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§0. Introduction.

In a previous paper [13], the present authors studied generic submanifolds
immersed in complex space forms by the method of Riemannian fibre bundles.

The purpose of the present paper is to study generic submanifolds of
Sasakian manifolds, especially those of Sasakian space forms.

In §1, we state some known results on submanifolds of Sasakian manifolds
and study certain properties of the second fundamental forms of such sub-
manifolds.

In §2, we define generic submanifolds of Sasakian manifolds and prove
Propositions 2.1 and 2.2 on totally contact-umbilical generic submanifolds.

§3 is devoted to the study of the f-structure which a generic submanifold
admits and to that of complete integrability of the distributions .£ and I asso-
ciated with this f-structure.

In §4, we construct an example of generic submanifold of a Sasakian space
form and in §5 we prove Theorem 5.1 which characterizes complete generic
minimal Einstein submanifolds of S*™*! with parallel second fundamental form.

In §6, we define pseudo-umbilical submanifolds of Sasakian manifolds and
prove propositions and theorems on pseudo-umbilical generic submanifolds and
in §7 we study pseudo-umbilical hypersurfaces by the method of Riemannian
fibre bundles.
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164 KENTARO YANO AND MASAHIRO KON

In §8, we define what we call P-axiom and show that if a (2n--1)-dimen-
sional Sasakian manifold M (n=2) satisfies the P-axiom, then M is a Sasakian
space form.

89 is devoted to the study of what we call pseudo-Einstein hypersurfaces of
St We prove a series of lemmas and then Theorem 9.1 which says that a
pseudo-Einstein hypersurface of S?"*! (n=3) has two constant principal curvatures
or four constant principal curvatures.

In the last § 10 we give some examples of pseudo-Einstein hypersurfaces.

§1. Submanifolds of Sasakian manifolds.

Let M be a (2m+1)-dimensional Sasakian manifold with structure tensors
(¢, & 7, g). The structure tensors of M satisfy

FX=—X+7(XE,  §6=0, g@O=1, 7(X)=0,

g8eX, oY)=g(X, Y)—n(X)n(Y), n(X)=g(X, &)
for any vector fields X and ¥ on M. We denote by ¥ the operator of covariant

differentiation with respect to the metric g on M. We then have
Vxé=¢X, (xp)V=R(X, §)Y=—g(X, Y)e-+7(¥)X

for any vector fields X and Y on M, R denoting the Riemannian curvature
tensor of M.

Let M be an (n--1)-dimensional submanifold of M. Throughout this paper,
we assume that the submanifold M is tangent to the structure vector field &
of M.

We denote by the same g the Riemannian metric tensor field induced on M
from that of A/. The operator of covariant differentiation with respect to the
induced connection on M will be denoted by V. Then the Gauss and Weingarten
formulas are given respectively by

Te V=V, Y-+BX, V) and TyV=—A,X+DxV

for any vector fields X, Y tangent to M and any vector fleld V normal to M,
where D denotes the operator of covariant differentiation with respect to the
linear connection induced in the normal bundle of M. A and B appearing here
are both called the second fundamental forms of M and are related by

g(B(X,Y), V)=g(AvX, Y).

A vector field V normal to M is said to be parallel if DyV=0 for any
vector field X tangent to M. The mean curvature vector g of M is defined to
be p=(TrB)/(n+1), TrB denoting the trace of B. If p=0, then M is said to be
minimal. If the second fundamental form B of M is of the form B(X, V)=
g(X, Y)u, then M is said to be iotally umbilical. In particular, if the second
fundamental form B vanishes identically, then M is said to be tofally geodesic.
If the second fundamental form B of M is of the form
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(LD B(X, V)=[g(X, Y)=n(X)p(Y)Ja+n(X)B(Y, O+ n(Y)B(X, &)

for any vector fields X and Y tangent to M, « being a vector field normal to
M, then M is said to be totally contact-umbilical. The notion of totally contact-
umbilical submanifolds of Sasakian manifolds corresponds to that of totally
umbilical submanifolds of Kaehlerian manifolds (see [3]). Moreover, if a=0,
that is, if B is of the form

(1.2) B(X, Y)=n(X)B(Y, &)+n(Y)B(X, &),

then M is said to be totally contact-geodesic. The notion of totally contact-
geodesic submanifolds of Sasakian manifolds corresponds to that of totally geo-

desic submanifolds of Kaehlerian manifolds.
Let R be the Riemannian curvature tensor field of M. Then, for any vector

fields X, Y and Z tangent to M, we have

(13)  R(X, Y)Z=R(X, Y)Z—Apw, X+ Apcx. 2 Y +(Vx BXY, Z)—(VWy BXX, Z),
where the covariant derivative VyB of B is defined to be

(14) (VxBXY, Z)=Dx(B(Y, Z)—B(NxY, Z)—B(Y, VxZ)

for any vector fields X, Y and Z tangent to M. If VxB=0 for any vector field X
tangent to M, then the second fundamental form B of M is said to be parallel.
From (1.3), we have equation of Gauss

(1.5) gR(X, Y)Z, W)=g(R(X, Y)Z, W)—g(B(X, W), B(Y, 2))
+g(B(Y, W), B(X, Z))

for any vector fields X, Y, Z and W tangent to M. Taking the normal compo-
nent of (1.3), we have equation of Codazzi
(L6) (R(X, V)Z)*=(VxBXY, Z)—(WBXX, Z),
(R(X, Y)Z)* denoting the normal component of B(X, Y)Z. We now define the
curvature tensor R* of the normal bundle of M by

RY(X, Y)V=DxDyV—DyDxV—Dix. iV,
X, Y being vector fields tangent to M and V a vector field normal to M. Then
we have equation of Ricci

(L7) g(R(X, VYU, V)=g(R*(X, U, V)+g([Av, Av]X, Y),

where [Av, AU]:AVAU—AUAv.
If R*=0, then the normal connection of M is said to be flat (or trwvial).

For any vector field X tangent to M, we put
(1.8) ¢pX=PX+FX,

where PX is the tangential part and FX the normal part of ¢.X. Then P is an
endomorphism on the tangent bundle 7(M) and F is a normal bundle valued

1-form on the tangent bundle.
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If ¢TM)CT,(M) at each point x of M, then M is called an mwvariant
submanifold of M. Any invariant submanifold of a Sasakian manifold is a
Sasakian manifold. If M is invariant, then F in (1.8) vanishes identically. If
¢T (M)CT (M) at each point x of M, then M is called an anti-invariant sub-
manifold of M. If M is anti-invariant, then P in (1.8) vanishes identically.

If the ambient manifold M is of constant ¢-sectional curvature k, then we
have

(19 R, V)Z=F Ut 3 a(Y, DX —a(X, 2V T+ (b= DI Y

(V) Z2)X+g(X, Z)n(Y)E—g(¥, Z)p(X)i+g(gY, Z)pX
—8($X, Z)¢Y —22(¢pX, Y)¢Z]

for any vector fields X, Y and Z on M. In this case M is called a Sasakian
space form and is denoted by M2™+(k).

Let M be an (n+1)-dimensional submanifold of a Sasakian space form
M +1(p), Then (1.3), (1.6), (1.7) and (1.9) imply

(L10)  ROX, V)Z= (k+3)0a(Y, DX —g(X, 2)Y T+ 4 (- DIg(XOy(2)Y

— (YD) X+ (X, Zyn(Y)e—g(Y, Z)n(X)é+g(PY, Z)PX
—g(PX, Z)PY —2g(PX, V)PZ]+Apw. 2 X—Apcx. Y,

(L.11) (VxBXY, 2)—(VrB)XX, Z)

= %—(k — D[ g(PY, Z)FX—g(PX, Z)FY—~2g(PX, Y)FZ],

(L12) %(k—l)[g(FY, Dg(FX, V)—g(FX, U)g(FY, V)—2g(PX, Y)g(¢U, V)]
=g(R*(X, Y)U, V)+g([Av, Av]X, V).

In the following, we study certain properties of the second fundamental
form B of M. Since the structure vector field & is tangent to M, for any
vector field X tangent to M, we have

V=9 X=VxE+B(X, &),

from which

(1.13) PX=Vy&, FX=B(X,E§&).
Especially, we have

(1.14) B, £)=0.

PROPOSITION 1.1. Let M be_an (n+1)-dimensional submanifold of a (2m+1)-
dimensional Sasakian manifold M. If M 1is totally umbilical, then M is a totally
geodesic, tnvariant submanifold of M.
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Proof. Since M is totally umbilical, the second fundamental form B of M
is of the form B(X, Y)=g(X, Y)pr. From this and (1.14) we have B(¢, §)=
g, ©p=0 and hence p=0. Thus B(X, Y)=0 and consequently M is a totally
geodesic submanifold of M. Moreover, the second equation of (1.13) implies
FX=B(X, £)=0. This shows that M is an invariant submanifold of M.

