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ON A CHARACTERIZATION OF THE EXPONENTIAL

FUNCTION AND THE COSINE FUNCTION

BY FACTORIZATION, III

BY MITSURU OZAWA

1. Introduction. This paper is a continuation of our previous one [1] with
the same title, in which we proved the following fact.

THEOREM A. Let F(z) be an entire function, satisfying

(a) F(z)=Pm(fm(z))

with a polynomial Pm of degree m and an entire function fm for m=23 (j: natural
numbers) and m=3. Then

F(z)=A cos VH(z) +B ,

unless F(z)=AeII^JrB. Here A, B are constants and H is an entire function.

In this paper we shall firstly consider the case that (a) holds for m=2, 4
and 3J, where j runs over all natural numbers. Our theorem is the following.

THEOREM 1. Let F{z) be an entire function satisfying (a) for m=2, 4 and 3J

0 = 1, 2, .-). Then

F(z)=A cos VH(z) +B ,

unless F(z)=AeHjrB. Here A, B and H are the same as in Theorem A.

The method of this paper gives more. Indeed (a) for i) m=2, 3, 4 and 5J,
or ii) m=2, 3, 4, 7J or iii) m=2, 3, 4, and I P implies the result, respectively.

2. Proof of Theorem 1. The first step, in which the case that

F(z)-b=A2(f2(z)-w0γ

has only finitely many zeros was considered in [1], gives the same conclusion,
that is, F(z)=AeIίCz') + B. Hence from now on we may assume that F—b has in-
finitely many zeros and hence only infinitely many zeros of even order. The
second step. Assuming that
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CHARACTERIZATION OF THE EXPONENTIAL FUNCTION 201

F(z)-fc=Λ(/8(2r)-u;1)
8,

we have
F-fc=Λ(Λ-u>i*)4.

Assume inductively that F—b—A3P{f3P—aYp. Then F—b has only zeros of order
4 3P. We consider

F(z)-b=AiP+i Π (fsp+i(z)-aj)h,

Suppose that aλφa2. If lγ and ί2 are not any divisor of 4 3P, then f3P+i(z)—aj
O'=l, 2) has only zeros of order 4 3P, which is impssible. If lλ is a divisor of
4 3P and l2 is not, then f3P+i(z) —ax has only zeros of order 4 3p/7i=2 and
fsp+i(z)—a2 has only zeros of order 4 3P, wihch is again impossible. If lλ and /2

are divisors of 4 3P, f(z)—a3 has only zeros of order 4-3*7/^2, which is absurd.
Hence a1=a2^= ••• =as, that is,

F(z)-b=Λ3P+ί(f3P+1(z)-aiγ
p+1.

This implies that F(z)—b has only zeros of order 4 3P+1. Thus F{z)—b has only
zeros of arbitrarily high order. This is absurd. Hence we may assume that

F(z)-b=Λ2(f2-wQγ

= A3(f3-w1)(f3-w2)
2.

Then as in [1]
F(z)-b=Ai(fi-d1Y(fi-d2y

U
v=l

Hence we can make use of several results in the third and fourth steps in [1].
We summarize them here.

Let us put f3—w1=T2. Then

T 3 -(ι < ; 2 - M ; 1 )r+C 1 =(T-« n )(T-« 2 1 ) 2

A,

= A

for
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Let us put

1V5)M1(2)Ma(z)/(z)--2a1-i-(e VLM.M.fdz.

with a1=2/{x2-x1). Then f=a1(fi-w0) and F-a?LM?Mf=\. Let θ(z) be

Then

and

Hence

) depends on paths of integration connecting with ax to z.
The fifth step. We now have

Σ//V=3p, etφe3(ιφj).

Excepting only one μJf say μlf all //̂  are even in the above case. We can say
more on {μj and s.

LEMMA 1.

(3P + D/2

F(z)-b=A,P(ftp-ei) Π (ftp-evy.

Proof. We inductively assume that Lemma 1 is true for p. Let us put
p—e 1 =S p

2 , fZP+i—e1*=Sp+1

2. Then

ip+n/2

π (
v=2

1

1 / 2S2,+/i Π ( S p + I

2 - e
2
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Since
AS'*T(T*-wΛ+w1)+Az

1»C1=M1*A*1/2,

(3P + Ό/2

A3P

mSp Π (S β

1 -β,,+
y 2

Here only one lJf say llf is odd and the others are even. Hence Sp—a1=X2.
Therefore

Now we have

N{r, al9 Sp)^y7V(r, a» Sp)^m(r, Sp).

(3P + D/2

, 0, 5P)+ Σ {N(r, Ve^-e,, Sp)+N(r, -Ve»-«i,
v=2

r, «!, Sp)

^N(r, 0, Sp+1)+ Σ {N(r,

Evidently 3*wί(r, S p ^ S ' + ^ C r , Sp + 1). Hence

that is,

3
s = ^ — τ

Hence

5 = 2 '

On the other hand

Hence

that is,



204
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s=- 2

1=lf μ 2 = ••• = μ s = 2 .

Thus we have the desired result.
Simultaneously we have

r C3P + D/2

A^ι*{Sp Π (

Here lx is odd. Hence the above expression reduces to

Let us put pj=βjpχJ for j = l , 2, •••, (3 p -l)/2
we have

C3P + D/2

= χ Π (

-r ••* -rPisP-i-)ί2) -

Ί—2p1x. Then by ax—2px

β(3P-Ώ/2 \ 2

Let us put

D=-
2 3 P _ 1

Evidently

Hence

= (x-l)Q(x)2-D*.

-Xn(-x)=Xn(x).

