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SOME ISOSPECTRAL PROBLEMS

BY YHUJI SHIBUYA

§ 0. Introduction

In the previous paper [7], we proved the following theorem.

THEOREM 0.1. Let M2n+1(c) be a compact Sasakian space from of a constant
φ-sectional curvature c of dimension 2n + l = 5 , 7, 9, 11 or 13, and let M* be a com-
pact Sasakian manifold. If M2n+1(c) and M* are isospectral with respect to the
Laplace operator, then M* is a 2n + l dimensional Sasakian space form of a con-
stant φ-sectional curvature c*=c. (cΦ31 when 2n+l=13)

In this paper, we study isospectral problems not only of Sasakian manifolds
but of their submanifolds. In addition, by using the similar methods, we study
isospectral problems of quaternion Kaehler manifolds and some submanifolds of
Kaehler manifolds.

§ 1. Special Classes of Sasakian Manifolds

Let M2n+1(c) be a 2n + l (^5) dimensional Sasakian manifold with structure
tensors (φ, ξ, η). In [7] we proved the following two propositions, which give
the characterizations of Sasakian space forms and CΈinstein manifolds in terms
of equalities involving curvature tensors.

PROPOSITION 1.1. A Sasakian manifold M2n+1 satisfies an inequality

( 1 1 ) | i ? [ 2 > 2 S2 4(3n + l) s 4n(3n + l)(2n + l)
~~ w(n+ί) 72+1 n + 1

where S is the scalar curvature of M2n+1. Equality holds if and only if M2n+1

is a Sasakian space form.

PROPOSITION 1.2. A Sasakian manifold M2n+1 satisfies an inequality

(1.2) ( R i c c i | 2 ^ - ( ^ 2 ^

Equality holds if and only if M2n+1 is a C-Einstein manifold.

See [7] for notations and definitions of Sasakian manifolds.
Received March 13, 1980.
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We defined two more classes of Sasakian manifolds in [7]. A Sasakian
manifold M2n+1 is said to have the η-parallel Ricci tensor if the Ricci tensor of
M2n+1 satisfies

(1.3) (7κ RΊcci)(φX, φY)=0

for any vector fields X, Y and V on M 2 n + 1 . And a Sasakian manifold M2n+1 is
called a locally D-symmetrzc space if the curvature tensor of M2n+1 satisfies

(1.4) WvRXφX, φY, φZ, φW)=Q

for any vector fields X, Y, Z, V and W on M 2 n + 1 .
The geometric meaning of the 57-parallel Ricci tensor was explained from

the view point of fibering. (See also Kon [4], Shibuya [8]) By using the similar
point of view, we know the geometric meaning of locally D-symmetric spaces.
(We have had the notion of locally /^-symmetric spaces for a long time. Inde-
pendently Takahashi studied the same notion, which he called locally ^-symmetric
spaces, and made same qualitative observations in his paper [9].)

In this section we establish two inequalities on Sasakian manifolds, which
give the characterizations of Sasakian manifolds with ^-parallel Ricci tensors
and locally D-symmetric spaces respectively.

By using the curvature properties of Sasakian manifolds, we have

(1.5) (7F RicciX^X, φY)

=(VκRicci)(X, Y)-2nη(X)g(φV, Y)+η(X) Ricci (φV, Y)

-2nη(Y)g(φV, X)+η(Y) Ricci (φV, X)
and

(1.6) WrRXφX, ΦY, ΦZ, φW)

={1VR){X, Y, Z, W)

-η{X){R{Z, W, V, φY)+Φ(Z, Y)g(W, V)-Φ(W, Y)g(Zf V))

+ η(YXR(Z, W, V, X)+Φ{Z, X)g{W, V)-Φ{W, X)g{Z, V))

-η{Z){R{Z, Y, V, W)+Φ{X, W)g(Y, V)-Φ(Y, W)g(X, V))

+ η(W)(R(X, Y, V, Z)+Φ{X, Z)g{Y, V)-Φ(Y, Z)g(X, V))

for any vector fields X, Y, Z, V and W on M2n+1.
Taking the squares of the lengths of both sides of (1.5) and (1.6), we have

(1.7) 17 Ricci 12=2 \ Ricci 1 2 -8n5+lβn 3 +8n 2

+(length of (7F RicciX^Z, φY))2

and
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(1.8) | 7 i? | 2 =4| i? | 2 -16S+32n 2 +16n

+(length of (ΊvR){φX, φY, φZ, φW))2.

