ON THE GROUP $\varepsilon(K(\pi, 1) \times X)$ FOR 1-CONNECTED $C W$-COMPLEXES X

By Seiya Sasao and Yutaka Ando

§ 0. Introduction

Let $\varepsilon(Y)$ be the group of based homotopy classes of based self-homotopy equivalences of Y. This group has been studied by many authors since Arcowitz and Curjel's paper [1] was published in 1964. Most of results which have been obtained are seemed to depend on the assumption " Y is 1 -connected", and there are only a few known results in the case of non-simply connected spaces ([2], [3], [4], [5] and [7]). In this paper, as a special case of the latter, we study the case of $Y=K(\pi, 1) \times X$ for a 1-connected $C W$-complex X. Our method is very simple, in fact, it is essential only to consider $\varepsilon(Y)$ as the group consisting of invertible elements of the semi-group [$Y, Y]_{0}$ having the multiplication given by the composition of maps. Our main result is the following

Theorem. There is a split extension:

$$
\{1\} \longrightarrow \operatorname{Inv}\left[K(\pi, 1), k_{0} ; X^{x}, 1_{X}\right] \longrightarrow \varepsilon(K(\pi, 1) \times X) \longrightarrow \operatorname{Aut}(\pi) \times \varepsilon(X) \longrightarrow\{1\}
$$

where X^{X} denotes the space of self-maps $X \rightarrow X$ with the compact-open topology.
If the group of integers is taken as π we have
Corollary A. There is a split extension:

$$
\{1\} \longrightarrow \pi_{1}\left(X^{X}, 1_{X}\right) \longrightarrow \varepsilon\left(S^{1} \times X\right) \longrightarrow Z_{2} \times \varepsilon(X) \longrightarrow\{1\}
$$

And moreover if we take the complex projective space $C P^{n}$ as X, the following corollary follows from Proposition 1.2 of [6].

Corollary B. There is a split extension:

$$
\{1\} \longrightarrow Z_{n+1} \longrightarrow \varepsilon\left(S^{1} \times C P^{n}\right) \longrightarrow Z_{2} \times Z_{2} \longrightarrow\{1\} .
$$

Specially, we have a split extension:

$$
\{1\} \longrightarrow Z_{2} \longrightarrow \varepsilon\left(S^{1} \times S^{2}\right) \longrightarrow Z_{2} \times Z_{2} \longrightarrow\{1\} .
$$

[^0]Remark. Corollary B is different from Theorem 8.8 of [5] which should be corrected. In fact, it was noted by Prof. Y. Nomura that Cup Product Theorem of W. Rutter should be applied to the proof of Theorem 8.8.

Corollary C. If X is the suspension of a 1-connected $C W$-complex up to homotopy, then there is a split extension:

$$
\{1\} \longrightarrow[S X, X]_{0} \longrightarrow \varepsilon\left(S^{1} \times X\right) \longrightarrow \varepsilon(X) \times Z_{2} \longrightarrow\{1\} .
$$

Specaally of $X=S^{n}(n \geqq 3)$ we have a split extension (Theorem 7.9 of [5]):

$$
\{1\} \longrightarrow Z_{2} \longrightarrow \varepsilon\left(S^{1} \times S^{n}\right) \longrightarrow Z_{2} \oplus Z_{2} \longrightarrow\{1\} .
$$

Throughout this paper we use following notations:
$\left(Y^{Y}\right)_{0}=$ the space of continuous maps: $\left(Y, y_{0}\right) \rightarrow\left(Y, y_{0}\right)$ with the compact-open topology.
$\pi_{0}(Y)=$ the set of path-connected components of the space Y.
Inv $G=$ the group consisting of invertible elements of a semi-group G.
$p r_{x}$: the projection $X \times Y \rightarrow X$.
$K=K(\pi, 1)$.

§ 1. Lemmas

Let $P:\left(K \times X^{K \times X}\right)_{0} \rightarrow\left(K^{K \times X}\right)_{0} \times\left(X^{K \times X}\right)_{0}$ be the map defined by

$$
P(f)=\left(p r_{K} \circ f, p r_{X} \circ f\right) .
$$

Then the following lemma easily follows from definitions.
Lemma 1.1. P is an isomorphism (homeomorphism and homomorphism of semi-groups), where the multiplication of the space $\left(K^{K \times X}\right)_{0} \times\left(X^{K \times X}\right)_{0}$ with the unit ($p r_{K}, p r_{X}$) is given by

$$
\left(f_{1}, g_{1}\right) \times\left(f_{2}, g_{2}\right)=\left(f_{1} \circ\left(f_{2}, g_{2}\right), g_{1} \circ\left(f_{2}, g_{2}\right)\right) .
$$

Consider a map $r:\left(K^{K \times X}\right)_{0} \rightarrow\left(K^{K}\right)_{0}$ defined by $r(f)=f_{\circ} \imath_{K}$, where i_{K} denotes the inclusion: $K \rightarrow K \times x_{0} \subset K \times X$.

