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EXISTENCE OF QUASICONFORMAL MAPPINGS

BETWEEN RIEMANNIAN MANIFOLDS

BY MITSURU NAKAI AND HIROSHI TANAKA

Introduction.
In I960 the first named author [8] proved that two Riemann surfaces are

quasiconformally equivalent if and only if their Royden algebras are isomorphic.
This result was extended to higher dimensions: to higher dimensional Euclidean
domains by L. G. Lewis [6] and to Riemannian manifolds by J. Lelong-Ferrand
[5]. These results show that if two Riemannian manifolds M and N are quasi-
conformally equivalent, then their Royden compactifications M* and N* are
homeomorphic. The question aries whether the converse is true, that is, whether
a homeomorphism from M* to TV* can always be raised to a quasiconformal
mapping from M to N.

In this paper we shall prove that the question is true in a neighborhood of
ideal boundary of M, that is, if there is a homeomorphism / of M* onto N*r

then there exists a compact subset K of M such that the restriction of / to
each component of M—K is quasiconformal. Furthermore, for Riemann surfaces,
we can find a quasiconformal mapping from M to N. However we do not know
whether this is valid for higher dimensional cases.

Notation and terminology

We denote by Rn the n-dimensional Euclidean space whose points x are
tt-tuple x=(xi, x2, •••, x-n) of real numbers ( n ^ l ) . The distance between * =
(xlf •••, i n ) and y=(ylf •••, yn) is denoted by

\x — y\=[Σl\xi—yι\

We denote by ωn-i the (n — l)-dimensional Lebesgue measure of the unit sphere

1. Riemannian manifolds

Let M be a connected separable, orientable n-idmensional (n^2) differentiable
manifold of class C1 with fundamental metric tensor
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satisfying the following conditions:
In each parametric ball or cube B=(B, φ) with local parameter φ(p)~

(x1, ••• , xn) (/)£β), the local expressions gτj(x) of g%3 (i, j = l, ••• , n) are con-
tinuous functions of x—ix1, •••, xn) in φ(B) and there exists a finite constant
kB^l such that

(1) k*-

for every x in 0(5) and for every n-tuple (f1, ••• , ξn) of real numbers. We can,
therefore, consider the inverse matrix G"1 of G. We set

Then it is known that

n n
(2) h -1- TYY) Y< V σ%Kr\ " ) reB 2LJ\I]I) =~ 2-i g VΛ

for every n-tuple (ηlf •••, ̂ J of real numbers and that

( 3 ) kB~
n^g^kB

n.

In terms of local parameter x = ( x J , •••, x π ), the line element ds on M is
n

given by ds 2 = Σ gι3{x)dxιdxJ

f and since ^ ΐ ; (x) are continuous, the line integral

I ds along a rectiflable curve γ in M can be defined. Therefore the natural dis-
J ?*

tance d iV(^, q) of two points /? and q in M is given by

where the inίinimum is taken with respect to all rectiflable curves γ in M join-
ing p and q.

We can find a covering {B} of M consisting of local parametric balls or
cubes B and a constant τM^(l, 00) such that

for every B of the covering. Thus we fix such a covering {B} of a manifold
M and a constant τM once for all.

By the aid of (1) we have the following lemma.

LEMMA 1 (cf. [5]). // B=(B, ψ) is a parametric ball on M, then

/21φ{q)-φ(P) I ύdM(p, q)^{kBγ" \ φ(q)-φ(p) \
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for all p and q in B.

In particular, if φ(p)—O, then, for sufficiently small r, t>0, we have

(i) dM(p, q)=r implies kB-
ll2r^\φ{q)\^kB"

2r ,

(ii) \x\=timplies kB-
1/2t^dM(p, φ~\x))SkB

ll2t.