Thus we have the following two propositions.

PROPOSITION 1.3. A Sasakian manifold M2n+1 satisfies an inequality

(1.9) |VRicci | 2 ^2 |Ricci | 2 -8ftS+lβn 3 +8n 2 .

Equality holds if and only if M2n+1 has the ψparallel Rica tensor.

PROPOSITION 1.4. A Sasakian manifold M2n+1 satisfies an inequality

(1.10) |V# | 2 ^4 |# i 2 -16S-f32f t 2 +lβn.

Equality holds if and only if M2n+1 is a locally D-symmetric space.

As an application of (1.9), we give an alternate proof of a theorem of Oku-
mura [5].

COROLLARY 1.5. A Sasakian manifold M 2 n + 1 with parallel Ricci tensor is an
Einstein manifold.

Proof. We first note that on a Riemannian manifold of dimension 2n + l
we have

(1.11) | R i c c i | 2 - 2 ^ T T 5 2 ?

where equality holds if and only if the Riemannian manifold is an Einstein
manifold. Combining the assumption, (1.9) and (1.11), we have

(1.12) I Ricci 12^=4n5-8?23-4?22

2S(4τ22+2n)-(4n2+2n)2 1
1 = O I 1 '

that is,

Therefore in (1.12) the equality must hold. Q. E. D.

By using the similar technique, we see that (1.10) gives an alternate proof
of one of other theorems of Okumura in [5].

COROLLALY 1.6. // a Sasakian manifold M2n+1 is a locally symmetric space,
then M2n+1 is a space form.

§2. Isospectral Problems of Locally /^-Symmetric Spaces

Special classes of Sasakian manifolds discussed in § 1 are related as follows:



4 YHUJI SHIBUYA

{Sasakian space forms} CI {Locally D-symmetric spaces}

n n
{C-Einstein manifolds} {Sasakian manifolds with

^-parallel Ricci tensor}
In this section we consider a weaker version of Theorem 0.1. Namely we prove
the following theorem.

THEOREM 2.1. Let M2n+1 be a 2n + l (^5) dimensional compact locally D-
symmetnc C-Einstein mam fold and let M* be a compact C-Einstein manifold. If
M2n+1 and M* are isospectral with respect to the Laplace oprator and

Γ t u •* Γ u
\ Γ? r. U /? * 3 f? i l 1) \ /? * -L. U /? * * 7 / ? * . T'fi'i;'*
\ •LVιh l v u t 1V kj u g i 1V xh 1V ut -**• kj υ g* >

JM JM*

then M* is a 2n + l dimensional locally D-symmetnc space.

Proof. By regrouping each term of a3, which is is the 4-th coefficient of
the asymptotic expansion

(2.1) Σ exp (—tλt)~(4πO"n/2 Σ>akt
k, t — > 0+

1=1 k=0

with spectrum {λt} of the Laplace operator, we have

(2.2) a3=J\\MfVg'

where

/ = —-ί(|Vi?|2—4|i?|2+16S—32n2—16n)

- ~ (17 Ricci 12-21 Ricci 12+8n5- 16n3-8n2)

V35 +63/V 2n + 4 " i 21 * ' f t ^ ^ * J

If we put the assumption of C-Einsteinness, / is given by
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(2.3)

(17 Ricci 12-21 Ricci 12+8?iS- 16n3-8n2)

208
63

u S-2n , , o S-2n
where a=—^ and b=2n ^ .