Lemma 1.2. The induced correspondence $r_{*}: \pi_{0}\left(\left(K^{K \times X}\right)_{0}\right) \rightarrow \pi_{0}\left(\left(K^{K}\right)_{0}\right)$ is bijective for any 1-connected CW-complex X.

Proof. For a map $g: K \rightarrow K\left(\in\left(K^{K}\right)_{0}\right)$, define a map $\left.f\left(\in K^{K \times X}\right)_{0}\right)$ by $f=$ $g \circ p r_{K}$, then clearly r_{*} is surjective since $r(f)=g$. Next, suppose $r\left(f_{1}\right)=r\left(f_{2}\right)$. Since we may consider that this means $f_{1}\left|K \times x_{0}=f_{2}\right| K \times x_{0}$ the injectivity follows from the 1 -connectedness of X and $\pi_{i}(K)=0(i>1)$.

Moreover we make the set $\pi_{0}\left(\left(K^{K}\right)_{0}\right) \times \pi_{0}\left(\left(X^{K \times X}\right)_{0}\right)$ into a semi-group with a

$$
\text { ON THE GROUP } \varepsilon(K(\pi, 1) \times X)
$$

twisted multiplication which is defined by

$$
(\alpha, \beta) \times\left(\alpha^{\prime}, \beta^{\prime}\right)=\left(\alpha \circ \alpha^{\prime}, \beta\left(\alpha^{\prime} \circ p r_{K}, \beta^{\prime}\right)\right), \quad \text { unit }=\left(1_{K}, p r_{X}\right)
$$

Now, consider the correspondence

$$
\begin{gathered}
\phi: \pi_{0}\left(\left(K^{K \times X}\right)_{0} \times\left(X^{K \times X}\right)_{0}\right) \longrightarrow \pi_{0}\left(\left(K^{K \times X}\right)_{0}\right) \times \pi_{0}\left(\left(X^{K \times X}\right)_{0}\right) \\
\xrightarrow[r_{*} \times \imath d]{ } \pi_{0}\left(\left(K^{K}\right)_{0}\right) \times \pi_{0}\left(\left(X^{K \times X}\right)_{0}\right),
\end{gathered}
$$

where the first arrow denotes the natural decomposition.
Lemma 1.3. ψ is an isomorphism if X is a 1-connected CW-complex.
Proof. Clearly ϕ is a (1-1)-correspondence by Lemma 1.2. For any element $(f, g)\left(\in \pi_{0}\left(\left(K^{K \times X}\right)_{0} \times\left(X^{K \times X}\right)_{0}\right)\right)$ we can regard f as a map $f^{\prime} \circ p r_{K}$ for a map $f^{\prime}\left(\in\left(K^{K}\right)_{0}\right)$ by Lemma 1.2. Then we have

$$
\begin{aligned}
& \psi\left(\left(f_{1}, g_{1}\right) \times\left(f_{2}, g_{2}\right)\right)=\psi\left(\left(f_{1}^{\prime} \circ p r_{K}, g_{1}\right)\left(f_{2}^{\prime} \circ p r_{x}, g_{2}\right)\right) \\
& \quad\left.=\phi\left(f_{1}^{\prime} \circ p r_{K}\left(f_{2}^{\prime} \circ p r_{K}\right), g_{2}\right), g_{1}\left(f_{2}^{\prime} \circ p r_{K}, g_{2}\right)\right) \\
&=\psi\left(f_{1}^{\prime} f_{2}^{\prime} \circ p r_{K}, g_{1}\left(f_{2}^{\prime} \circ p r_{K}, g_{2}\right)\right) \\
&=\left(f_{1}^{\prime} \circ f_{2}^{\prime}, g_{1}\left(f_{2}^{\prime} \circ p r_{K}, g_{2}\right)\right)=\left(f_{1}^{\prime}, g_{1}\right) \times\left(f_{2}^{\prime}, g_{2}\right) \\
&=\psi\left(\left(f_{1}, g_{1}\right)\right) \times \psi\left(\left(f_{2}, g_{2}\right)\right) .
\end{aligned}
$$

We denote by G the sub-group $\operatorname{Inv}\left(\pi_{0}\left(\left(K^{K}\right)_{0}\right) \times \pi_{0}\left(\left(X^{K \times X}\right)_{0}\right)\right)$ of the semi-group $\pi_{0}\left(\left(K^{K}\right)_{0}\right) \times \pi_{0}\left(\left(X^{K \times X}\right)_{0}\right)$ with the twisted multiplication. Since the projection: $\pi_{0}\left(\left(K^{K}\right\rangle_{0}\right) \times \pi_{0}\left(\left(X^{K \times X}\right\rangle_{0}\right) \rightarrow \pi_{0}\left(\left(K^{K}\right\rangle_{0}\right)$ is a homomorphism, it induces a homomorphism

$$
\varepsilon(K \times X)=G \longrightarrow \operatorname{Inv} \pi_{0}\left(\left(K^{K}\right)_{0}\right)=\varepsilon(K) .
$$

