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COMPLEX ALMOST CONTACT STRUCTURES IN A

COMPLEX CONTACT MANIFOLD

BY SHIGERU ISHIHARA AND MARIKO KONISHI

§ 1. Introduction

Let M be a complex manifold of odd dimension 2?n+l (Ξ>3) covered by an
open covering $l={Oi} consisting of coordinate neighborhoods. If there is a
holomorphic 1-form ωt in each Oi^% in such a way that for any Olf

(1.1, i) ωiΛ(dωi)mΦ0 in Ot>

(1.1, ϋ) Wi—ftjWj in

where fτj is a holomorphic function in OiΓ\OJf then the set {{ωif Ol)\Oi^SH} of
local structures is called a complex contact structure and M a complex contact
manifold, where ω% is called the contact form in O%.

On the other hand, suppose that there are given in each C^e^ί a 1-form ult

a vector field Uv and a tensor field Gx of type (1,1) satisfying the following
condition (1.2, i) and (1.2, ii): for any Olf O^%

(1.2, i) Gι

t=-I+ui®Uι+vt®Vι, GtF=-FGt,

/ and F being respectively the identity tensor field of type (1,1) and the com-
plex structure of M, where vt and V\ are defined in O% respectively by

In OiίλOjΦφ there are functions a and b in such a way that

uι=auJ—bvj, Gι=aGj—bHj,
(1.2, ii) in OiΓ\O3,

Vi=buj+avj, Hl—bGjJ

raH3,

where Ht is defined in Oτ by

Ht=FGx.

Then the set {(ul} Ut, Gt, Oι)\Oi^Ψ! of local structures is called a complex
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almost contact structure and M a complex almost contact manifold.
It is the purpose of the present paper to discuss the relation between com-

plex contact structures and complex almost contact structures and to prove

THEOREM Let M be a complex contact manifold of odd complex dimension
2m+l (^3). Then M admits always a complex almost contact structure of class C°°.

This subject has been partially studied in [3] and proved that a complex
almost contact manifold admits a complex contact structure if it is normal.

§ 2. Lemmas.

From now on, M is assumed to be a complex contact manifold of complex
dimension 2m+l (^3) with structure {(ωif Oι)\OitΞ

(%}. Then for any Oτ, OJt Ok

(2.1) Q)i=ftJ<uj in

and hence the cocycle condition

fjkfktfτj=l in 0ιΓΛ0JΓ\0k

holds. Then there is a complex line bundle P over M with {fιj\ as its transi-
tion functions. Denote by P a circle bundle over M associated with P. Then
there is a non-vanishing complex-valued function τ% in C^e^ί such that the
function

(2.2) hιJ=τι-
ΊfιJτJ in

is the transition function of P in OιΓ\Oj and satisfies the condition

| A O | = 1 .
On putting

πι=τι~
1ωί in Ot,

we have by using (2.1) and (2.2)

(2.3) πι=hιJπJ, \hτj\=l in OιίΛθJ.

Let σ be a connection in the circle bundle P. Then there is a local real
1-form σ% in each Oι^

ς& such that

(2.4) y/'-iat=y/-ia3+-^- in

The condition ωιA(dωι)
mΦθ implies

(2.5) πιA(dπι)
mΦθ in Ox

and hence
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(2.6) πtAΩt

mΦθ in Oτ,

where Ω% is defined by

(2.7) Ωι=dπi-VZIϊσιAπι in Ot.

Thus Ω% is a local 2-form of rank 2m in each Oτ and

(2.8) Ωι=hιjΩJ in 0<n0j

holds because of (2.3) and (2.4). Thus we have

LEMMA 2.1. 77ι<?π? zs in each 0^% a 2-form Ωτ of rank 2m and of class
C°° satisfying (2.8).

We now put

(2.9) uι=—(πi

Jrπι), ( )(πirπι), vx— (πι πι)
Δ W — I

which are local real 1-forms in each O te5ί. Then we obtain

(2.10) v^utoF,

F being the complex structure of M. Using (2.5), we get

uι=auj—bvn,

(2.11) in OiΓ\OJ}

b\
where hιJ=a + V^ϊb. The relation (2.5) implies

(πi+πι)Λ(dπi+dπι)
mΦθ, (πι-πι)Λ(dπι-dπι)

mΦθ,

or equivalently

(2.12) uιΛviΛ(duι)
2mΦ0, uιΛviΛ(dvi)

2πιΦ0.