2n 2n
Now back to our particular case, first we easily see that dimM*=2n + l

and volume of M=volume of M*. From the assumption, the scalar curvature
S and S* of M and M* respectively are both constants. Hence a1=a1^ implies
that S = S * . In general a2 is expressed as

i2Λ)

Thus in our case a2=a2* gives I |i?
J M

we see that a3=a3* is simplified to

*̂. Summing up these facts,

0=f J--ί(2.5)

(|

Using Propositions 1.3 and 1.4, we conclude that M* is a locally .D-symmetric
space. Q. E. D.

Theorem 2.1 is a Sasakian version of Sakai's theorem [6]. In order to
simplify the assumption, Sakai used the Euler characteristic. However he to
sacrifice the dimension. In our case we do not know yet what assumption sim-
plifies our theorem.

§ 3. Isospεctral Problems of Submanifolds of Sasakian Manifolds

It is well known that the spectrum of the second variation operator D gives
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some geometric characterizations of minimal submanifolds.
Suppose Mn is a minimal submanifold of dimension n isometrically immersed

in the Riemannian manifold Mm of dimension m. The second variation operator
D is defined by

(3.1) πW=D7W+R(W)-tAΛ(W), W^ΓiTM"),

where Dη is the Laplace operator in the normal bundle to Mn, A is the second
fundamental tensor, Γ(TML) denotes the space of smooth sections to the normal
bundle and R: Γ(TML)^Γ(TML) is the partial Ricci transformation given by

m

(3.2) R{W)= Σ (J?(e,, W)et)
N, WeΓ(TMx)

l

for elf •••, em an orthonormal basis of TM, ( )N denoting the normal part to Mn.
If we consider the asymptotic expansion (2.1) with spectrum {Xt} of the

second variation operator, we have

THEOREM 3.1. (Gilkey [2])

(3.3) β o (Π)=r volume of Mn ,

=-̂ -f Svg-\ (Tr(R)-\h\
6 JM )M

where r—m—n— codimension of Mn in Mm and \h\ is the length of the second

fundamental tensor h.

Next, before examining our problems, we review some theory of submani-
folds of Sasakian manifolds. (For more detail, see Yano and Kon [10])

Let M be a 2m-\~l dimensional Sasakian manifold with structure tensors
(φ, ζ, η). A submanifold M in M is called a Sasakian submanifold if the char-
acteristic vector field ζ is tangent to M everywhere on M and φX is tangent
to M for any tangent vector X to M. Obviously, M is a Sasakian manifold of
dimension, say 2n + l, n<m, with respect to the induced structure tensors.

By checking the property of the second fundamental form, we have

PROPOSITION 3.2. Any Sasakian submanifold is a minimal submanifold.

From the Gauss equation, we have

PROPOSITION 3.3. Let M be a Sasakian submanifold in a Sasakian space
form M(c) of a constant φ-sechonal curvature c. Then M is a totally geodesic
submanifold if and only if M is of a constant φ-sectional curvature c.

S2n+ίdS2m+1 (n<m) is an example of a totally geodesic Sasakian submanifold.

If an n dimensional submanifold M immersed in a Sasakian manifold M2m+1

satisfies φTpMdTpML for each p^M, where TVM
L is a normal space to M at

p, then M is called an anti-invariant submanifold. Since the rank of φ is 2m,
we see that n^m+1. In the case of n=m+l, the characteristic vector field ξ
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is necessarily tangent to M.
Now we go back to our problem. Let M2n+1 be a Sasakian submanifold in

a Sasakian space form M2m+\c) of a constant ^-sectional curvature c. We
compute the scalar curvature S of M 2 n + 1 by using the Gauss equation and an
orthonormal basis elf •••, en, φβi, •••, 0£rc, <f of TPM for any p^M2n+1. We
have

(3.4) S--ί(n(2n + l)( ί :+3)+n(ί :- l))- |/z | 2 +(2n + l ) | / / | 2 ,

where // is the mean curvature vector, which is in our case 0 because of Pro-
position 3.2.

Next, by direct computation, we have

(3.5) R(W)

Hence

(3.6) j

where r^(2m+l)-(2n+l)=codimension of M2n+1 in M2m+1(c).
Substituting (3.4) and (3.6) into (3.3), we have α^D) in our case.