Let X and Y be vector fields tangent to M. From the Gauss and Weingarten
formulas we have

(115)  ¢B(X, V)=(yP)X—ArxY+B(Y, PX)+(VF)X+g(X, Y)§—n(X)Y,
where we have defined (VyP)X and (VyF)X respectively by
(Ve P)X=Vy(PX)— Py X and (VpF)X=Dy(FX)—FVzX.
Since B is symmetric, we have
(Ve P)X+B(Y, PX)— Apx Y+ (Ve ) X—0(X)Y
=(VxP)YY+B(X, PY)—Ap X+(xF)Y —5p(Y)X.

Comparing the tangential and normal parts in the equation above, we obtain

(1.16) (Ve PYY —(TyP)X = Apy X— App Y+ (V) X—7(X)Y,
and

(L17) (VxF)Y—(NyF)X=B(Y, PX)—B(X, PY)
respectively.

§2. Generic submanifolds.

A submanifold M of a Sasakian manifold M is called a generic submanifold
of M if T (MY CT,(M) for all point x of M and if & is tangent to M.
Especially, if ¢T . (M)*=T,(M)—{&}, then a generic submanifold M is an anti-
invariant submanifold such that 2dim M—1=dim M. If dim 7,(M)*=1, that is,
if M is a hypersurface of M, then M is obviously a generic submanifold.

Let M be a hypersurface of a Sasakian manifold M. We denote by C the
unit normal of A in M. For any vector field X tangent to M, we have

(2.1) pX=PX+u(X)C, w(X)C=FX,
where we have put

(2.2) pC=—=U, w(X)=gU, X).
From (2.1) we find

(2.3) PrX=—X+u(X)U+n(X)E.
Moreover, we have

(2.4) PU=0, u(§)=0, u(U)=1.

We denote the second fundamental form of M by A in place of A; to
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simplify the notation. Then the Gauss and Weingarten formulas are given
respectively by
Ve Y=VyY+g(AX, Y)C and VC=—A4X.
We also have
(2.5) VxU=PAX, AE=U,
(2.6) (VxP)YY=9p)X+u(Y)AX—g(X, V)§—g(AX, Y)U.

Let M be an (n_+1)-dimensional generic submanifold of a (Zm+1)-dimensional
Sasakian manifold M. Then the tangent space T {M) of M is decomposed as
follows :

T(M)=H,(M)YD¢T ,(M)*
at each point x of M, where H,(M) is the orthogonal complement of ¢7T (M)*
in T,(M). Thus we see that
SH(M)=H,(M)—{£}.
Applying ¢ to (1.8), we find
— X+ p(X)=P*X+FPX+¢FX,
from which we have

2.7 FPX=0,

(2.8) PPX=—X+p(X)e—opFX.

From (1.15) we have

(2.9) ) ¢B(X, V)=V P)X—Apx Y +g(X, Y)—n(X)Y,
(2.10) B(Y, PX)=—(NyF)X.

Let V be a vector fleld normal to M. Then we find

(2.11) Vx¢pV=—PAy X+¢DxV,

(2.12) B(X, ¢V)=—FAyX.

We notice that P¢T ,(M)*=0 and ¢PT ., (M)CH.(M). For any vector field X
tangent to M and any Ye¢T (M)*, we have

(VN PYY=V(PY)—PVyY=—PVyYEHM).
For any vector field X tangent to M and any Y, Ze¢T(M)', we have
g@B(X, Y), Z)=g(NxP)Y, Z2)—g(Arr X, Z)+g(X, VI(2)—g(X, Z)7(Y)
=—g(AwZ, X).
On the other hand, we have
g@B(X, V), Z)=—g(B(X, Y), FZ)=—g(ArzY, X).

Therefore, we see that g(ApmZ, X)=g(Ar;Y, X), from which Ap-Z=A4p,V for
any V, Ze¢T(M)". Thus we have
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LemMa 2.1, Let M be a generic submamfold of a Sasakian manifold M.
Then we have

(2.13) ApyZ=ApzV
Sfor any vector flelds Y and Z wn ¢T(M)* .

In the following we denote by p the codimension of A4, i.e., we put
p=2m—n.

_ ProposrTION 2.1. Let M be a generic submamfold of a Sasakian mamjold
M. If p=2 and M 15 totally contact-umbilical, then M 1s totally contact-geodesic.
Proof. First of all, using (2.13), we have
gAX, X)=—g(Apxga, X),  Xs¢T(M)*,
where « is the normal vector appearing in (1.1). From (1.1) we find
BUX, X)=[g(X, X)~5(X)n(X)]a+27(X)FX=g(X, X)a
for any X<g¢T (M)*. Thus we have
g(A.X, X)=g(B(X, X), a)=g(X, X)g(a, @),
—g(Arxpa, X)=—g(Blpa, X), FX)=—glpa, X)g(a, FX),
from which
g(X, X)gla, a)y=—glpa, X)gle, FX)=gla, FX)gla, FX)
for XegT (M)*. Since p=2, we can take X such that gla, FX)=0. Thus

we have a=0 and hence M is totally contact-geodesic.

PROPOSITION. 2.2. Let M be an (n+1)-dimensional (n23) generic submamyjold
of a Sasalkiwan space form M k). If M s totally contact-umbilical and 1f
n>m, then k=-—3.

Proof. If p=2, then Proposition 2.1 implies that M is totally contact-geo-
desic. Thus the second fundamental form B of M is of the form

BX, V)=y(X)FY+n(Y)FX.
From this we find

(VxF)Y=—B(X, PY)=—5(X)FPY —y(PYYFX=0.
Therefore we have
(VNyB)Y, Z)=g(Y, PX)FZ+g(Z, PX)FY,
(Vv BXX, Z)=g(X, PY)FZ+g{Z, PY)FX.

From these equations and (1.11) we find
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g(Z, PX)FY—g(Z, PYYFX+2g(Y, PX)FZ
1
:Z(k—l)[g(PY, YFX—g(PX, Z)FY—2g(PX, Y)FZ],

from which
1
Z—(k+3)[g(PY, OFX—g(PX, Z)FY—2g(PX, Y)FZ]=0.

Since n>m, dim H (M)>1, we can take Y such that Y& H,(M) and put Z=PY.
Then FY=0 and FZ=FPY=0. Thus we have

“i‘(k+3)g(PY, PY)YFX=0,

which implies that k=—3.

In the following, we assume that p=1. Then we have
2.14) FAX=B(X, U), B(U, &=FU=C.
In this case, (1.11) reduces to
(2.15) g(Vx DY, 2)—g(VrA)X, Z)

:—i(k~l)[g(PY, D)g(FX, C)—g(PX, 2)g(FY, C)—2g(PX, Y)g(FZ, C)].

Putting Z=U in (2.15), we find
(2.16) g(VxA)Y, U)—g((VyA)X, U):~%<k—1)g(PX, Yy,

because of g(PY, U)=g(PX, U)=0. On the other hand, we have
(Vx A U=V (AU)—APAX, AU=g(C, a)U+E£,

from which
(V3 AU=g(C, Dxa)U+g(C, a)PAX+PX—APAX

and hence
g(VxA)Y, U)—g((Ve DX, U)=g(Y, (VxAU)—g(X, (VyHU)
=g(C, Dya)g(U, Y)+g(C, a)g(PAX, V)1 g(PX, YV)--g(APAX, Y)
—g(C, Dya)g(U, X)—g(C, a)g(PAY, X)—g(PY, X)+g(APAY, X).
If we take here X, ¥ such that p(X)=7(Y)=0 and u(X)=u(¥)=0, then we have
g(VxDY, U)—g(VrAHX, U)
=g(C, a)g(PAX, Y)—g(APAX, Y)—g(C, w)g(PAY, X)
+g(APAY, X)—2g(PY, X).
Moreover, we obtain the equations:

g(APAX, V)=g(C, 0)g(PAX,Y),  g(APAY, X)=g(C, a)g(PAY, X).

From these equations we have
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(Vg A)Y, U)—g(Vr A)X, U)=—2g(PY, X).
From this and (2.16) we have

— (k= Dg(PX, V)=—24(PY, X),
from which
%(k-%—S)g(PX, Y)=0.

Since n=3, we can put Y=PX and so we obtain k=—3. Thus we have k:=—3
for any codimension.

