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ON A CHARACTERIZATION OF THE EXPONENTIAL
FUNCTION AND THE COSINE FUNCTION
BY FACTORIZATION, III

By MITSURU OZAWA

1. Introduction. This paper is a continuation of our previous one [1] with
the same title, in which we proved the following fact.

THEOREM A. Let F(z) be an entire function, satisfying
(a) F(2)=Pn(fn(2))

with a polynomial P, of degree m and an entire function f, for m=2’ (j: natural
numbers) and m=3. Then

F(z)=Acos vVH(z) +B,
unless F(z)=Ae®®+B. Here A, B are constants and H 1s an entire function.

In this paper we shall firstly consider the case that (a) holds for m=2, 4
and 3’, where j runs over all natural numbers. Our theorem is the following.

THEOREM 1. Let F(z) be an entire function satisfying (a) for m=2, 4 and 3’
(=1, 2, ---). Then

F(z2)=Acos~H(z) +B,
unless F(z)=Ae?+B. Here A, B and H are the same as wn Theorem A.

The method of this paper gives more. Indeed (a) for i) m=2, 3,4 and %,
or ii) m=2, 3,4, 77 or iii) m=2, 3, 4, and 11’ implies the result, respectively.

2. Proof of Theorem 1. The first step, in which the case that
F(2)—b=A,(fo(2)—wo)*

has only finitely many zeros was considered in [1], gives the same conclusion,
that is, F(z2)=Ae”®+ B. Hence from now on we may assume that F—b has in-
finitely many zeros and hence only infinitely many zeros of even order. The
second step. Assuming that
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CHARACTERIZATION OF THE EXPONENTIAL FUNCTION 201

F(2)—b=Ay(fs(2)—w,)?,
we have
F_b:A4(f4—w1*)4 .

Assume inductively that F—b=A;(f3;p—a)*?. Then F—) has only zeros of order
4.3, We consider

F(2)—b=Agps H Farni(@) =),

M=

1,=37"1,

J1=1

Suppose that a,#a, If [, and [, are not any divisor of 4:3?, then fip+:1(2)—q,
(j=1, 2) has only zeros of order 4-37, which is impssible. If /, is a divisor of
4-3? and [, is not, then f;p+1(2)—a, has only zeros of order 4-37//,=2 and
fsp+1(z2)—a; has only zeros of order 4-3?, wihch is again impossible. If [; and [,
are divisors of 4-3?, f(z)—a, has only zeros of order 4:37/[;=2, which is absurd.
Hence a,=a,= --- =a,, that is,

F(Z)_b:A3p+1(f311+1(2)_a1)3p+1 .

This implies that F(z)—b has only zeros of order 4-37*!, Thus F(z)—b has only
zeros of arbitrarily high order. This is absurd. Hence we may assume that

F(2)—b=A,(f:—w,)*

=A(fi—w)(fi—wy)*.
Then as in [1]
F(o)—b=A,fi—d )"(fi—d,)*

S
:Agp ,,]';'E (fgp'_e,,)‘d” ’

v;py:?ﬂ’, e, Fei#]).

Hence we can make use of several results in the third and fourth steps in [1].
We summarize them here.
Let us put fy,—w,=T?% Then

TP —(wy,—w)THC=(T—a; (T —as)?

~(4) " Ghmrd=te,

Ts"(wz_wl)T_sz(T—am)(T‘azz)z

A, \1/2
=(45) " (e ro=Lay
3

for
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Cimpf gy i),

xlzwo—(—ﬁ—:’-)llzCl , xz—wo—{—( jz )1/2C, .

Let us put
f=—1+a(f;—x), =l+a(fo—x2)
with a,=2/(x,—x;). Then f=a,(f,—w,) and f*—a,2LM?*M,*=1. Let O(z) be

%al VI M(2)My2) f(z)—ZaI%—SZ VI MM, fdz.

Then

fH+awLMM,=e"®
and

f—avVLMM,=e %9,
Hence

f(z)=cos O.

O(z) depends on paths of integration connecting with «; to z.
The fifth step. We now have

F(Z)—b:Az(fz"wo>2:A3(f3—w1)(f3“w2>2
:A4(f4_‘d1)2(f4—d2)2

s
:ASP l;[__]; (f3p_ev>#y ’

§
21;1,,237’, e, Fe,(1#j).
Excepting only one p,, say g, all p, are even in the above case. We can say
more on {u,} and s.
LEmMA 1.

BP+1)/2

F(2)—b=Asp(fip—ey) g (far—en).
Proof. We inductively assume that Lemma 1 is true for p. Let us put
f3p_el:Sp2, f3p+1_81*:5‘p+12. Then
ASIIZT(TZ_W2+W1)

B3P+1)/2

:AM)]/ZSp x:al;[Z (sz_ev+el)

s
:A3p+1”25p+1”1 V];E (Sp+12—ey*+el*)#y/2 .
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Since
AT (TE—wy+wy)+ AV°Co=M,2 A2,

P+1)/2

Ap'?Sp I (So’—ete)+A:7°C,

= A TI(S,—a)s, 3 1=3.
J=1 J=1

Here only one [, say [, is odd and the others are even. Hence S,—a,=X2
Therefore

NG, @, $)= 5 NG, ay, S)=5m(r, S,).