On the other hand, we obtain from (2.7) and (2.9)

(2.13)

^/==r(ΩίΩι)dvi+σιAuι.Zv—1

Therefore (2.12) and (2.13) imply

(2.14) uιAviA(Gi)
2mΦ0, uιAvίA(Hι)

2mΦθ,

where

(2.15) Gi—dUi—GtAVi, Hι=dvi

JrσιAuι.

Thus (2.8), (2.11), (2.12) and (2.13) imply
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LEMMA 2.2. There are in each O*e5i skew-symmetric local tensor fields G%

and H% of rank 4 m such that

(2.16) 6i{X9Y)=6i(FX9Y)f Gί{X,Y)=-Hι{FX,Y) in O%

for any vector fields X and Y and

(2.17) Gi=aGj-bHj, Hι=bG3+aHJy in OiΠOj,

where hτj=a-}-V—lb.

We now state two more lemmas which are essential in the proof of our
theorem (cf. [1], [2], [4]). Let O(n) be the orthogonal group acting on n
variables, H(n) be the space consisting of all positive definite symmetric (n, n)-
matrices and GL(n, R) be the general linear group acting on n variables.

LEMMA 2.3. Any real non-singular (n, n)-?natrιx p can be written in one and
only one way as the product p=aβ with a^O(n) and β^H(n). The mapping
φ:GL(n, R)—>O(n)xH(n) defined by this decomposition gives a homeomorphism.

Remark. Since O(n) and H(n) are real analytic submanifolds of GL(n, R),
φ:GL(n, R)-*O(n)xH(n) is a real analytic homeomorphism, i.e. any p^
GL(n, R) can be decomposed analytically in one and only one way as p=aβ,
where a^O(n) and β^H(n), (See Hatakeyama [2] for example).

LEMMA 2.4. Let %={Oi} be an open covering of M by coordinate neigh-
borhoods. Suppose that there is in each O*e2i a local tensor fields at of type
(0.2) and of class C°°. Choose a field of orthonormal frames in each O ^ ^ i and
let γ%J be the transformations of these fields of orthonormal frames in OiΓλOj.
Then {at} defines globally a tensor field of class C°° in M if and only if Tτja/ϊtj
= at holds in OiΓ\O3 for any Oly Oj^%.

§3. Proof of theorem

Let Gi and H% be the skew-symmetric tensors appearing in Lemma 2.2. If
we put for any p^Oz (eδl)

Di(p)={YtΞTp(Oι):Gi(Y, X)=0 for any Z e T p ( O J } ,

then we get in O% a local distribution Ό%: p^Dz(p). Lemma 2.2 implies Dt(p)
= Dj(p) for any p^OiΓλOj. Hence the local distributions D% defined in Oτ deter-
mines a global distribution D in M, which is of real dimension 2.

LEMMA 3.1. There is a unique local basis {Uΐf Vz-} of the distribution D in
each Oι^% such that

uι(Uι)=l, uτ(Vτ)=0, vl(Ul)=0, v t ( 7 , ) = l ,
in OιΓ\OJ

Gi{Uu X)=Gi(Vι, X)=Hi(Ulf X)=Hι(Vt, X)=0,
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for any vector field X and

Uι=aUj-bVJ, Vι=bUj+aVJ in OτΓ\O3.

Proof. If we put for any p^Ot (eSί)

At(p)={YeTp(Ot):vt(Y)=0},

then we get a distribution Aι:p^^Ai(p) in Ox. The distribution DΓ\AZ is 1-
dimensional in Oz because of (2.14). Thus there is a unique vector field Uι in
Ox such that Ό% spans DΓ\At and uι(Uι)=l, i.e. such that

6t(Ut,X)=0, ui(Uι)=l,

for any vector field X Lemma 2.2 implies

in

for any vector field X. Putting in O%

(3.1) Vι=-FUι

and using Lemma 2.2 and (2.10), we get

t)=l, ui(Vl)=0

for any vector field X. Therefore {Ulf F J is in O% a local basis of the dis-
tribution D. As a consequence of (2.11), we have

Ut=aUj-bVj, Vι=bUj+aVJ, in

Thus Lemma 3.1 is proved.
We shall now prove the theorem stated in § 1.