§3. /f-structure

Let M be an (n_+ 1)-dimensional generic submanifold of a (2m+-1)-dimensional
Sasakian manifold M. From (2.8) we have

CRY) P+ P=0.

On the other hand, we see that rank P=dim M—codim M—1=2(n—m) everywhere
on M. Consequently, P defines an f-structure of rank 2(n—m) (see [107]).
We now consider the distributions .£ and g respectively defined by

L,={XeT (M): FX=0},
and
Fp={XeT (M): PX=0 and #(X)=0}.

The distribution £ is (2n—2m-+1)-dimensional and the distribution 4 (2m—n)-
dimensional. We study the integrability conditions of £ and 9. First of all,
we prove

PRrROPOSITION 3.1. Let M be an (n+1)-dimensional generic submanifold of a
2m~+1)-dimensional Sasakian manifold M. Then the distribution G 1s completely
witegrable and i1ts maximal wntegral submanmifold T s a @m—n)-dimensional anii-
wmvarant submanifold of M normal to .

Proof. Let X and Y be vector fields in the distribution . Then (1.16) and
(2.13) imply
P[X, Y1=PVyYV—-PUy X=(VyP)X—(TyP)Y
Moreover we have
(X, YD=—g(FX, Y)+g(FY, X)=0.
Thus we see that [ X, Y]=9 and hence I is completely integrable. We also

see, from the construction, that the integral submanifold 7 is anti-invariant with
respect to ¢ and is normal to £.
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PROPOSITION 3.2. Let M be an (n-%—_l)-dimenswnal generic submanifold of a
@m~+1D-duonensional Sasakian mamfold M. Then the distribution L 1s completely
wtegrable of and only if

3.2) B(PX, Y)=B(X, PY)
for any vector fields X and Y wm L.

Proof. Let X and Y be in £. Then (1.17) implies that
FIX, YI=FVyY—FUy X=NyF)X—Ny )Y
=B(X, PY)—B(Y, PX).

Therefore, _£ is completely integrable if and only if (3.2) holds.
If £ is completely integrable, then its maxima_l integral submanifold L is a

(2n—2m-+1)-dimensional invariant submanifold of M.

§4. An example of generic submanifold.

In this section we give an example of generic submanifold of a Sasakian
space form.

Let C™"* be a complex (m-+1)-dimensional number space. We consider an
odd-dimensional unit sphere S*™*!' in C™*". Then S§*™*' admits a Sasakian
structure (¢, &, 7, g) as follows. Let v be the position vector representing a
point of S***! in C™*! Then the structure vector field of S*™*! is given by
&=Jv, J denoting the almost complex structure of C™*'. Consider the ortho-

gonal projection
T Tm(cm+1)__)Tr(S2m+1> ,

and put ¢==-J. We denote by » the 1-form dual to § and by g the standard
metric tensor field on S?*™*!, Then, for any vector field X tangent to S*™*!, we

have
gX=]X+rn(X)v.

We now consider the following immersion :

S k
S™(Vmy/n)X - XS™(V my/n)—SrHE ) p= 21 M, .

We assume that m,, -+, m, are odd. Then n-+k—1 is also odd. Let v, be a
point of S™i(v/m,/n) in R™i*1=Cmi¥D/2 Smi(\/mm /n) is a real hypersurface of
Cmi+D/2 with unit normal ~'n/m, v,. Thus v=(vy, ---, v,) iS a unit vector in

Rrtk—=Cx+®i2 This defines a minimal immersion of z\fml,‘..,mk:HSmi(\/ml/n)
into S***-!, We restrict the almost complex structure of C@F#/2 to COmitD/E
Then Jv, is tangent to S™i(~/m,/n). Thus Jv is tangent t0 Mu, ..n,. We then
consider the normal space of Mn,,...»n, in S***~* which is the orthogonal com-
plement of the l-dimensional space <{v) spanned by v in the space (v -, Vi)
spanned by the vectors vy, -+-, v,, that is,
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<U>®Tx(]v[m1,m,mk)L:<'U1’ vy in Cinthrrz

Let w,, -+, wy-: be an orthonormal frame for T.{(My,,..n,)*. Then w, is given
by a linear combination of vy, -- v, Thus Jw, is tangent to My, .. ., and
hence
dw,=Jw;+np(w)v=Jw,.
Therefore ¢uw, is tangent to M, ..m, for all 1=1, ---, £—1. Thus we have
T oM foom ) CTeMmyomy)

which shows that A7,,... ., is a generic submanifold of a Sasakian space form
Sn+k—1
Moreover, we consider an rmmersion :

k
Sy )X o XS™k(r ) —S* TR p= 3w,
=1

where r{-i- -~ 4-ri==1. Then S™(r )X --- XS™#(r;) 18 a generic submanifold of
Sr*E-1if gpy, -+, m, are odd, and it has parallel mean curvature vector and is
with flat normal connection (see [11]). If my=m,= - =m,=1, then S'(ry)x -

X SYr,) is an anti-invariant submanifold of S**-.

§5. Einstein generic submanifolds.

Let A be an (n-+1)-dimensional generic submanifold of a (Zm--1)-dimensional
unit sphere S*”*! with Sasakian structure. Let {¢,} be an orthonormal frame
for T.(A)*. We denote by A, the second fundamental tensor with respect to
ey, i.e, we put Ad,=A,,. If M is a minimal submanifold of S*™*! then the
Simons’ type formula is given by (see [7])

(GRY) %AT::(n DT — aED (Tr A Ap)* -+ azb Trid,, AJ+g(V4, V4),

T denoting the square of the length of the second fundamental form of A/, i.e,
T=>Tr 4., We now put
Tow=Tr AgAs, T.,=Tr A% .
Since the matrix (T, is symmetric, choosing {e,} suitably, we can diagonalize
(T'z). Then (5.1) reduces to
%AT::(71+1)T—ZT?L+ Z‘;) TrfA., Ay +g(VA, VA).

On the other hand, we have

ST T LS (1T, p=dim To(M)* .
a j) j) a>b

Consequently, we obtain

(5:2) »};AT:(nJrl)T—%TZ——% S (To=To)"+ 3 Trlde, 41 +g(V4, VA4).
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In the following we assume that the second fundamental form of M is
parallel. Then (5.2) becomes
1 1
(5.3) 0:(n+1)T——p—T2~~p— Eb(Ta—T,,)‘H- Zﬁ; Tr[A,, A%

On the other hand, the Ricci tensor S of M is given by
(5.4) S(X, V)=ng(X, Y)—2g(B(X, e), B(Y, e.)),

where {¢;} denotes an orthonormal frame of M. Putting X=Y=¢& in (5.4), we
find

S(§, E)———H—Eg(B(E, e,), B, ez)):n~§g(FeL, Fe)=n—p.
Thus, if M is an Einstein manifold, we have
S(X, YV)=(n—plg(X, Y,
from which
T= 3 g(Ble, ¢, Ble, e))=— 2 Sle,, e)+n(n-+-D=(n+1)p.
.7 1
Thus (5.3) reduces to
1 ) ,
(5.5) O0=—=— 3 (T,—Ty*+ 2 Tr[A,, A",
P a>b a,b

Since we have

SS B TSTIS0, B TelA, AT,

(5.5) implies that
(5.6) T.=T, for all a, b,
6.7 [A,, A]=0 for all a, b

Equation (5.7) shows that the normal connection of A{ is flat. We now need
the following lemmas.

LEMMA 5.1, ([13]). Let M be an n-dimensional submanifold of S**? with
flat normal connection. If the second fundamental form of M 1s parallel, then
the sectional curvature of M 1s non-negative.

LEMMA 5.2. Let M be a generic submamjfold of a Sasakian manifold M.
Then the immersion 1s full, lhat 1s, there 1s no totally geodesic submamfold M’
of M which contains M as a submanifold.

Proof. Let V be a vector field normal to M. If g(B(X, Y), V)=0 for any
vector fields X, Y tangent to M, then putting Y:==& we have g(FX, V)=0.
Since M is a generic submanifold of A, we can put X=¢V. Then we have
g(FX, V)=g(F¢V, V)=—g(V, V)#0, which shows that the immersion is full.
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THEOREM A ([11]). Let M be a complete munimal submanifold of dimension
n unmersed e S™ and with non-negatwe sectional curvature, and suppose that the
normal connection of M s flat. If T 1s constant, then M is a great sphere of
S™ or a pythagorean product of the form

Spl(Tl)X“'XSPN(TN), Tz:\/]?[,,/ﬁ ( :1’ e Af)v

and 1s of essential codimension N—1, where p,, . py=1, p+ - +py=n.
We now prove

THEOREM 5.1. Let M be an (n+1)-dimensional complete genevic minimal
submanifold of S*™*' with parallel second fundamental form. If M s Einstewn,
then M 1s

SUr)x - xSUr) (N-ivmes), r=+/q/(n-+1),

where q 1s an odd number and 2m—n=N—-1, Ng=n+1.