Now we have
(1+o(1))32m(r, Sp)

3P+1)/2

§N(7’, 01 Sp)+ 122 {N(ry '\/eu_ely Sp)_'_N(r: —'\/ey_el) Sp)}
+N(7’; ay, Sp)
§]\7(7’, 0,- Sp+1)+ vg: {N(Tr \/ep*—el*) Sp+l)+N(r’ N ey*—el*; Sp+1>}

1
+7M(r, Sp)

1
=Q@2s—Dm(r, Spﬂ)—l—?m(r, Sy .

Evidently 3?m(r, S,)~3?*'m(r, S,.,). Hence

PR
that is,
e I3
= 5 T
Hence
s> 3141
= 2 .
On the other hand
Hence
bt 2(s—1)=3PH—p, <3PH 1,
that 1s,
<< 3p+i4]

5 -
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Therefore
3p+iq]
s= 5 s
=1, po= - =p=2.

Thus we have the desired result.
Simultaneously we have

BP+1/2

el

= Ay V(S y— ) TT(Sp—a,) .
J=2

(sz_ev+el)+<

v=2

As
3

Here [, is odd. Hence the above expression reduces to

8P+1_ 3P+1_, 3P+1_g 2
A MSp=a)(Sy * Sy T4 pS, e Hpannn)
Let us put p;=p,p’ for ;=1,2, -, (3?—1)/2 andS,=2p.x. Then by a=2p,
we have
-1 1 sp=3 828 -v/2 )
D) g By By

BP+1/2

=x 1;[2 (x*—0,)+D,

e,—e,
5P: )
4p,
Ag'2C 2
D= A3p”8223p;)13p :——%:?;_1)1/2 #0.
Let us put
Xu(0=xT1 (=3,
— n ]‘ n- * 2_ %
=(=D(x"+ 2" +Bo7) =D
=(x—1)Q(x)—D*.
Evidently
Hence

X (0)=(x+1)Q(—x)*+ D*
=(x+1)P(x)*+D*.

LEMMA 2. X,(x) is the Chebyshev polynomial Tspii(x).

Proof. The following proof is due to Amemiya. X,(x) satisfies
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Xo(x)=(x+1)P(x)*+ D*
=(x—1)Q(x)*—D*,

where P(x), @(x) are polynomials of degree n, whose leading coefficients are
equal to 1, and D* is a non-zero constant. By differentiation

2(x+1)P’(x)+P(x))P(x)
=Qx—1)Q"(x)+Q(x)Q(x) .
Since P(x) and Q(x) have no common zero,

@Cn+DP(x)=Q(x)+2(x —1DQ'(x)
and
@Cn+1)Q(x)=P(x)+2(x+1)P'(x).

Suppose that there is another pair (P,(x), @,(x)) with the desired condition.
Then P,, Q, satisfy the above simultaneous differential equation. Hence by its

linearity

P(x)—Pi(x), Qx)—Qix)

satisfy the same equation. Evidently s=deg(P—P)<n and t=deg(Q—Q,)<n
and s=t. Assume that the leading coefficients a, and b; of P—P, and Q—Q,
are not equal to zero. Then we have

2n+1)a,=(2s+1bs,
Cn+1Db;=02s+1as.

This is absurd. Hence P(x)=P,(x) and Q(x)=Q,(x). The Chebyshev polynomial
Tane1(x) satisfies

Tonsi(x)= —2%,7 cos((2n+1)arccos x)

_ 3 B 2j7r 2 ;1_-
_(x_l)};[](x cos )—f— 52

2n+1
. n 21 2_J7
_(x—l—l)rl:[1<x—l—coszn+1> i

By the unicity of the pair (P, Q) X,(x) coincides with T,,,,(x). Thus we have

the desired result.
The above proof implies that D*=-—272",
Returning back to the original problem we have

1
b==gw=

and hence
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ﬁjl/—:%?:—Z , Bapinne=l.
The sixth step. Let us put T=Bu, B*=4C,. Then
f=4u*—3u.
Therefore
u=cos% , 7=0,1,2.

By Lemma 1 and Lemma 2 we have

A fa—w,)
=AMT(T*—w,+wy)
=A;p2S,(Sp—estey) - (Sp2—eptey)
=AY 229,37 2% 1T ()

=A;p"?22p,°" cos (3P arccos x).

By A,*Ci=—2A5,"2p,*"

F=4u?—3u=2%"1T(x).
Hence
O+2ry

X=Cos—, ",

j=0, 1, -+, 37—1.

Now let us consider the Riemann surface defined byy?=L. Let C be a cycle on
the surface, along which @(z) has non-zero period vz. Then (@(z)+2r;)/3? has
period vz/3? along C. Therefore x and hence S,=2p,x is not one-valued along

C. This is absurd. Now by the same reason as in [1]

F(z)=AcosvH(z)+B.