2. ACL functions and Dirichlet integrals

A continuous function / defined on a cube D: aι<xι<bι (z = l, ••• , n) in Rn

is said to be absolutely continuous on lines (abbreviated as ACL) if it is absolutely
continuous on almost all line segments parallel to coordinate axes; explicitly, if
we denote by Dt the face of D given by xι=a\ then the function f(ξ+ηeτ),

ei—{d11, -" , διn), is absolutely continuous in rj^(ax, bι) for almost all ξ^Dz with
respect to the (n—l)-dimensional Lebesgue measure (i=l, •••, n). Let G be a
domain in Rn and / be a funciton defined on G. Then / is said to be ACL if
the restriction f\D of / to D is ACL for all cubes D contained in G.

A function / defined on a parametric ball B=(B, φ) on M is said to be ACL
if f°φ~1 is ACL in φ{B). Furthermore a function / defined on M is said to be
ACL if the restriction f\B of / to 5 is ACL for all parametric balls B on M.
For such a function / on M the Dirichlet integral DM(f) of / is defined by

(4 > **</>=$ - L( J , ^ F W ^
It may or may not be finite.

For an ACL function / defined on a domain G in Rn we define the Euclidean
Dirichlet integral of / by

Then we have the following lemma by the aid of (2) and (4).

LEMMA 2. Let f be an ACL function defined on a parametric ball B—(B,φ)
zn M. Then we have

3. Conformal capacity of a ring

A non-empty open subset A of a Riemannian manifold M is called a gener-
alized ring if the complement of A consists of two non-empty closed subsets
Co and Cj of M with CoΠCi=0. In this case we write A=R(C0, Cλ',M). In
particular if A is relatively compact domain on M, both Co and Cx are connected
and C1 is compact, then we say that A is a ring. Then following C. Loewner
[7] (cf. [2], [3]) we define the (conformal) capacity of a generalized ring.
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DEFINITION. For a generalized ring A~R(C0, Cx M), we define

C, M)]=inf DM(f),

where / run over all ACL functions f on M such that f=t on Ct (i=Q, 1). If
there is no such a funciton /, then we define CM(A)=co. Furthermore, in the
case M=Rn, we write CM(A)=C(A).

Let Aι=R(Co

ci\ C^ M) be two generalized rings (*=1, 2). If C0

( 2cCC0

α )

and Ci ( 2 ) cC! a ) , then we write A'^A2.
The following properties are immediate consequences of the definition of

capacity and Lemma 2 except for (d).
Properties of a capacity:

(a) C*[Λ(C0, d M ) ] ^ * [ Λ C d , Co M)].
(b) If A^A', then C ^ G ^ C ^ A ' ) .
(c) Let A be a ring on M which is contained in a parametric ball B~

(B, φ). Then

(d) If 0<α<6<co, then

^ ( c f c l 2 ] )

LEMMA 3. L ί̂ p be a point in a parametric ball B=(B, φ). Let a, b be
real numbers such that 0<α<&<co and A—{q^M',a<dM{p, q)<b] is a ring in
B. Then

kB (log

The last inequality is valid if b/a>kB>

Proof. We may assume that φ(p)=O. If b/a>kB, then it follows from (i)
in Lemma 1 that

{ k B ~ 1 / 2 a <\x\< k B

1 / 2 b } ^ φ ( A ) ^ { k B

1 / 2 a <\x\< k B ~ 1 / 2 b } .

This completes the proof.
Let {Aj=R(C0,j, CltJ; M)}J=λ be a family of rings on M. We say that

is a distinguished family of rings on M if

Λ ) = 0 if ]Φk.

Then we have the following lemma.

LEMMA 4. Let {A3}y=1 be a distinguished family of rings on M. Let CΌ=

PI Co ; and Ci=U Cλ 3. If A=R(C0, Cλ M) ts a generalized ring, then
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The following theorem is due to J. Vaϊsala.

THEOREM 1 (cf. Theorem 11. 9 in [12]). Suppose that A=R(C0, Cr, Rn) ts a
ring and that c e C 0 and a, &eCi. Then

where Mn{r) is a positive constant depending only on r > 0 and n.

4. Homeomorphism

DEFINITION. Let f:M-*N be a homeomorphism. For p<=M and r>0, we
set

Kp,f,r)= inf dN{f{p),f{q)),

L(p,f,r)= sup dN(f(p),f(q)),

A*(p, r)={q'eN;ί(P, f, r)<dN{f{p), q')<L(p, f, r)} .