Proof. From the assumption and Lemma 5.1, M has non-negative sectional
curvature. Therefore Theorem A implies that M is

SPr)x o XSP¥(ry), r=Np/(n 1) (=1, -, N)

and is of codimension 2m—n=N—1 by Lemma 5.2. Since & is tangent to M,
we see that p,, -+, py are odd numbers and since M is Einstein, we have
= =puy.

§ 6. Pseudo-umbilical generic submanifolds.

Let M be an (n+1)-dimensional generic submanifold of a (2m-+1)-dimensional
Sasakian manifold M. We now choose an orthonormal frame {e,} of M in such
a way that e;=§, e,, -, e,.; form an orthonormal frame for M and e,.n, -,
e,m+1 form an orthonormal frame for the normal space T.(M)*, and moreover

that ¢, ---, es-p+; form an orthonormal frame for H,(M), en-pis, =+, ¢ns1 form
an orthonormal frame for ¢T (M) and den_pio=Fen_prs=0nis, -, Pepr1=Fens;
—C€am+1-

Unless otherwise stated, we use the following convention on the ranges of
indices: ¢, j, k, =1, -+, n+1; x, 3,2, =n—p»p+2, -, n+l; « B, 7, =1,
-, n—p+1.

If the second fundamental form B of M is of the form

(6.1) B(X, V)=alg(X, ¥V)—9(X)p(Y)J+n(X)FY+p(Y)FX
+ g b.g(X, e,)g(Y, ex)Fe,,

where { is a unit vector normal to M and a and b, are functions, then M is
said to be pseudo-umbilical. In this case we see that
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gB(X, Y), Fes)=g(A;X, Y)
=alg(X, Y)—np(X)n(Y)1g(&, Fer)+n(X)g(Y, e)+7(Y)g(X, e,)
+b:8(X, e.)g(Y, e.),

where we have written Ap., as A, to simplify the notation. Thus, the second
fundamental form A, is represented by a matrix

( x
0 0 0 1 0
ar
\\\ O
0 . 0
0 N
(6.2) A= ar , Xx=n—p+2, -, nt+l,
ar
0 . 0
\\\
1 0 Qr+b: x
\\
0 0 "\
ax
N

where we have put a,=ag({, Fe,). On the other hand, from Lemma 2.1, we
see that
a,=g(Aze,, e,)=g(Ayes, ¢,)=0 for x+y.

Therefore, if p=codim M=2, we have a,=0 for all x. Thus (6.2) reduces to

F X
0 |0 1 0
0 |0
\\ O
\\
N
A= A
©3 “* 1 0, %, x=n—pt2, -, ntl.
O\
\\
0
\\\\
0 0
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If p=1, then (6.2) becomes

P
0 |0 1
0 ia
\\\ O
(6.4) A= N ’
AN
AN
N
1 a-tb

where A=A,,; and b=b 1.
When p=2, the second fundamental form B of a pseudo-umbilical generic
submanifold M satisfies

(6.5) B(X, Y)=alg(X, Y)—n(X)n(Y) )4 n(XOFY +9(Y)FX

for any vector Xe H,(M) and any vector Y tangent to M. Since a,=ag({, Fe,)
=0 for all x, we have ¢=0 and hence

(6.6) B(X, Y)=n(X)FY+7(Y)FX

for any vector X H (M) and any vector tangent to M. From (2.10) and (6.6)
we find

xFYY=—B(X, PY)=—np(X)FPY —7(PY)FX=0
for any vectors X and Y tangent to M. We now consider a distribution
L x—>L,={XeT . (M): FX=0}. Since we have

for any YeH(M) and any XeT(M), the distribution £ is parallel and the
maximal integral submanifold M; of £ is totally geodesic in M. Moreover M,
is totally geodesic in M and M, is an invariant submanifold of M. Thus M, is
also a Sasakian manifold. Consequently, we have

PROPOSITION 6.1. Let M be an (n+1)-dimensional pseudo-umbilical generic
submanifold of a @m~+1)-dimensional Sasakian manifold M with p=2. Then the
distribution L 1s completely wntegrable and its maximal wiegral submanifold M,
is totally geodesic, invariant submanifold of M.

Here we notice that the maximal integral submanifold M, of the distribu-
tion T: x—T,={XeT (M): PX=0 and 7(X)=0} is totally geodesic in M.
Indeed, if X, Y are vector fields tangent to M, and Z a vector fleld tangent to
M,, then we have

gy Y, Z)=—g(Y, VxZ)=0
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because of the fact that V;Z is tangent to M, and Z is normal to M, Thus
VyY is tangent to M, and hence M, is totally geodesic in M.
From Propositions 3.1 and 6.1 we have

PROPOSITION. 6.2. Let M be an (n-+1)-dimensional pseudo-umbilical generic
submanifold of ¢ 2m-+1)-dimensional Sasakwan mamfold M with p=2. Then M
1s locally a Riemannian direct product of the form M XM, where M; 15 an
(n—p-+1)-dimensional totally geodesic wmvariant submamfold of M and M, a
p-dimensional anti-invariant submanifold of M normal fo &.

THEOREM 6.1. Let M be an (n+1)-dimensional pseudo-umbilical generic sub-
mamifold of a (2m-+1)-dimensional Sasakian manifold M wnth vamshing contact
Bochner curvature tensor. If p=4, then M s locally a Riemanman divect product
of the form M,XM,, where M, 1s a (n—p+1)-dimensional totally geodesic wn-
varant submanifold of M and has vamishing contact Bochner curvature tensor

and M, s a p-dimensional conformally flat, antiwnvariant submanmfold of M
normal to &.

Proof. From Proposition 6.2, M is locally of the form M,XM,, where M, is
a totally geodesic, invariant submanifcld of M and M, an anti-invariant submani-
fold of M normal to & Since M, is totally geodesic, the contact Bochner curva-
ture tensor of M, vanishes (see [2]).

Since M, is totally geodesic in M, the second fundamental form of A, in
M is given by B(X, Y) for any vector fields X and Y tangent to M, From
(2.9) we have

6.7) PBX, V)=—ArxY+g(X, Y)E

for any vector fields X and Y tangent to M, Let X, Y, Z andiW be vector
fields tangent to M,. Then (6.7) implies

(6.8) g(BX, W), B(Y, 2))—g(B(X, Z), B(Y, W))
=g(ArxW, ApyZ)—g(ArxZ, ApyW)+g(X, 2)g(Y, W)—g(V, Z)g(X, W).
Put X=3 X%e, and W= 3, W%e,. Then (6.3) implies

(6.9) ApxW= 2 X°WY¥A,e,= 2 X*W=A e,
z,y x
= g X*We(b,e,+&)= %} XEW=he,+g(X, W)E.
From (6.8) and (6.9) we have

g(BX, W), B(Y, Z))—g(B(X, Z), B(Y, W))=0.

Consequently, Lemma 9.1 of [12; p. 147] implies that M, is conformally flat.
This proves our assertion.

In the sequel, we assume that M is an (n-1)-dimensional pseudo-umbilical
generic submanifold of a Sasakian space form M?®™*'(k) with p=2. We assume
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that A has non-zero parallel mean curvature vector g Then (1.12) implies
T (= DLa(FY, pa(FX, V)~ g(FX, Wa(FY, VY=g Ay, 43X, V).
By a straightforward computation, we can see that this becomes
k3 (FY, pg(FX, V)—g(FX, we(FY, V)I=0.

Since p=2, we have k=—3. In the following, we prove that M, has non-zero
p-parallel mean curvature vector (for the y-paralle]l mean curvature vector, see
[12; p. 124]). Since M, is totally geodesic in M, the mean curvature vector g
of M, in M is equal to ,,7?;,1,#. Let A’ be the second fundamental form of M,
in M and_ D’ be the operator of covariant differentiation of the normal bundle
of M, in M. For any vector field X tangent to M, we obtain

n-+

= 1
D/Xﬂ/:vX[},/—f‘A/‘u:X:—AH:X"i‘ p DXlL!—'“A//‘:X.