(3.7)

THEOREM 3.4. Let M and M* be compact Sasakian submani folds in a Sasa-
kian space form M(c). If M and M* are isospectral with respect to Ώ and M is
a totally geodesic submanifold, then M* is totally geodesic unless the codimension
of M* in M(c) is 6.

Proof. The asymptotic expansion (2.1) with spectrum of {λt} shows that the
codimension of M and M* are equivalent. The equivalence of fli(D) reduces to

|Λ*|VV.

Since M is totally geodesic, the left side of (3.8) vanishes. Hence if rΦβ, M*
is also totally geodesic. Q. E. D.

Noting Proposition 3.3, we have

COROLLARY 3.5. Let M and M* be compact Sasakian submani folds in a
Sasakian space form M(c). If M and M* are isospectral with respect to D and
M is a Sasakian space form M(c), then M* is also a Sasakian space form M*(c)
unless the codimension of M* in M(c) is 6.
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By applying the similar method to anti-invariant submanifolds in a Sasakian
space form, we have

THEOREM 3.6. Let M and M* compact onentable anti-invariant minimal
submamfolds tn a Sasakian space form M(c). If M and M* are isospectral with
respect to D and M is totally geodesic, then M* is totally geodesic unless the
codimension of M* in M(c) is 6.

§ 4. Isospectral Problems of Anti-Invariant Submanifolds of
Complex Manifolds

Donnally [1] proved an isospectral problem of Kaehler submanifolds in a
complex space form by using the second variation operator.

Anti-invariant submanifolds of complex manifolds constitute another interest-
ing class of submanifolds in complex manifolds.

By slightly modifying Donnally's proof, we easily prove

THEOREM 4.1. Let M and M* be compact onentable anti-invariant minimal
submanifolds in a complex space form M{c). If M and M* are isospectral with
respect to D and M is totally geodesic, then M* is totally geodesic unless the
codimension of M* in M(c) is 6.

§ 5. Isospectral Problems of Quaternion Kaehler Manifolds

First we review the definition and some properties of quaternion Kaehler
manifolds. (For more detail, see Ishihara [3])

A An dimensional Riemannian manifold M4n is said to be a quaternion
Kaehler manifold if and only if the holonomy group if a subgroup of Sp(n) Sp(l)
=zSp(n)^)Sp(l)/{±ϊ\, where Sp(n) is the real representation of the symplectic
unitary group acting on C2n. In other words, there exists a 3 dimensional vector
bundle V consisting of tensors of type (1, 1) over MAn such that in any co-
ordinate neighborhood U of M 4 n, there is a local basis {F, G, H) of V satisfying

(5.1) F2=-I, G2=-I, H2=-I,

GH=-HG=F, HF=-FH=G, FG=-GF=H,

and

(5.2) VXF= r{X)G-q{X)H,

lxG = -r{X)F +p(X)H,

VXH= Q(X)F-p(X)G,

for the Riemannian connection 7 of M471, where X is any vector field on M471,
p, q and r are certain local 1-forms defined in U. {F, G, H} is called a canonical
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local basis of the bundle V over U. Suppose {F\ G', W) is a canonical local
basis over U'', where UΓ\Uf—^} we have

(5.3) F'

G'=s21F+sZ2G+s23H,

with functions Sji in UΓ\Uf. A (3, 3) matrix (s^) belongs to the proper or-
thogonal group SO(3) of dimension 3. Thus any quaternion Kaehler manifold is
orientable.

We take a point p in a quaternion Kaehler manifold M 4 n of dimension 4n
and a tangent vector X of M4n at jf>. Then the 4 dimensional subspace ζ?(^ϋ
of TpM

in defined by

Q ( Z ) = { r e T p M 4 n : r = α Z + ό F Z + ί : G Z + ί ί / / X α, b, c, d^R)

is called the Q-section determined by X. For any Y, Z^Q(X), if the sectional
curvature σ(Y, Z) is a constant |θ(Z), |θ(Z) is called the Q-sectional curvature
with respect to X at £. Moreover if we suppose that p(X) is a constant c = c(p)
independent of X at each point of p, then the quaternion Kaehler manifold M4ΐl

is said to have a constant Qsectional curvature c(p).
The following two theorems are well known.