3. We shall consider a variant of Theorem 1.

THEOREM 2. Let F(z) be an entire function satisfying (a) for m=2, 3, 4 and

5 (3=1, 2,3, --:). Then

F(z2)=AcosvH(z)+B,
unless F(z)=Ae" +B.

Proof. We have to consider Lemma 1 correspondingly.
LEMMA 3. If F(z)—b satisfies

F(2)—b=A(fo—wo)’=As(fi—w ) fs—wy)?
:A4(f4—d1)2(f4_d2)2
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GP+1)/2

:Asp(fsp"el) ,E (f5p_ev)2) 1721: 2) s Do,

then

F(2)=b=Agpori Fypor1— )1 IT (fiponi—e, %)
with either s=(5P"*'+-1)/2, =1, o= - =p;=2 or s=(OBPo*'—1)/2, p,=3, pp= -+
=ps=2 or s=(BP""—1)/2, =1, pto= -+ =ps,=2, ps=4.

Proof of Lemma 3. We abbreviate 57 as n,. Let us put f,,—e;=S* and
Ssng—e*=V?: Then as in the proof of Lemma 1 there is a constant a, for which

N, @, )5 N, ay SHZ 5 m(r, S),

a,#0, £vVe,—e;  (v=2,3, -, (no+1)/2).
Hence

(+0()nem(r, S)

<N, 0, 9+ 2 NG, Ve—e, NG, Ve, S)
N, @, S)

<N(r,0,V)+ 3 N(, Vei=e, VI+N(r, —vei—ef, 1)}

—}—%m(r, S)

=Q@2s—1m(r, VH——é—m(r, S).
By nom(r, S)~bnem(r, V)

> om—l 1
= 2 4
Thus
5n,—1
= 2
On the other hand we easily have
s< @“’2_1531
If s=s,, then p,=1, po= -+ =p,=2. If s=s,—1, then either y,=3, y,= --- =p,=2
or uy,=1, pp= -+ =p,,=2, ps=4. This is just the desired result.

Next we shall prove Lemma 1. Assume inductively that Lemma 1 holds
for p—1. We abbreviate 5? as n. By Lemma 3 we have
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1/2

As{ve [ (Ve eyt (42) )

= A (V=) I (V—a,%)s

with f,—e,*=V? and with odd /; and «,*+0, since
T(T?*—w,+w)+C,=M?.

Now we put V=a,*x. Then

X(x)zx/‘l ]i[2 (xz—-ap)#ylz

—(x—1)1 ]1‘12 (x—¢,)"—D

=(x—DQ(x)*—D.
Here
Asl2C
D:W iO .
Since —X(—x)=X(x), we have
X(x)=(x—DQ(x)*—D
=(x+1DP(x)*+D.
Thus by Lemma 2 X(x) reduces to the Chebyshev polynomial T,(x). Hence
X(x) must have the following form:

(n+1)/2
X I=I2 (x*—4,)
0,#0, 0,7#0,(v+p)
and
1

Now returning back to V and then to f, we have

(n+D/2
F(Z)-b:An(fn_el*) vl;[z (fn—ev*)z ’
ef#e,*  for y#p.
In order to complete the proof of Lemma 1 we should consider the case f;. Then

F=b=Ayf:—wo)’=A(fs—w)(fs—w,)*
:As(f{"el)‘ul(fs_ez)”z(fs—ea)‘as »

Mes

#;=5,  p;:odd, p, ps: even.

J=1
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If =1, p,=p,=2, there is nothing to prove. Hence there remain two cases:

#1:3) ﬂzzz, #3:0
or

wm=1l, p,=4, p,=0.
Let us put f;—w,=T* and f;—e,=S®. Then
A T(T*—w,+w,)
=A;251(S%—e,4-e,)"2/%,

Since there is a constant a,,(#0, =+ w,—w,) such that

N(T, 243D T)é?N(T, (243D T)é—Z—m(ri T)~

Hence _ _ -
14-o)3m(r, TYEN(r, 0, T)+N{r, Vw,—w;, T)

+N(7' _\/wz Wy, T)+N(7' ay, T)
=N(r, 0, S)+N(r, Ve,—es, S)+N(r, —ve,—e;, S)

+'§ m(r, T)

=3m(r, S)+%m(n T)
Evidently 3m(r, T)~5m(r, S). Hence
9
3—-2—_ 5

which is absurd. Thus by induction Lemma 1 holds.
Now we can proceed similarly as in Theorem 1.
The following cases give the same result as in Theorem 2.

i)y m=2, 3,4, 7(=1,2,- ),

iy m=2,3,4, 11(;=1, 2, --+),

iii) m=2%(s=1, -+, p=2),3, ¢(U=1,2, )
g<3-2?, (g, 6)=1,

iv) m=2%s=l, -, p=2),3,5, (=12, )
q<15-27, (q, 30)=1,

v) m=2%s=1, -, p=2), 3,7, ¢0U=1,2, )
q<21-2?7, (g, 42)=1,

vi) m=2%s=1, -+, p=2), 3,11, ¢(=1,2, --)
q<33-27, (g, 66)=1.
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