Let Y be a vector field tangent to M,. Then we have
gD xpt, Vi=—g(A, X, Y)=—g(B(X, Y), u)=—n(¥)gly, FX),

where we have used (6.5). If »(Y)=0, then we have g(D'xp’, Y)=0. Let N be
a vector field normal to M. Then we have

, n-+1
gD’ xp’, N):,,,,p,,, g(Dxp, N)=0

because of Dyp=0. Therefore M, has non-zero z-parallel mean curvature
vector, that is, the mean curvature vector g’ of M, in M satisfies gDy, Y)
=( for any vector field X tangent to M, and any vector field ¥ normal to M,
in M such that 5»(¥)=0. Therefore we have

PROPOSITION 6.3. Let M be an (n+1)-dimensional pseudo-umbilical generic
submamifold of a Sasakian space form M*™*k) with non-zero parallel mean
curvature vector. If p=2, then k=—3 and M s locally a Riemanman direct
product MyX M, where M, 1s totally geodesic wmvariant submanifold of M*™+*(—3)
and M, an antiwnvariant submamfold of M*™*Y(—3) with non-zero u-parvallel
mean curvature vector.

We denote by E?™*}(—3) the Sasakian space form with constant ¢-sectional
curvature —3 with standard Sasakian structure in a Euclidean space (cf. [12]).
From Proposition 6.3 and Theorem 6.1 of [12; p. 1437, we have

THEOREM 6.2. Let M be an (n+1)-dimensional complete pseudo-umbilical generic
submanifold of a simply connected complete Sasakian space form MY (k) with
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non-zero parallel mean curvature vecior. If p=2, then M 1s a pythagorean pro-
duct of the form

Erp(=3)X SHr)X - XSUrp- )X RY in E™+(--3)

or
Em=2*(—3)X SH(r) X -+ X SHrp) .

Proof. By Proposition 6.3, M is M; XM, and k=-—3. Thus we have
M+ (—3)=FE*m*1(—3). Since M, is a totally geodesic invariant submanifold of
E*™(—3), we have M,=FE" ?*(-3).

In the following, we study M, in E*®**Y—3), First of all, we consider the
second fundamental form A’ of M, in E*™*}{(—3). Let X be a vector field
tangent to M, and V a vector field tangent to AM,;. Then V is normal to M,.
Thus we have

Ty V=—A"X+D' V=V V+B(X, V).

Since we have VyVeT(M,), we see that A’»X=0. Let N be a vector field
normal to M. Then we have

vXN:—A/NX—}"D/XlV:~ANX+DxN,

from which we obtain g(A'yX, YV)=g(AxX, V), where Y is a vector field
tangent to M,. From this and (6.3) we have

/0 h

(6.10) A= bs

Thus we see that the second fundamental forms of M, in E?™*(—3) are com-
mutative.
Let N be a vector field normal to M, in E*™*(—3). We put

GN=tN+fN,

where ¢N is the tangential part and /N the normal part of @¢N respectively.
Then f defines an f-structure in the normal bundle of M, (see [12; p. 122]).
Thus we have
D’ xf)N=—DB(X, tN)—pA'xn X,
from which
g((D'xfIN, V)=—g(A"vX, tN)+g(A'y X, tV),
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where V is a vector field normal to M,. If N is tangent to M,, then we have
tN=0and A’y X=0. If V is tangent to M,, we have V=0 and A’pX=0. Next
we suppose that N and V are normal to M. Then Lemma 2.1 implies that
A'n(tV)=A»(tN). Consequently, we obtain (D’;/)N=0, which shows that the
J-structure of the normal bundle is parallel. Thus Theorem 6.1 of [12; p. 143]
implies that M, is of the form

SHr)X - XSHrp-g) X R®
or
SHr)x - X SHr,) .

Therefore we have our assertion.

§7. Pseudo-umbilical hypersurfaces.

Let M be a pseudo-umbilical hypersurface of a Sasakian manifold M. Then,
from (6.1), we see that the second fundamental form A of M is of the form

(7.1) AX=a[X—=7(X)E1+bu(X)U+p(X)U+u(X)E

for any vector field X tangent to M, a and b being functions.

The notation of pseudo-umbilical hypersurfaces of Sasakian manifolds cor-
responds to that of y-umbilical real hypersurfaces of Kaehlerian manifolds (cf.
[4]). A real hypersurface N of a Kaehlerian manifold N is said to be y-umbilical
if the second fundamental form H of N is of the form HX=aX+pr(X)V,
where V is a unit vector field normal to N and % is a dual 1-form of V, and
o, B are functions.

We now prove the following

ProPOSITION 7.1. Let M be a regular Sasakian mamfold and M be a hyper-
surface of M tangent to &, and let N be a Kacehlerian mamifold and N be o real
hypersurface of N such that the diagram

M M

]

B

N N

commutes and the wmmersion 1 1s a diffeomorphism on the fibres. Then M 1s
bseudo-umbilical if and only if N 1s p-umbilical.

Proof. Let X and Y be vector fields tangent to N. We denote by * the
horizontal lift with respect to x. Then we have (cf. [12]), (G(HX, Y))*=
g(AX*, Y*), G being the metric tensor fleld of N. If N is p-umbilical, then
we find g(AX*, Y*)=ag(X*, Y4 fu(X*)u(Y*), where we have used V*=U.
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Thus we have g(A¢*X, ¢*Y)=ag(¢*X, ¢*Y )+ Bu(d*X)u(4*Y) for any vector fields
X, Y tangent to M. From this we have (7.1). The converse is also true by
virtue of (7.1).

Let M be a pseudo-umbilical hypersurface of a Sasakian space form
M?**Y(k). Then (7.1) implies

(Ve D)X=V )L X—n(X)EJ+HYD)u(X)U+ al—g(PY, X)§—n(X)PY ]
+b[g(PAY, X)U+u(X)PAY ]
+g(PY, X0UA4n(X)PAY+ g(PAY, X)é+u(X)PY
for any vector fields X and Y tangent to M. From this we have
(Vx AY (Ve HX=(Xa)[Y — (Y )E]— (Y a)[ X—n(X)]
HXOu(Y)U—(Yoyu(X)U+al2g(PY, X)§
—p(MPX+p(X)PY T+b[g(PAX, Y U
—g(PAY, X)U+u(Y)PAX—u(X)PAY ]
+2g(PX, YYUA (Y)PAX—9(X)PAY
+g(PAX, Y)E—g(PAY, X)e+u(Y)PX—u(X)PY .
Combining this with (1.11), we find

(7.2) 711-(1@+3)[g(PY, Zyu(X)—g(PX, Z)u(Y)—2g(PX, Y)u(Z)]
=(Xa)lg(Y, 2)—n(YV)(Z2)]—(Ya)Lg(X, Z)—n(X)n(Z)]+(Xb)u(Y)u(Z)
—(YOuX)u(Z)+al2g(PY, X)n(Z)—7(Y)g(PX, Z)+n(X)g(PY, Z)]
+blg(PAX, YYu(Z)—g(PAY, X)u(Z)+ g(PAX, Z)u(Y)—g(PAY, Zu(X)]
+9(YV)g(PAX, Z)—n(X)g(PAY, Z)+9(2)g(PAX, Y)—n(2)g(PAY, X)

for any vector fields X, Y and Z tangent to M.
Putting Y=U in (7.2) and using (7.1), we have

[ab+%(k+3}] g(PX, Z)=—w(Z)X(a+b)+Ubyu(X)u(Z)
+HUa)e(X, 2)=n(X)n(Z)].

Moreover, putting Z=U in this equation, we find X(a+b)=u(X)U(a+b), from
which

[ab+%(k+3}}g(PX, 2)=Ua) g(X, Z)=n(X)p(Z]—(Ua)u(X)u(Z).
Since P is skew-symmetric, we have

7.3) [ab+%(k+3}] 2(PX, 2)=0.
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If n=2, then (7.3) implies that ab:—%(k»lri%). Suppose that the ambient mani-

fold M2"*Y(k) is S?**!. Then we have ab=-—1. Since g(AU, U)=a-+b, we
obtain

(7.4) X(a+b)=g(Vy DU, U)=(Ula+ulX),

where we have used PAU=0 and (2.5). We put g=U(a+0b). Then we have
XY(a+b)=(XBu(Y)+Bag(PX, Y)+pu(VN,Y),
YX(a+b)=( Bu(X)+Bag(PY, X)+ Bu(VpX),
[X, Y a+b)=pu(X, Y.

Since R(X, Y)(a+b)=0, we find

(7.5) 0=(XPu(Y)—(Y Hu(X)+28ag(PX, Y).