THEOREM 5.1. A quaternion Kaehler manifold of dimension Ξ̂ 8 is of a con-
stant Q-sectional curvature c = c(p) if and only if its curvature tensor has the
components of the form

(5.4) Rkjih=-rc(gjιgkh—gkig

THEOREM 5.2. For a quaternion Kaehler manifold of a constant Q-sectional
curvature c=c(p), p^M, the function c(p) is constant in M if dim M^S.

A quaternion Kaehler manifold M 4 n with a constant Q-sectional curvature
c is called a quaternion space form M4n(c). The Ricci tensor R3i and the scalar
curvature 5 of a quaternion space form are given by

(5.5) Rji=j

(5.6) S=2nc(2n-5).

The quaternion projective space is an example of a quaternion space form
of c=4.

Let M471 be a quaternion Kaehler manifold of dimM 4 7 l ^8. We now define a
tensor D in U which may correspond to the Bochoner curvature tensor in Kaehler
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manifolds. The components of D in U are given by

(5.7) Dkjih^Rkjίh—4/ \Λ^~(R jig kκ~- R kig jhΛ- g jiR kh—g ki

+RitFJ

tFkh-RitFk

tFjh-2RjtFk

tFih

+FjiRhtFk

t-FkιRhtF/-2FkjRhtFι

t

/H\h~~RuHVΉjκ—2R jtH\lHi

Because of (5.3), we see that D is actually a global tensor on M4n. It is easily
checked that if D=0 and M4n is Einstein, then Min is a quaternion space form*
On the other hand if M4n is a quaternion space form, then M 4 n is Einstein and
D=Q. However we have

THEOREM 5.3. Any quaternion Kaehler manifold of dimension ^ 8 is an
Einstein manifold.

Hence D is reduced to

(5.8) Dkιjh=Rkjih--16n, 2Λgjigkh-gkigjh+FjίFkh--FkίFjh-2FkjFih

G kh — G kiGjh—2G kjGih+HjiH kh—H kiHjh—2HkjHi n)

By using the curvature properties of quaternion Kaehler manifolds found in
Ishihara [3], we see that

(5.9) |

Therefore we have

THEOREM 5.4. Let M 4 n be a quaternion Kaehler manifold of dimension Ξ>8.
An inequality

(5.10)
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uality
c

Min(c), where c=-

holds on Min. Equality holds if and only if Min is a quaternion space form

S

2n(2n-5) '

Now we consider an isospectral problem of quaternion Kaehler manifolds by
using the asymptotic expansion (2.1) with the spectrum of the Laplace operator.

THEOREM 5.5. Let {MAn{c), g) be a compact quaternion space form of a con-
stant Q-sectwnal curvature c of dimension 4n^8, and let (M*, g*) be a compact
quaternion Kaehler manifold. If Spec(M4n(c), g )=Spec(M*, g*), then M* is a
quaternion space form of constant Q-sectional curvature c*=c of dimension An.

Proof. From (2.1) we easily see dim M*=4n and the volume of M 4 n(c)=
volume of M*. Since both M4n(c) and M* are Einstein manifolds by Theorem 5.3,
the scalar curvature S and S* are constants. Hence the condition a1=a1* im-
plies that S = S * . Using the Einsteinness we can express α2 as

(5.11) fl2= -~ j ^ (21R12-21 Ricci 1

___1 r o / 5n + l \ l c 20n8+78 n 2 + 7 7 n - 7 C 2

" "360Jif V ' 4n(n+2)2 ύ ) V g ^ 360 JM 4n(n + 2)2 V''

Therefore a^—a^ in our case implies

(5.12) 4n(n+2)2

20n 3+78n 2+77n-7 5, 2 l

4n(n+2)2 )M

Because of Theorem 5.4, we see that M* is a quaternion space form, and (5.6)
shows c*==c. Q. E. D.
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