PROPOSITION. // f'\A*(p, r)) is contained in B=(B, φ), then

CMίf-\A*(P, r))l^kB-»Jίn(ks

2)>0.

In particular, if l(p, f, r)—L(p, f, r), then we set CM\_f-\A*{p, r))]=oo .

Proof. We may assume that l{p, f, r)φL{p, f, r). Then there exist pit p2

e β such that dN(f(p), f(pi))=Kp, f, r) and dN(f(p), f(pt))=L(p, f, r). It fol-
lows from (c) that

If we set φ(ρι)=:χι ( f = l , 2), then it follows from ( i ) in Lemma 1 and Theorem
Γ t h a t

5. Quasiconformal mappings on Riemannian manifolds

Let M and Λ̂  be connected separable, orientable n-dimensional (n^2) dif-
ferentiable manifolds of class C1. The tangent bundle of M is denoted by TM.
The derivative of a differentiable mapping / : M-> N is a fibre mapping / ) / : TM
-+TN and the norm of Df is denoted by | |D/| |. The Jacobian of / at p^M is
denoted by Jf(P)=detDf(p).
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We say that f:M-+ N is an ylCLπ-maρping if, for any parametric balls
B=(B, φ) on M and B'=(B'9 ψ) on N such that f(B)cB'9 φofoφ-* is an ACL-
mapping and the partial derivatives of φ°f°φ~λ are locally LMntegrable on φ(B).
Then / has a fibre mapping Df almost everywhere on M.

DEFINITION. A homeomorphism f:M-+N is called a quasiconformal map-
ping if it is an ΛCL "-mapping and if there exists a finite constant K (^1) such
that

\\Df\\n^K'\Jf\

almost everywhere in M.
For a homeomorphism f:M—*N, we set

Since the theory of quasiconformal mappings between Euclidean domains ob-
viously carries over to Riemannian manifolds, we obtain the following theorem
(cf. F. Gehring [3]).

THEOREM 2. Let f:M-*N be an ACLn-homeomorphism. Then f is a quasi-
conformal mapping if and only if H(p, f) is bounded.

For a homeomorphism f:M—*N we have the following theorem.

THEOREM 3. f is a quasiconformal mapping if and only if there exists a
finite constant α > 0 with the following property.

For every p^M, there is r(p)>0 such that {q'^N; dN(f(p), q')^r(p)} is
compact in N and such that CN(A*(p, r))^a for all r(0<r^r(p)).

Proof. Suppose there is a constant K (l^K<co) such that H(p, f)^K for
all p(=M. Then, for any ε>0 and p^M, there exists r(p)>0 such that F=
{q^M; dM(p, q)ύr(p)} is compact in M and

Kp, f, r

for all r (0<r^r(p)). Then we may assume that f{F) is contained in a parametric
ball B'={Bf, φ) in N such that ψ(f(p))=O. Then it follows from (c) that

CN(A*(p, r))^τN-nC[ψ(A*(p, r))] .

On the other hand there exist qx' and q2' in B' such that

dN{f{p), qi')=Kp, f, r) and dN(f(p), q*')=L{p, f, r).

Since
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it follows from Theorem 1 that

CZφ(A*(p, rm^JCni Iψ{q2')|/1φW)\ )^Mn(τN(K

Hence we can choose τN~nJ{n(τN(KJr£)) as a.
Conversely suppose there exists a finite constant α > 0 with the property in

the theorem. First we assume that H(p, f)>τN. Then there exists a decreas-
ing sequence of real numbers {r̂ jJLi such that r ; -+0 as /-+oo, L(p,f,r3)/l(p,f,r3)'
-*H{p, f) as /—»oo and L(p, f, r3)/l(p, f, rj)>τN for all . Then it follows from
Lemma 3 that

This implies that

By letting 7~>o°, we have

Hence we always have the same inequality. This completes the proof.

Remark. Theorem 3 is a generalization of Theorem 1 in [1] to the case of
Riemannian manifolds.

