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COMPLEX ALMOST CONTACT STRUCTURES IN A
COMPLEX CONTACT MANIFOLD

BY SHIGERU ISHIHARA AND MARIKO KONISHI

§1. Introduction

Let M be a complex manifold of odd dimension 2m+1 (=3) covered by an
open covering U=1{0;} consisting of coordinate neighborhoods. If there is a
holomorphic 1-form w; in each O;€% in such a way that for any O,, O,

(1.1,1) o Adw)™#0  in O,,
(1.1, ii) 0=, in 0:n0,#¢,

where f,, is a holomorphic function in O,N0,, then the set {(w;, 0,)] 0;= U} of
local structures is called a complex contact structure and M a complex contact
manifold, where w; is called the contact form in O,.

On the other hand, suppose that there are given in each O;=¥ a 1-form u,,
a vector field U, and a tensor field G, of type (1,1) satisfying the following
condition (1.2,1) and (1.2,ii): for any O,, O;€U

(127 l) G12:"I+ui®Ut+vl®sz GlF:_FGZ,
ui°G1:0, uz(Ut)::ly

I and F being respectively the identity tensor field of type (1,1) and the com-
plex structure of M, where v; and V, are defined in O, respectively by

v,=u;° F, V,=—FU,.
In O;N0O;+# ¢ there are functions ¢ and b in such a way that
. w,=au,—bv,, G,=aG;—bH,,
(1.2,i1) in 0;N0,,
vi=bu;+av,, H,=bG,+aH,,
where H, is defined in O, by
H,=FG,.

Then the set {(u,, U,, G,, 0,)]0,€%} of local structures is called a complex
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almost contact structure and M a complex almost contact manifold.
It is the purpose of the present paper to discuss the relation between com-
plex contact structures and complex almost contact structures and to prove

THEOREM Let M be a complex contact manifold of odd complex dimension
2m~+1 (=3). Then M admits always a complex almost contact structure of class C*.

This subject has been partially studied in [3] and proved that a complex
almost contact manifold admits a complex contact structure if it is normal.

§2. Lemmas.

From now on, M is assumed to be a complex contact manifold of complex
dimension 2m+1 (=3) with structure {(w;, 0,)|0;=¥U}. Then for any O,, O,, O,
A

@D 0;=[1,0; in O:N0,#¢
and hence the cocycle condition
f]kfklfl]zl in Osz]mOk

holds. Then there is a complex line bundle P over M with { fa} as its transi-
tion functions. Denote by P a circle bundle over M associated with P. Then
there is a non-vanishing complex-valued function z, in O;=¥%U such that the
function

(2.2) hy,=t,""fy,c, in O:NO,#¢

is the transition function of P in O;N0, and satisfies the condition

lhl=1.
On putting
T,=7, w; in O,,
we have by using (2.1) and (2.2)
2.3) T, =hym,, |hyl=1 in 0O,NO0,.

Let ¢ be a connection in the circle bundle P. Then there is a local real
1-form o, in each O,=¥U such that

dh,,

2.4) vV—=lo,=v—1o,+ A in 0,NO0,.
1]
The condition w, A(dw;)™+#0 implies
(2.5) T A(dm,)™+0 in O,

and hence



32 SHIGERU ISHIHARA AND MARIKO KONISHI
2.6) 7 A2.™#0 in O,,

where 2, is defined by

2.7 R.=dr;—~—1o, A7, in O,.
Thus £, is a local 2-form of rank 2m in each O, and

238) Q.=h;2, in O0;,NO,

holds because of (2.3) and (2.4). Thus we have

LEMMA 2.1. There is in each O;€U a 2-form 2, of rank 2m and of class
C= satisfying (2.8).