Since n=2 and a+#0, we have S=0 and hence (7.4) implies that X(a-+b)=0 for
any vector fleld X tangent to M. Therefore a0 is a constant. From this and
ab=-—1, a and b are both constant. On the other hand, the second fundamental
form A is represented in the following matrix form, for an orthonormal frame
e, =+, @y, such that e,,-,=U and e,,=¢,

. N
a.
0
0] 0
0
(7.6) A= AN
a
0 at+b) 1
0 1 0
- J

a+

1
fies 22—(a+b)A+ab=0. Since ab=-—1, we have A=a or 4=b. Therefore, the
principal curvatures of M are a and b. The multiplicity of a is 2n—1 and that
of b is 1. Consequently, we have

. . b1 . . . .
We consider the matrix ( O>‘ Then the eigenvalue 1 of this matrix satis-

LEMMA 7.1. Let M be a pseudo-umbilical hypersurface of S*"**(n=2). Then
M has two constant principal curvatures with multiplicities 2n—1 and 1 respec-
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twely.

From Lemma 7.1 and a well known theorem (cf. [61), we have

THEOREM 7.1. Let M be a compact pseudo-umbilical hypersurface of S** (n=2).
Then M 1s congruent to

S )X S, A=l

§8. A characterization of Sasakian space form.

First of all, we define an axiom, which will be called a P-axiom. A Sasakian
manifold M of dimension 2n-1 is said to satisfy the P-axiom if for each xeM
and each 2n-dimensional subspace S of T (M), £=S, there exists a pseudo-
umbilical hypersurface N such that T,(N)=S, x&N and g(AU, U)=a+b=
constant.

The purpose of this section is to prove the following

THEOREM 8.1. If a @n+1)-dimensional Sasakwan manifold M (1=2) satisfies
the P-axiom, then M 1s a Sasakian space form.

Proof. Let R be the Riemannian curvature tensor of M. Then R satisfies
8.1) R(X, YV)¢=¢R(X, V)= XAY—-XNQY,

where (XAY)Z=g(Y, Z)X—g(X, Z)Y.

Let x be an arbitrary point of M and C a unit vector in T,(M) such that
7C)=0. Let S be a 2n-dimensional subspace of T .(M) orthogonal to C. By
the P-axiom, there exists a pseudo-umbilical hypersurface N such that T ,(A)=S.
From (8.1) we have

8.2) g(R(C, ¢C)C, X)=g(R(C, $C)¢C, $X)
=g(R(C, U)U, PX)==g(R(PX, U)U, )

for any vector field X tangent to N such that w(X)=5(X)=0. On the other
hand, equation of Codazzi is given by

8.3) g(R(X, Y)Z, O)=g(Vx DY, 2)—g((VrA)X, Z)

for any vector fields X, Y and Z tangent to N. By a similar computation as
that done in §7, we find, using (8.2),

g(R(C, ¢OC, X)y=(PX)(a+D).

Since a-+b is a constant, we obtain g(R(C, ¢C)C, X)=0. Therefore R(C, ¢C)C
is proportional to ¢C=—U. From this our theorem follows by virtue of the
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following lemma.

LemMA 8.1. ({91). A @2n-+1)-dimensional (n=2) Sasakian mamjfold M 1s a
Sasakian space form if and only if R(X, $X)X 1s proportional to ¢X for any
vector field X of M such that 7n(X)=0.

§9. Pseudo-Einstein hypersurfaces.

Let M be a 2n-dimensional hypersurface of S***', Then the Ricci tensor S
of M is given by

O.D SX, V)=Q@n—1DgX, V)+Hg(AX, Y)—g(AX, AY),

H denoting the mean curvature of M. If the Ricci tensor S of M is of the
form

9.2) S(@*X, ¢*V)=ag(@*X, ¢*Y )+ bu(¢* X)u(¢*Y)

for any vector fields X and Y tangent to M, ¢ and b being constant, then M 1s
called a pseudo-Einstein hypersurface of S***'. Equation (9.2) is equivalent to

9.3) S(X, Vy=alglX, V)=7(X)p(Y )]+ bu(X)u(Y)
+9(X)SE, V)+7(Y)SE, X)—n(X)n(Y)SE, §).

We notice here that S(§, §)=2n—2.

The purpose of this section is to determine complete pseudo-Einstein hyper-
surface of S***.

If A is a pseudo-Einstein hypersurface of S***! from (9.1) and (9.3), we
have

0.4 alglX, Y)—p(X)p(Y)]4+-bu(X)u(Y)+75(X)S(E, Y)+5(Y)SE, X)
—p(X)p(Y)SE, =Cn—1D)g(X, Y)+Hg(AX, Y)—g(AX, AY).

In the following, we assume that n=3. We can choose a local field of ortho-
normal frames ey, ', @an-1, €an, €an+1 1N S*™*1 in such a way that, restricted to
M, ey, -+, e,, are tangent to M and exn-1=&, €=U, epnsi=¢es,=C. Then if
we choose ey, -+, ¢s,-» Suitably, the second fundamental form A is represented
by a matrix of the form
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(’21 I
\ i
N t
N 0 :
N t
\
N 1
N 1
\\ |
N |
\ t
N {
N )
A
\ j
(9.5) A= " !
AY 1
\ 1
\ !
\\ 1
0 . .
AY 1
A i
N 1
22n—2 hzn—z
0 1
h1 ‘‘‘‘‘‘‘‘‘‘‘‘‘ h2n—2 24
- S

where we have put h,=g(AU, ¢,), 1=1, -, 2n—2, a=g(AU, U). Then from

(9.4) and (9.5) we have
g(Ae,, Ae))=0 for 1%y, 1, j=1, -, 2n—2,
Hg(Ae,, U)—g(Ae,, AU)=0 for 1=1, -, 2n—2.
From these equations we have
9.6) hih;=0,
9.7

1#7, 1, y=1, -, 2n—2,
hilH—2,—a)=0, 1=1, -+, 2n—2.

Equation (9.6) shows that at most one %, does not vanish. Thus we can assume
that h,=0 for =2, -+, 2n—2. Then (9.7) implies

LEMMA 9.1. Let M be a pseudo-Einstein hypersurface of S***.
have H=2,++a or h,=0.

Then we

On the other hand, from (9.4), we obtain

9.8) a=02n—1)+Hi,~1, 1=2, -+, 2n—2,
9.9 a=02n—-1)+HA,—2—hi,
(9.10) a+b=02n—-2+Ha—a*—h}.
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We now suppose that H=A,+a. Then (9.9) and (9.10) imply that h=—1.
Thus, for any vector fields X, Y tangent to M such that 5(X)=0, »(})=0, we
have

(9.11) ag(X, YV)—uX)u(Y)=02n—1gX, Y)+Hg(AX, V)—g(AX, A},
We now take a new local field of orthonormal frames e,, --- e,, of 1/ such that

e,,=¢& for which the second fundamental form A is represented by a matrix of
the form

- A
B t
\ 1
0 !
N ]
N i
\ 1
N 1
N 1
. !
" ! u=g(Ag, e)=u(e),
A= ) '
\ i ’ .
(9.12) ; =1, ., 2n—1.
\ I
0 R |
\\\ :
;8271—1 Uon-y
Uy =mmmmmmmmmm o Uzn-1 0
L J

From (9.11) and (9.12) we have
a—uleule)=02n—1)+HB;— p—ule)ule,),

from which

9.13) a=@2n—1)+HpE— 85}, 1=1, -+, 2n—1.
Therefore we see that each B, satisfies the quadratic equation
(9.14) t*—Ht4+a—2n—1)=0.

We now prepare some lemmas. We put

N
([,

(9.15) N
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LEMMA 9.2. If Bi= - =fen-1=f at every pownt of M, then M 1s tolally
contact-umbilical.
Prooj. By the assumption we have
Ae,=Be;+ule,)s, =1, -, 2n—1.
On the other hand, any vector field X tangent to M is of the form

2n-1
X= 2 (X, edet (X
Therefore, we obtain
AX=BX+p(X)UA[u(X)—pn(X)1E .
Thus (1.1) and (1.13) show that M 1s totally contact-umbilical.

LEMMA 9.3. If AU=aU+¢, then « 1s a constani.

Proof. From the assumption we have
(Vx A) U+ APAX=Vya)U+PAX+PX.
From this and equation of Codazzi we have
g(Vx AU, Y)—g((Vy DU, X)
=Tya)u(Y )+ag(PAX, YV)+g(PX, Y)—g(APAX, Y)
—(Vya)u(X)—ag(PAY, X)—g(PY, X)+g(APAY, X)=0.
Thus we have
(Vya)u(Y)—(Vya)u(X)+ag(PA+AP)X, Y)+2g(PX, Y)—2g(APAX, Y)=0.
Putting X=U in this equation, we obtain

(Vya)u(Y)=(Vya) .
Therefore we have

(9.16) ag((PA+AP)X, Y)+2g(PX, YV)—2g(APAX, Y)=0.
Put Vpa=7. Then Vya=7u(X) and Vya=7u(Y) and consequently we have
VxVya=xNu(Y)+rg(Y, PAX)+7rg(U, YY),
from which
RX, Vo= Nu(¥)—yDu(X)+7g(PA+AP)X, ¥)=0.