Clearly this is surjective, i.e. we have an exact sequence:

1.4

$$
\{1\} \longrightarrow \Delta \longrightarrow G \longrightarrow \varepsilon(K) \longrightarrow\{1\},
$$

where Δ denotes the kernel of the above homomorphism.
Lemma 1.5. Δ is isomorphic to $\operatorname{Inv} \pi_{0}\left(\left(X^{K \times X}\right)_{0}\right)$.
Proof. Consider the restriction on Δ of the projection

$$
\operatorname{pr} \mid \Delta: \pi_{0}\left(\left(K^{K}\right)_{0}\right) \times \pi_{0}\left(\left(X^{K \times X}\right)_{0}\right) \longrightarrow \pi_{0}\left(\left(X^{K \times X}\right)_{0}\right) .
$$

Since Δ is contained in the semi-subgroup $\left\{\left(1_{K}, \pi_{0}\left(\left(X^{K \times X}\right)_{0}\right)\right\}\left(\subset \pi_{0}\left(\left(K^{K}\right)_{0}\right) \times\right.\right.$ $\left.\pi_{0}\left(\left(X^{K \times X}\right)_{0}\right)\right), p r \mid \Delta$ is a homomorphism. Hence $p r \mid \Delta$ induces a homomorphism $\Delta \rightarrow \operatorname{Inv} \pi_{0}\left(\left(X^{K \times X}\right)_{0}\right)$. Then it is easy to show that this is an isomorphism.

Let $p:\left(X^{K \times X}\right)_{0} \rightarrow\left(X^{X}\right)_{0}$ be the fibring defined by $p(f)=f \mid k_{0} \times X$, and consider the part of the homotopy exact sequence of the fibering:
1.6

$$
\begin{aligned}
\pi_{1}\left(\left(X^{K \times X}\right)_{0}, p r_{X}\right) & \longrightarrow \pi_{1}\left(\left(X^{K}\right)_{0}, 1_{X}\right) \longrightarrow \pi_{0}\left(p^{-1}\left(1_{X}\right)\right) \\
& \longrightarrow \pi_{0}\left(\left(X^{K \times X}\right)_{0}\right) \longrightarrow \pi_{0}\left(\left(X^{\times}\right)_{0}\right)
\end{aligned}
$$

Then, from definitions, we have
Lemma 1.7. $p^{-1}\left(1_{X}\right)$ is a semi-group $\left(\subset\left(X^{K \times X}\right)_{0}\right)$ and all arrows are homomorphisms in the sequence 1.6.

Now, let $\alpha: S^{1} \times X \rightarrow X$ be a map such that $\alpha\left(s_{0}, x\right)=x, \alpha\left(s, x_{0}\right)=x_{0}$ and define a map $\hat{\alpha}: S^{1} \times K \times X \rightarrow X$ by $\hat{\alpha}(s, k, x)=\alpha(s, x)$. Since $\hat{\alpha}\left(s_{0}, k, x\right)=\alpha\left(s_{0}, x\right)$ $=x=p r_{X}(k, x)$ and $\hat{\alpha}\left(s, k_{0}, x_{0}\right)=x_{0}, \hat{\alpha}$ defines an element of $\left.\pi_{1}\left(\left(X^{K \times X}\right)_{0}\right), p r_{X}\right)$. Then it follows from $\hat{\alpha}\left(s, k_{0}, x\right)=\alpha(s, x)$ that the homomorphism

$$
\pi_{1}\left(\left(X^{K \times X}\right), p r_{X}\right) \longrightarrow \pi_{1}\left(\left(X^{X}\right), 1_{X}\right)
$$

is surjective. Thus, by using Lemma 1.7, the sequence 1.6 is transformed into the exact sequence:

$$
1.8 \quad\{1\} \longrightarrow \operatorname{Inv} \pi_{0}\left(P^{-1}\left(1_{X}\right)\right) \longrightarrow \operatorname{Inv} \pi_{0}\left(\left(X^{K \times X}\right)_{0}\right) \longrightarrow \operatorname{Inv} \pi_{0}\left(\left(X^{X}\right)_{0}\right) \longrightarrow\{1\} .
$$