Proof of theorem. Let g be a Hermΐtian metric in M such that g(Ulf X)
= ut(X) and g(Vt, X)=vt(X) for any vector field X. Take an orthonormal
adapted frame {Elf FEU •••, E2m, FE2m, Ut, Vi) with respect to g in each
Then by Lemma 3.1 Gι has components of the form

(3.2)

with respect to the frame {Eaf FEa, Ut, Vx} in Olf where Φ[ is a nonsingular
real skew-symmetric (4m, 4m)-matrix. By Lemma 2.3 Φ[ can be written in the
form

(3.3) Φί=αί fl

with αίeθ(4m) and βi^H(4tm). If we put

φ[

0
0

0

0

0

0
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a'% \ 0

\ o

•: o

0

0

ft

0

0

0

0

0

0

(3.4)

then <Xι and βt define tensor fields of class C°° in Ox. Since Φ[ is skew-symmetric,

and hence

As is easily seen, — αί 2 e0(4m), ιa'x'βi-ai^Hiim). Thus, by the uniqueness of
the decomposition, we obtain

rv'2— — T

14m being the unit (4m, 4m)-matrix. Consequently, we have

(3.5) Φι=aι-βi,

(3.6) α , ' = - o o | = - / 4 i n + a +
0 0

0

0
1

0

0

0

1

On the other hand, the complex structure F has components of the form

(3.7) f—

P

0

0

0

- 1

2

0

P=

0 - 1

1 0

0

o

0 - 1

1 0

= O(4m)

with respect to the adapted frame {Ea, FEa, Ut, F J in Oτ. Hence Lemma 2.2
implies that Hτ has components of the form

(3.8)

Ψί

0
0

0

0

0

0

Ψί=PΦ'i=-Φ'tP.

Therefore Ψί can be decomposed as

(3.9) Ψ[=(P'a/

ι) β[=δ/

ι'β{, δ't=P-a't.

Denote by γl3 the transformation of adapted frames {Ea, FEa, Ulf Vt} and
{E'a, FE'a, Uj, Vj} in OιΓ\OJ. Then Lemmas 2.2 and 2.4 imply
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Φι=γιJ-{aΦj-bΨ3)-tγl}.

Substituting (3.5) and (3.9) into this, we have

where y'l3 denotes the element of 0{Am) such that

0
a

b

0

-b

a

Since γ'tje.0(4m) and the decomposition is unique, we get

/ Q 11Λ R' — r'.. Rf.. trf

\O.i.L) pi—-/ ιj pj j ij .

The equation (3.11) shows by means of Lemma 2.4 that {βι} defines a global
tensor field g of class C°°, which is a Hermitian metric in M.

Denote by Gτ the local tensor field of type (1,1) having components aτ with
respect to the adapted frame {Ea, EEa, Uιy Vi) in Ox. Thus (3.4) implies

(3.12) GίUx=GιVι=0, uxoGx=v^Gx=0 in Ox

and (3.6) implies

(3.13) Gt

2=— IJrUτ®Ui-\-Vi®Vτ in Ox .

(3.14) in O%

Furthermore, using (3.3) and (3.4), we have

(, Y)=6X(X, Y)

g(U%,X)=Uί(X), g(Vτ,X)=ι

for any vector fields X and Y.

Next, we denote by Hx the local tensor field of type (1,1) having components
Γ-ax with respect to the adapted frame {Ea, FEa, Uτ, Vx) in Oτ. Then

Hι=FGι in α(3.15)

holds. Then (3.10) implies

(3.16) Gx=aGj-bH3, Hx= in OxΓ\Oj

Summing up Lemma 3.1, (3.12), (3.13), (3.15) and (3.16), we see that {(uι, Ut,
Glf Oι): Oι^

<$ί} is a complex almost contact structure in M. Thus the Theorem
is proved.
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