; a_{2}, f\right)}{T(r, f)}>k(\rho),
$$

then

$$
\frac{N\left(r: a_{\nu}, f\right)}{T(r, f)}>k(\rho)+\varepsilon \equiv V, \quad(\varepsilon>0)
$$

for $r \geqq r_{0}$. Thus

$$
\begin{aligned}
T(r, f) \geqq & \max _{\nu} \chi_{\nu}\left(\alpha_{p_{\nu}+1}^{\prime}\right) V T(r, f)+O\left(r^{c}\right) \\
& \quad+\max _{\nu}(-1)^{p_{\nu}} \int_{0}^{\infty} V T(t, f) H_{p_{\nu}}\left(t, r, \alpha_{1}^{\prime}, \cdots \alpha_{p_{\nu}+1}^{\prime}\right) d t .
\end{aligned}
$$

Letting $\left\{r_{m}\right\}$ be a sequence of Pólya peaks of the second kind, order ρ, for $T(t, f)$ with $\left\{a_{m}\right\},\left\{A_{m}\right\}$ the associated sequences, we have

$$
\begin{align*}
T\left(r_{m}, f\right) \geqq & \max _{\nu} \chi_{\nu}\left(\alpha_{p_{\nu}+1}^{\prime}\right) V T\left(r_{m}, f\right)+O\left(r_{m}^{c}\right) \\
& +\max _{\nu}(-1)^{p_{\nu}} V(1+o(1)) T\left(r_{m}, f\right) \int_{a_{m}}^{A_{m}}\left(t / r_{m}\right)^{\rho} H_{p_{\nu}}\left(t, r_{m}, \alpha_{1}^{\prime}, \cdots, \alpha_{p_{\nu}+1}^{\prime}\right) d t \tag{4.3}
\end{align*}
$$

Setting $t=s r_{m}$, recalling that

$$
\lim _{m \rightarrow \infty} A_{m} / r_{m}=\lim _{m \rightarrow \infty} r_{m} / a_{m}=\infty
$$

and upon dividing in the both side of (4.3) by $T\left(r_{m}, f\right)$ and letting $m \rightarrow \infty$, it follows

$$
1 \geqq V(1+o(1)) \max _{\nu} \frac{1}{|\sin \pi \rho|} \sum_{j=0}^{\left[\left(p_{\nu+1}\right) / 2\right]}\left(\sin \alpha_{2 j+1}^{\prime} \rho-\sin \alpha_{2 j}^{\prime} \rho\right), \quad\left(\alpha_{p_{\nu}+2}^{\prime}=0\right) .
$$

Selecting $\alpha_{k}^{\prime}=\frac{(2 k-1)}{2} \pi / \rho$ if $k=1,2, \cdots, p_{\nu} ; \alpha_{p_{\nu}+1}^{\prime}=\pi$ if $p_{\nu}<\rho \leqq p_{\nu}+1 / 2$ and $\alpha_{p_{\nu}+1}^{\prime}=\frac{2 p_{\nu}+1}{2} \pi / \rho$ if $p_{\nu}+1 / 2<\rho<p_{\nu}+1$, we obtain the following inequalities in view of (2.8)

$$
\begin{aligned}
& 1 \geqq V\left\{\frac{q}{|\sin \pi \rho|}+1\right\} \quad \text { if } \quad q<\rho \leqq q+1 / 2 \\
& 1 \geqq V\left\{\frac{q+1}{|\sin \pi \rho|}\right\} \quad \text { if } \quad q+1 / 2<\rho<q+1,
\end{aligned}
$$

which are contradictions together. Hence we have the desired result.
5. Now we consider equality parts in the above Theorem 2. Let $f(z ; \rho)$ be the Lindelöf function

$$
f(z ; \rho)=\prod_{\nu=1}^{\infty}\left(1+\frac{z}{b_{\nu}}\right), \quad b_{\nu}=\nu^{1 / \rho}, \nu=1,2,3, \cdots .
$$

The asymptotic behaviour of $f(z ; \rho)$ is well known [3]. Now we consider

$$
f^{n}+f(z ; \rho)-1=0
$$

Evidently we have

$$
\lim _{r \rightarrow \infty} \frac{N\left(r ; a_{\nu}, f\right)}{T(r, f)}=\lim _{r \rightarrow \infty} \frac{(1 / n) N(r ; 0, f(z ; \rho))}{(1 / n) T(r, f(z ; \rho))}
$$

$$
\begin{aligned}
& =\lim _{r \rightarrow \infty} \frac{N(r ; 0, f(z ; \rho))}{T(r ; f(z ; \rho))} \\
& = \begin{cases}\frac{|\sin \pi \rho|}{q+|\sin \pi \rho|}, & q \leqq \rho \leqq q+1 / 2, q=[\rho] \\
\frac{|\sin \pi \rho|}{q+1} & q+1 / 2<\rho<q+1, q=[\rho]\end{cases}
\end{aligned}
$$

for $a_{\nu}=\exp 2 \pi \nu \nu / n, \nu=1,2, \cdots n$.

References

[1] Edrei, A. and Fuchs, W.H.J., On the growth of meromorphic functions with several deficient values, Trans. Amer. Math. Soc. 93 (1959), 292-328.
[2] Hellerstein, S. and Williamson, J., Entire functions with negative zeros and a problem of R. Nevanlinna. J. Analyse Math. 22 (1969), 233-267.
[3] Nevanlinna, R., Le theórème de Picard-Borel et la théorie des fonctios méromorphes, Paris, 1930.
[4] Ozawa, M., Deficiencies of an algebroid function. Kōdai Math. Sem. Rep. 21 (1969), 262-276.
[5] Shea, D.F., On the Valiron deficiencies of meromorphic functions of finite order. Trans. Amer. Math. Soc. 129 (1966), 201-227.
[6] Valiron, G., Sur la dérivée des fonctions algebroides. Bull, Soc. Math. 59 (1931), 17-39.

Department of Mathematics
Chiba University
Yayoicho, Chiba
Japan