We now put
(2.9) S S W R S\

. uz—‘z T T ), U, = 2\/_—_»1 T,
which are local real 1-forms in each O,=%. Then we obtain
(2.10) vi=u;oF,

F being the complex structure of M. Using (2.5), we get
u,=au;—bv,,

(2.11) in 0:N0O,,
vi=bu;+av,,

where h,,=a-++/—1b. The relation (2.5) implies

(ﬂi'*'ﬁt)/\(dﬂi—l'dﬁz)mioy (ﬂl—ﬁz)A(dﬂ'z—dﬁz)m:#O,

or equivalently

(2.12) U AN du, )™ +#0, U A A dvy) 2™ #0 .

On the other hand, we obtain from (2.7) and (2.9)

%—(Qi+gt)=dui_01/\vi ,

(2.13) 1 _
Wi:f(.Qi—qu):dvi—i—al/\ul.

Therefore (2.12) and (2.13) imply

(2.14) w AVANGY™#E0,  u A A0,

where

(2.15) Gi=du;—o.Avi, H=dvito,Au,.

Thus (2.8), (2.11), (2.12) and (2.13) imply
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LEMMA 2.2. There are in each O;€U skew-symmetric local tensor fields G,
and H, of rank 4m such that

(2.16) (X, )=G«(FX,Y), G«X,Y)=—H(FX,Y) wm O,
for any vector fields X and Y and

(2.17) Gi=aG,—bH,, H=bG,~aH,, m 0,NO,,
where h,,=a-+~/—1b.

We now state two more lemmas which are essential in the proof of our
theorem (cf. [17, [2], [41). Let O(n) be the orthogonal group acting on
variables, H(n) be the space consisting of all positive definite symmetric (n, n)-
matrices and GL(n, R) be the general linear group acting on »n variables.

LEMMA 2.3. Any real non-singular (n, n)-matrix p can be written in one and
only one way as the product p=af with acO(n) and B&H(n). The mapping
¢:GL(n, R)— O(n)XH(n) defined by this decomposition gives a homeomorphism.

Remark. Since O(n) and H(n) are real analytic submanifolds of GL(n, R),
¢:GL(n, R)—O(n)xH(n) is a real analytic homeomorphism, i.e. any p&
GL(n, R) can be decomposed analytically in one and only one way as p=af,
where a=O(n) and S H(n), (See Hatakeyama [2] for example).

LEMMA 2.4. Let A={0;} be an open covering of M by coordinate neigh-
borhoods. Suppose that there is in each O, a local tensor fields a, of type
(0.2) and of class C. Choose a field of orthonormal frames in each O;=A and
let 7., be the transformations of these fields of orthonormal frames in O;NO,.
Then {a;} defines globally a tensor field of class C* in M of and only if 7.,a,'7.,
=a, holds in O;NO, for any O,, O,€N.

§3. Proof of theorem

Let G; and A, be the skew-symmetric tensors appearing in Lemma 2.2. If
we put for any p=0, ()

Dp)={Y eT,(0,): G«Y, X)=0 for any XeT (0.},

then we get in O, a local distribution D,: p— D,(p). Lemma 2.2 implies D,(p)
=D,(p) for any p=0;N0,. Hence the local distributions D, defined in O, deter-
mines a global distribution D in M, which is of real dimension 2.

LEMMA 3.1. There is a unmique local basis {U,, V;} of the distribution D in
each O,=W such that

uz(U1>:1 , u(V)=0, v(U)=0, v(V,)=1,
A N A N m 0,NO0,
G(U.,, X)=G«(V,, X)=HU,, X)=H,(V,, X)=0,
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for any vector field X and
U=aU;—bV,, V,=bU;+aV, mm 0;NO0,.
Proof. 1If we put for any p=0, (€¥)
Ap)={Y €Tp0.):v(Y)=0},

then we get a distribution A,:p— A (p) in O,. The distribution DNA, is 1-
dimensional in O, because of (2.14). Thus there is a unique vector field U, in
0O, such that U, spans DNA, and u,(U,)=1, i.e. such that

G(U,, X)=0, uUy)=1, v(U)=0 in O,
for any vector field X. Lemma 2.2 implies
H(U,, X)=0
for any vector field X. Putting in O,
3.1) V.=—FU,
and using Lemma 2.2 and (2.10), we get
GV X)=H(V,, X)=0, v(V)=1, u(V,)=0

for any vector field X. Therefore {U,, V;} is in O, a local basis of the dis-
tribution D. As a consequence of (2.11), we have

U,=al,—bV,, V,=bU;+aV,, in 0:NO,.