§ 2. Proof of Theorem and Corollaries

First we note that $\pi_{0}\left(p^{-1}\left(1_{X}\right)\right)$ is isomorphic to $\left[K, k_{0} ; X^{X}, 1_{X}\right]$ because we have equalities

$$
\begin{aligned}
\pi_{0}\left(p^{-1}\left(1_{X}\right)\right)=\{f: K \times X \longrightarrow & \left.X, f\left(k_{0}, x\right)=x\right\} / \text { homotopic relative to } k_{0} \times X \\
& =\left[K, k_{0} ; X^{X}, 1_{X}\right] .
\end{aligned}
$$

Next, by combining the sequence 1.4 and 1.8 , we obtain from Lemma" 1.5 the following diagram:

where homomorphisms $c_{\imath}(\imath=1,2,3)$ are defined as follows:

$$
\begin{aligned}
& c_{1}(f)(k, x)=(f(k), x) \quad(f \in \varepsilon(K)), \\
& c_{2}(g)(k, x)=(k, g(x)) \quad(g \in \varepsilon(X)), \\
& c_{3}(h)(k, x)=p r_{x} \circ h\left(k_{0}, x\right) \quad(h \in \varepsilon(K \times X)) .
\end{aligned}
$$

Note that any map: $k_{0} \times X \rightarrow K \times X$ is homotopic to a map: $k_{0} \times X \rightarrow k_{0} \times X \subset K \times X$ by the assumption " X is 1 -connected", and this fact asserts that c_{3} is a homomorphism. Thus Theorem follows from commutativities in the above diagram:
(1) $\left(\Lambda \longrightarrow \varepsilon(K \times X) \underset{c_{3}}{\longrightarrow} \varepsilon(X)\right)=(\Lambda \longrightarrow \varepsilon(X))$,
(2) $c_{3}{ }^{\circ} c_{2}=$ identity,
(3) $\left(\varepsilon(K) \underset{c_{1}}{\longrightarrow} \varepsilon(K \times X) \longrightarrow \varepsilon(K)\right)=$ identity.

In the case of $K=K(Z, 1)=S^{1}$ we have

$$
\operatorname{Inv}\left[K, k_{0} ; X^{X}, 1_{X}\right]=\pi_{1}\left(X^{X}, 1_{X}\right) .
$$

Hence Corollary A follows from Theorem. At last, let X be the suspension of a 1 -connected $C W$-complex Y. By considering the fibering

$$
\left(X^{X}\right)_{0} \longrightarrow X^{X} \underset{p}{\longrightarrow} X, \quad p(f)=f\left(x_{0}\right) \quad\left(f \in X^{X}\right)
$$

we obtain an exact sequence

$$
\pi_{2}\left(X, x_{0}\right) \longrightarrow \pi_{1}\left(\left(X^{X}\right)_{0}, 1_{X}\right) \longrightarrow \pi_{1}\left(X^{X}, 1_{X}\right) \longrightarrow \pi_{1}\left(X, x_{0}\right),
$$

i. e. $\pi_{1}\left(\left(X^{X}\right)_{0}, 1_{X}\right) \cong \pi_{1}\left(X^{x}, 1_{X}\right)$. On the other hand, it follows from $X=S Y$ that $\pi_{1}\left(\left(X^{X}\right)_{0}, 1_{X}\right)$ is isomorphic to $\pi_{1}\left(\left(X^{X}\right)_{0}, *\right)$, where $*$ denotes the constant map $X \rightarrow x_{0}$. Then Corollary C is obtained from $\pi_{1}\left(\left(X^{X}\right)_{0}, *\right) \cong[S X, X]_{0}$.

References

[1] M. Arkowitz and C.R. Curjel, The group of homotopy equivalences of a space, Bull. Amer. Math. Soc., 70 (1964), 293-296.
[2] P. Olum, Self-equivalences of pseudo-projective planes, Topology, 4(1965), 109 -127.
[3] B. Schellenberg, On the self-equivalences of a space with non-cyclic fundamental group, Math. Ann., 205 (1973), 333-344,
[4] B. Schellenberg, The group of homotopy self-equivalences of some compact $C W$-complexes, Math. Ann., 200 (1973), 253-266.
[5] N. Sawashita, On the group of self-equivalences of the product of spheres, Hiroshima Math. J., 5 (1975), 69-86.
[6] S. Sasao, The homotopy of $\operatorname{Map}\left(C P^{m}, C P^{n}\right)$, J. London Math. Soc., (2), 8 (1974), 193-197.
[7] K. Tsukiyama, Self-homotopy-equivalences of a space with two non-vanishing homotopy groups, to appear in Proc. Amer. Math. Soc.

Dept. of Math.
Tokyo Inst. of Tech.
Oh-okayama Meguro-ku Tokyo.
Dept. of Math.
Tokyo Univ. of Fisheries
Minato-ku Kohnan Tokyo.

[^0]: Received September 1, 1980.