Putting X=U or Y=U in this equation, we find (Vy;7)u(Y)="y7 and (Vy;7)u(X)
=Vy7. Thus we have
rg((PA+APYX, Y)=0.

If we assume that PA4 AP=0, then (9.16) implies
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g(PX, V)=g(APAX, Y),
from which
g(PX, PX)=g(PAX, APX)=—g(PAX, PAX).

Thus we have PX=0. This is a contradiction to the fact that n=3. Conse-
quently we have y=0, i.e, Vya=0 and hence (Vya)u(X)=(ya)=0 for any
vector fleld X tangent to M. This shows that « is a constant.

LemMa 94, rank L>1 at some pont of M.

Proos. We assume that ;= --- = f8,,-,=0 and put B,.-1=5. Then we see
that Ade,—~u(e,)é for 1=1, ---, 2n—2. From this we have

gV, Ae,, e)=ule)g(Pe,, ep)+ule)g(Pe, e.),
where t, j, k=1, -+, 2n—2. Therefore the equation of Codazzi implies
2u(er)g(Pe,, e,)+ule;g(Pe,, er)—ule)g(Pe,, e:)=0.

Putting here j;—=Fk, we find
ule,)gle,, Pe,)=0,
from which

2n-2
121 u(e;)gle,, Pe)gle, Peyu-1)

=ule,)g(Pe,, Pey,-1)=—ule,)uleules,-1)=0.

Therefore we have u(e,)=0, y=1, -+, 2n—2 or u{eyu-1)=0.
Let u(e,)=0 for j=1, ---, 2n—2. Then we have ¢,,.,=U. Thus we have

g((Ne, Ae,, U)=PHgle,, PAe)+gle,, Pe)=gle,, Pe,).

From this and the equation of Codazzi we find g(Pe,, ¢,)=0 and hence
2n -2
21 g(Pe,, e;)gle,, Pe,)=2n—2=0.
1, 0=

This is a contradiction to the fact that n=3.
Next we assume that u(e,,_,)=0. We then have

gV, U, e)=g((N,, e, Uy=gle,, Pe,).

From this and the equation of Codazzi, we have g(Pe,, ¢,)=0. This is also a
contradiction. Consequently, we see that rank L>1 at some point of M.

From (9.14) we see that at most two §; can be distinct at each point of M.
Let us denote them by 2 and p. We denote by p the multiplicity of A Then
the multiplicity of u is 2n—1—p.

LEMMA 95, Let H=A+a. If A and u arve constant, A==y, and vf p:z2,
2n—1—p=2, then 2u>0 or h,=0.
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Proof. Let {e,} be orthonormal vector fields such that Ae,=Ae,-+ule,)s,
{e;} orthonormal vector flelds such that Ae,=pe,+u(e,)é and {e,, e} a local
fleld of orthonormal frames for L. The indices a, b, ¢ and », s, { run the
ranges {1, 2, ---, p} and {p+1, -, 2n—1} respectively.

First of all, we have

(Voo A)ey+ AV, ey=AV, ey +g(PAe,, ep)é+u(Vo e0)é+ule,)Pe, ,
from which
g(VegAdey, e)=—g(Ve 0, Ae)+28(Ve 00, c)tulen)g(Pe,, e.)
=ule)gle,, Pey)+tule,)g(Pegy, e.).
Therefore the equation of Codazzi implies
u(e)gles, Peo)tule,)g(Pes, e.)—ule.)gleq, Pey)—ule,)g(Pey, e.)=0,

from which
2uler)gles, Peq)tules)g(Peq, e)—uleq,)g(Pes, e)=0.

Putting a=c in this equation, we have

9.17) uleq)gley, Pea)=0.
Similarly we have
(9.18) uler)gles, Pe,)=0.

From (9.17) we obtain
0= Ebu(ea)g(Pea, e,)g(es, Pe,)

= 2 uleo){g(Peq, Per)— 2 g(Pea, es)gles, Pey))
= X uleo) {—ulequle)— X g(Pe, egles, Pe} .
Since %} ueq,)g(Pey, e)=— ; 1(e,)g(Pe,, ¢;)=0 by (9.18), we have
2 uleq)u(eq)uler)=0.

This shows that u(e.)=0 or u{e,)=0.
Without loss of generality we may assume that u(e,)=0 for all ¢ and hence
u(e,) =0 for some r. Then we have

o(,, Ae,, U)=Y,,g(Ae,, U)—g(AV. e,, U)—g(Ae,, PAe,)
=ug(V,,e,, U)—g(Ve e, AU),

gV, Ae,, Uy=2g(N,,e., U)—g(V.,eqa, AU)
=-—2ugleq, Pe)—g(Ve,eq, AU).

Therefore the equation of Codazzi implies
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(919) /ug(veae,, U)—{-Zyg(eu, Per)_g<veaery ‘4U)+g(verea; /QU):O .
On the other hand, we have
g, e, AU)= ; gV e, e9)gles, AU+ g(Ne e, £)g(&, AU)

=p Zs) gV, e, egles, Uy+g(V, e, &

=pg(Ve,er, U)—gle,, Ped),
g(Ve,eq, AU)=—pgleq,, Pe,)—g(eq, Pey).
Substituting these equations into (9.19), we find
(9.20) (P—2pu+2)g(Pe,, ¢,)=0.

If e,.=U, then AU=pU+£. Then, from the definition of h,, we have A,=0. If
e,#U, then (9.18) shows that g(e,, Pe,)=0 for all s. From this we see that
g(Pe,, e,)=—gle,, Pe,)#0 for some a. Consequently, we obtain p?—Ap+2=0.
Thus we have lpg=p4*4-2>0. This proves our lemma.

LEMMA 9.6. Let M be a pseudo-Einstein hypersurface of S*"*'(n=3). Then
we have h,=0.

Proof. By Lemma 9.1, it suffices to show that H#1,+a. We assume that
H=A,+a. Then we have (9.14) and the second fundamental form A is repre-
sented by (9.12). From (9.14) we see that at most two B; are distinct and so
we denote them by 4 and g If A=y at any point of M, then Lemma 9.2 shows
that M is totally contact-umbilical. This contradicts to Proposition 2.2. There-
fore 2+ p at some point. Then, from (9.14) we have

(9.21) H=3+p, Ap=a—(2n—1).

Let p be the multiplicity of 4. Then we have H=pA+(2n—~1—-p)p. Combining
this with (9.21), we have

9.22) (p—D2+@2n—2—p)pu=0.

Suppose a>(2n—1). Then the second equation of (9.21) shows that 4 and ¢
have the same sign. Therefore (9.22) implies that p=1 and »n=3/2. This is a
contradiction.

Let a<(@n—1). If 2=p at some point, then we have (2n—2)*=a—(2n—1)
<0 by (9.13). This is a contradiction. Hence there exist exactly two distinct
eigenvalues 4, ¢ of L at each point of M. Thus (9.22) implies that 1 <p<2n—2.
From (9.21) and (9.22) we have

_ (@n—2—p)a—2n+1) o (p—1)a—2n+41)

A= 1) S s

Therefore 4 and p are constant. Thus Lemma 9.5 implies that x>0 or h,=0.
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If 2p>0, this contradicts to the fact that Ap=a¢—(2n—1)<0.

We now assume that a=(2n—1). Then Ap=0. This gives rank L=1. This
is a contradiction by Lemma 9.4. Consequently, we see that H#2,--« and hence
h,=0 by Lemma 9.1. This proves our assertion.

THEOREM 9.1. Let M be o pseudo-Einstein hypersurface of S*"*'(nz=3). Then
M has two constant principal curvatures or four constant principal curvatures.

Proof. Since h,=0 by Lemma 9.6, the second fundamental form .1 1s re-
presented by a matrix of the form

( M
A
\\\ O
0 | 0
A=
0
Arn-z
0 0 1
0 1 «

N\ J
for a local field of orthonormal frames e, =+, @sp s, €2n-1=&, ¢»,=U of M. Then
(9.8), (9.9) and (9.10) reduce to
(9.23) a=2n—1)-+HA},— 2, 1=1, -, 2n—2,
(9.24) a+b=02n—2)+Ha—a®.