Thus Lemma 3.1 is proved.
We shall now prove the theorem stated in § 1.

Proof of theorem. Let g be a Hermitian metric in M such that Z(U,, X)
=u,(X) and gV, X)=v,(X) for any vector field X. Take an orthonormal
adapted frame {E,, FE,, -+, Eem, FEsm, U,, V;} with respect to g in each 0;=¥.
Then by Lemma 3.1 G; has components of the form

(3.2) o] 0 ..... 0
0 :
20 0

with respect to the frame {E,, FE,, U,, V;} in O,, where @, is a nonsingular
real skew-symmetric (4m, 4m)-matrix. By Lemma 2.3 @, can be written in the
form

(3.3) D=a;- B,
with aj=0(4m) and BisH(4m). If we put
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@ i 0 B 0

(34) = F0 0], p= : 00|,

then «, and f, define tensor fields of class C* in O,. Since @, is skew-symmetric,
Bi-tai=—al- B!
and hence
Bi=—ai B rai=—ai’ 'a, Bl .

As is easily seen, —a;*<0(4m), ‘a;- B,-a;= H(4m). Thus, by the uniqueness of
the decomposition, we obtain

a’=—In,

‘- Birar=P:, i.e. Birai=ar-fs,

I, being the unit (4m, 4m)-matrix. Consequently, we have

(3.5) @t:al"gi )
Iin i O 0 0
(36) a=— S0 0 j=—Timeat :1 0
o : 0 :
0 0 0 1

I 0 0
....... 1 0
3.7) = .0 =14, "= . € 0dm)
(O 0 —1
: 1 0
with respect to the adapted frame {E,, FE,, U,, V;} in O,. Hence Lemma 2.2
implies that H, has components of the form

(38) V= P00, W=I"0=—0I".

Therefore ¥, can be decomposed as
(3.9) Ui=(I"a) Bi=0,-,, o0=I"a;.

Denote by 7., the transformation of adapted frames {E,, FE,, U,, V;} and
{E4,, FE,, U,, V}} in O,N0,. Then Lemmas 2.2 and 2.4 imply
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D.=7.,(aD;—bT)- 1., .
Substituting (3.5) and (3.9) into this, we have
al-Bi=r1,-(aa;—bd) 513,
=(71,-(aaij—bo))-*13,)-(ri; B3 1),

where 77, denotes the element of O(4m) such that

b a

Since 7;;,€0(4m) and the decomposition is unique, we get
(3.10) a,=71,-(aa;—bo))- "1,

(3.11) Bi=71Bi"11s -

The equation (3.11) shows by means of Lemma 2.4 that {8} defines a global
tensor field g of class C*, which is a Hermitian metric in M.

Denote by G, the local tensor field of type (1,1) having components a, with
respect to the adapted frame {E,., FE,, U,, V;} in O,. Thus (3.4) implies

(3.12) GU=G,V,=0, ui¢G=v,G6G,=0 in O,
and (3.6) implies

(3.13) Gr=—I4+uQU;+v:QV, in O,.
Furthermore, using (3.3) and (3.4), we have

g(Gth Y):Cl<X7 Y)
(3.14) in O,
gWU,, X)=u,(X), gV, X)=v(X)

for any vector fields X and Y.
Next, we denote by H, the local tensor field of type (1, 1) having components
I'-«, with respect to the adapted frame {E,, FE,, U,, V,} in O,. Then

(3.15) H,=FG, in O,
holds. Then (3.10) implies
(3.16) G,=aG;—bH,, H,=bG,+aH,, in 0,N0O,

Summing up Lemma 3.1, (3.12), (3.13), (3.15) and (3.16), we see that {(u,, U,,
G, 0,):0,€} is a complex almost contact structure in M. Thus the Theorem
is proved.
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