6. Main result

For a non-compact Riemannian manifold M we denote by R(M) the class
of all bounded ΛCL funcitons f on M which have finite Dirichlet integral DM{f)
<oo. Then R(M) constitutes an algebra over the field of real numbers in a
usual way and is called the Royden algebra associated with M. The Royden
compactification of M is denoted by M* (cf. [5], [6], [8], [10]).

Let M and TV be two Riemannian manifolds of dimension n (n^2). Let
f:M-*N be a homeomorphism. Then we have the following lemma.

LEMMA 5. The following conditions are equivalent.
( i ) / can be extended to a homeomorphism of M* onto JV*.
(ii) Let X and Y be any subsets of M. Then XΓ\Ϋ—0 in Λί* // and only

if f(X)Γ\f(Y)=0 in TV*.
(iii) Let A be any generalized ring in M. Then CM(A)<oo if and only if

CM(f(A))<oo.

Remark. Any homeomorphism / : M*—>N* induces a homeomorphism f\M:
M-*N satisfying (iii) which is called a Royden's map in [9, 11].
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THEOREM 4. Let M and N be two Riemannian manifolds of dimension n
(^2). // there exists a homeomorphism f of M* onto N*, then there exists a
compact subset K of M such that the restriction of f to each component of M—K
is quasiconformal.

Proof. Suppose the theorem were not the case. Then we could find a
compact exhaustion {Kλ™=1 of M such that sup H(p, /)=oo for every j .

pe.M-Kj

Hence there exsits a sequence {pj}J=i of points in M such that

We may assume that {/>;•} ~=i is a discrete set.
For each /, there is a sequence {rv}v=1 of real numbers such that rv—*0 as

v—>oo and

for all v—1, 2, ••• . Then we may assume that {q'&N: dN(f(pj), qf)^rv) is con-
tained in a parametric ball B/—(B/, φ/) for sufficiently large v. Then it
follows from the Proposition that

CMZf-KA*(pJf f, rvm^τM-nJCn(τί)>0

for sufficiently large v. We may assume that ψj(f(pj))=O. Since L(pJf f, rv)f
Kpj, f, ^v)>τN for sufficiently large v, we obtain that

Jf f, rv))^τN«C\jl>3{A*(p3t f,

This shows that, for each j , there exists a sufficiently small r3 such that
{A*(pj, f, r;)}5°=1 is a distinguished family in N and

CMU-KA*(PJ, f, r J ) ) ] ^ τ i f -
n . ^ n (

We set

Co,3={q't=N\ dN(f(pj), q'^UPj, f, r,)}

and

ChJ={q'<=N; dN(f(pj), qf)^Kpj, f, r,)} .

Furthermore if we set

C — f~\ (~^~ o χ\ A (~^ — I I (~^
0 I I ^ 0 , J <Xί±\JL \^i V_/ U j 7 y

then A=R(C0, C. N) is a generalized ring. Since f-\A)=R(f-\C0), f-\C,)',M)
is also a generalized ring, it follows from Lemma 4 that
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CN{A)=±CN{A*{p,9 f,r,))

and

± J f f, r,))]=oo

This contradicts (iii) in Lemma 5. Hence there exists a compact set K in M
such that / is quasiconformal on each component of M—K.

For Riemann surfaces we can prove the following sharp theorem. However
we do not know whether this is valid for higher dimensional cases.

THEOREM 5. Let M and N be two Riemann surfaces. If there exists a
homeomorphism of M* onto N*, then there exists a quasiconformal mapping of
M onto N.

Proof. Let / be a homeomorphism of M* onto N*. By Theorem 4, there
exists a compact set K in M such that the restriction of / to each component
of M—K is a quasiconformal mapping. Then we can find a compact bordered
surface R of M such that K(ZRdM. If we set S—f(R), then the borders dR
and dS consist of a finite number of disjoint quasiconformal curves (cf. [4, p.
101]). By a slight modication of the proof of Satz 8.2 in [4] we can find a
quasiconformal mapping fx of R onto S such that f—fi in a neighborhood of
dR. By setting g=fi in R and = / on M—K, we have a desired quasiconformal
mapping.
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