On the other hand, from Lemma 9.3, « is a constant. If a«+#0, then H is con-
stant by (9.24). From (9.23) we see that at most two A, are distinct and so we
denote them by 2 and p. Since H is constant, then 2 and g are both constant
by (9.23).

We next assume that «=0. Then we have H=pi+(2n—2—p)y, where p
denotes the multiplicity of A.

Suppose a>(2n—1). If 2#p at some point of M, then from H=2+p, we
have (p—1)A+02n—3—p)p=0. Since lp=a—2n—1)>0, 2 and ¢ have the same
sign and hence p=1, n=4/2=2. This is a contradiction to the fact that n=3.
Thus we must have 1=pg at each point. Thus (9.23) implies that (2n—3)4’=
a—(2n—1), and hence A is a constant.
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Suppose a<(2n—1). If A=p at some point, then we have (2n—23)A*=
a—(2n~—1)<0 by (9.23). This a contradiction. Therefore A#y at each point.
Thus we have H=p2+(2n—2—p)p=2+p and ip=a—(2n—1). Consequently we
have

g En—3—pla—2n+41) e _ (P a—=2n+1)

(p—1) e e R

and hence A and p are constant.

We next assume that a=(2n—1). Then Ap=0. Thus if A#0, then H=p2
and hence (9.23) implies that (p—1)2*>=0. Thus we have p=1.

We assume that Ae,=0, i=1, ---, 2n—3, Ae,,_.—2e¢sn-,. On the other hand,
we have AU=aU--&. Thus we have

g((vei/De]; U):_g(ep Pet)» 2 ]:1’ Tty 277"_3:
g((vejA)ew U>:—_g(ely Pe}): %) ]:1) ) 2n—3.
Hence the equation of Codazzi implies that g(e,, Pe,)=0. Since n=3, we can
take e, and e, such that g{e, Pe,)#0. This is a contradiction. Therefore
a+2n—1). 01
We now consider the matrix (1 a). Then the eigenvalues of this matrix
satisfy the quadratic equation

{o—

(9.25) t2—at—1=0.

Let A=p. Then we have

(9.26) 8N, Ade,, Uy=—2gle,, Pe,)+aigle,, Pe)+gle, Pe,).
From the equation of Codazzi we have

(9.27) (A2—ald—1)gle,, Pe,)=0.

Therefore we have 22—al—1=0 and hence 2 satisfies equation (9.25). Thus A
has two constant principal curvatures.

Let 2#p. We take an orthonormal frame {e,, ¢, U, &} such that de,=1e,,
Ae,=pe,, where a, b, c=1, -, p; r, s, t=p+1, -+, 2n—2. Then we have

g((Ve, Aes, Uy=apgle,, Pe,)+gleq, Pe.)—2Apgle.Pe,),
g((Vo Ade,, U)=algle,, Pes)+gle,, Pey)—Augle,, Peg).

From these equations and the equation of Codazzi we have

(9.28) (ad+ap+2—24p)g(e,, Peqa)=0.
If gle,, Pey)#0 for some » and a, then we have
(9.29) artapu+2—22p=0.

If 2 or p satisfies (9.25), then we have A*—al—1=0 or p*—ap—1=0. Let
A*—al—1=0. Then (9.29) implies that (a—2A)(g—A)=0. Since A+#p, we have
A=a/2. Thus we have a?/4—«a?/2—1=0 and hence —a?/4=1. This is a con-
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tradiction. Consequently 2 and g do not satisfy (9.25). Thus M has four con-
stant principal curvatures.

If gle,, Pe,)=0 for all » and a, then have p=2 and (2n—2—p)=2. In this
case, by the similar method used to obtain (9.27), we have A*—ad—1=0 and
p*—ap—1=0. Therefore 4 and p satisfy (9.25). Moreover, we see that p and
(2n—2—p) are even. Thus the multiplicities of 2 and g are p-+1 and 2n—1—p
respectively and hence they are odd. Consequently, M has two constant principal
curvatures or has four constant principal curvatures. This proves our theorem.

§10. Examples of Pseudo-Einstein hypersurfaces.

Let P*C) be a complex projective space of constant holomorphic sectional
curvature 4 with almost complex structure /. Let N be a (Zn—1)-dimensional
real hypersurface of P™C). We denote by G the metric tensor field of P*(C).
We denote by the same G the induced metric tensor field of N. Let C’ be a
unit normal of N in P™C). We put JC'=-U’" and ' (X)=G(X, U’) for any
vector field X tangent to N. If the Ricci tensor S’ of N is of the form S(X, V)
=aG(X, V)+ Bu/(X)u'(Y), « and B being constant, then N is called a pseudo-
Einstein real hypersurface of P*(C) (see [4]). We now consider the following
commutative diagram :

A,f S2n+1
T T
v .

N PHC) s

where M is a hypersurface of S?**' and #z, = denote the Riemannian fibre
bundles. We denote by * the horizontal lift with respect to the connection .
Then, by a straightforward computation, we can show that the Ricci tensor S
of M and the Ricci tensor S’ of N satisfy

(10.1) (S"X, V) =S(X*, Y*)+2g(X*, Y¥)—2u(X¥u(Y*)

for any vector fields X and Y tangent to N. From (10.1) we have the following
lemma.

LEMMA 10.1. M s a pseudo-Einstewn hypersurface of S*™*' if and only of N
15 a pseudo-Einstewn real hypersurface of P¥C).

Using Lemma 10.1, we give some examples of pseudo-Einstein hypersurfaces
Of SZn+1.
Let C™* be the space of (n-41)-tuples of complex numbers (zy, =, Zniy1)-
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n+1
Put $***"'={(zy, -, zz2)€C**: X |z,|2=1}. For a positive number » we de-
=1

note by AM,(2n, r) a hypersurface of S?"*! defined by
n o n+1 .
2z P =z, 2 1z %=1.
7=1 =1

For an integer m 2<m=<n—1) and a positive number s a hypersurface M(2n, m, s)
of S*"*! ig defined by

| z,|? =5 E Izjl2 2 [z,]*=1.

For a number ¢ (0<t<1) we denote by M(2n, t) a hypersurface of S*"*' defined
by

nil nt1
T Bi=t, 3 sl

M,(2n, r) and M(2n, m, s) have two constant principal curvatures and M(2n, )
has four constant principal curvatures (see [5], [8]).

From the results in [4] and Lemma 10.1 we can see that M,2n, ») is always
a pseudo-Einstein hypersurface of S?*** for any » and M(2n, m, s) is pseudo-
Einstein if s=(m—1)/(n—m). Then the Ricci tensor S of M2n, m, (n—1)/(n—n1))
is given by

S(X, V)=2n=2[g(X, Y)—7(X)np(Y)]+7(X)SE, V)
+9(Y)SE, X)—n(X)n(Y)SE, &),

that is, a=2n—2 and b=0. Furthermore M(2n, t) is pseudo-Einstein if t=1/(n—1)
and the Ricci tensor S of M(2n, 1/(n—1)) is given by

S(X, Y)=0@n—2)[g(X, ¥)—n(X)np(Y)]+{E—4n)u(X)u(Y)
+9(X)SE, V)+9(¥)SE, X)—n(X)n(Y)SE, &),

that is, a=2n—2 and b=4—4n.

Moreover M(2n, 1/(n—1)) is not minimal and M,(2n, 2n—1), M(2n, (n+1)/2, 1)
are minimal in S?**!,

From these considerations we have the following

THEOREM 10.1. If M 1s a complete pseudo-Einstein hypersurface wn S***?
(n=3), then M is congruent to some My2n, v) or to some M(2n, m, (m—1)/(n-m))
or to M(Qn, 1/(n—1)).

Proof. From Theorem 9.1 we see that M has two or four constant principal
curvatures. If M has two constant principal curvatures, then M is congruent to
M,(2n, v) or M(2n, m, s) (cf. [6]). Since M is pseudo-Einstein, M is congruent
to M,(2n, ») or to M(2n, m, (n—1)/(n—m)) by the previous argument. If M has
four constant principal curvatures, one of the principal curvatures has multiplicity
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1. Therefore, by a theorem of [8], M is congruent to M(2n, t). Since Al is
pseudo-Einstein, M is congruent to M(Q2n, 1/(n—1)). Therefore we have the
theorem.

THEOREM 10.2. If M is a complete pseudo-Einstern mummal hypersurface n
S** (n23), then M 1s congruent to My(2n, 2n—1) or to M@2n, (n+1)/2,1). In
the later case, n is odd.
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