Xn(x)=(x + l)Q(-xY+D*

LEMMA 2. Xn(x) is the Chebyshev polynomial T2π+1(x).

Proof. The following proof is due to Amemiya. Xn{x) satisfies
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=(x-l)Q(x)*-D*,

where P(x), Q(x) are polynomials of degree n, whose leading coefficients are
equal to 1, and D* is a non-zero constant. By differentiation

'(x)+P(x))P(x)

=(2(x-l)Q'(x)+Q(x))Q{x).

Since P{x) and Q(x) have no common zero,

(2n+l)P(x)=Q(x)+2(x-l)Q'(x)

and

Suppose that there is another pair (Pλ(x), Qι(x)) with the desired condition.
Then Pu Qλ satisfy the above simultaneous differential equation. Hence by its
linearity

PW-ΛW, QW-QM

satisfy the same equation. Evidently s=deg(P—P^)<n and t=άeg(Q — Q1)<n
and s=t. Assume that the leading coefficients as and bs of P—Pι and Q — Qi
are not equal to zero. Then we have

(2n+l)bs=(2s+l)as.

This is absurd. Hence P(x)=P1(x) and Q(x)=Q1(x). The Chebyshev polynomial
T2n+1(x) satisfies

T2n+i(x)=-™ir cos((2n+l)arccos x)

_ 1 _

By the unicity of the pair {P, Q) Xn(x) coincides with T2n+ί(x). Thus we have
the desired result.

The above proof implies that D*=— 2~2n.
Returning back to the original problem we have

_ 1

and hence
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^ 3 W __ r> n 2 _ 1
~~/j ϊJϊΊΓW— ~ z ' PCSP-D/2 — J-
^•3P P i

The sixth step. Let us put T=Bu, 53=4C1. Then

Therefore

Θ+2πj Λ 1 o
w=cos ^±~ > 7 = 0 , 1 , 2 .

By Lemma 1 and Lemma 2 we have

bx

sP cos (3P arccos x).

By .

Hence

Now let us consider the Riemann surface defined byy2=L. Let C be a cycle on
the surface, along which Θ(z) has non-zero period vπ. Then (Θ(z)-{-2πj)/3p has
period vπ/3p along C. Therefore x and hence Sp=2p1x is not one-valued along
C. This is absurd. Now by the same reason as in [1]

F(z)=A cos VTT(z)+B.

3. We shall consider a variant of Theorem 1.

THEOREM 2. L ^ F(z) be an entire function satisfying (a) for m—2y 3, 4 and
5J 0 = 1 , 2, 3, •••).

F ( z ) = A cos

F(z)=AeH+B.

Proof. We have to consider Lemma 1 correspondingly.

LEMMA 3. // F(z)—b satisfies

F(z)-b=A2(f2-w0γ=A3(f3-w1)(f3-w2)
2



then

CHARACTERIZATION OF THE EXPONENTIAL FUNCTION

(5P + D/2

-ei) Π (f6p-ev)
2, p=l, 2, -" , p0,

P=2

i-e1*yi Π

207

with either s=(5*°+1 + l)/2, ^ = 1 , μ2= ••• = μ , = 2 or s=(5 P o + 1 -l)/2, ^ = 3 , μ2=

= ^ s = 2 or s=(

Proof of Lemma 3. We abbreviate 5Po as n0. Let us put /no—ex—S2 and
— ^ I * — ^ 2 - Then as in the proof of Lemma 1 there is a constant ax for which

N(r, alf S)SjN(r, au S)^m{r, S),

Hence

0,

v=2, 3, - ,

, S)

Cno + D/2 _

Σ {N_ _

{N(r, Ve,-eu S)+N(r, VeB-β,, S)}

, αx, S)r, y/e*-e*, V)+N(r, -

ym(r, S)

By nom(r, S)~5n0m(r, V)

Thus

5 n o - l

On the other hand we easily have

5no+l

If s=5 1 ? then /^i=l, ^2= *•• ~μs—2. If s^Sj —1, then either μi=3, /i2= ••• =μs=2
or j«i=l, jM2— ••• =μs-iz=2, μs=4. This is just the desired result.

Next we shall prove Lemma 1. Assume inductively that Lemma 1 holds
for p—1. We abbreviate 5P as n. By Lemma 3 we have
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=An

1/\V-a1*yi Π (V-a*)2λJ
3 = 2

with Λ—£i*=F 2 and with odd lx and α,*^0, since

Now we put V=a^x. Then

v=2

t

= (x-l)Q{xf-D.
Here

D= l/2 \n ΦO.

Since —X(—x)=X(x), we have

X(x)=(x-l)Q(x)2-D

Thus by Lemma 2 Z(x) reduces to the Chebyshev polynomial Tn(x). Hence
X(x) must have the following form :

Cn + l ) / 2

x Π (x2—δv)
v=2

δvφ$, δvΦδμ(vΦμ)
and

Now returning back to V and then to fn we have

F(z)-b=An{fn-e1*)'niil\fn-e*γ,
v=2

ep*Φeμ* for vφμ.

In order to complete the proof of Lemma 1 we should consider the case /6. Then

3

Σ ^ ; = 5 , μγ: odd, μ2, μ3: even.
J = l
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If j«i=l, ^2=^3=2, there is nothing to prove. Hence there remain two cases:

μi=3, μ 2 =2, μ s=0
or

μ i = l , μ 2 =4, //3=0.

Let us put /8—Wj=T2 and /5—ej=S2. Then

Since there is a constant «„(=£(), ±Vwi—w1) such that

jN(r, an, T)£jtn{r, T).

Hence
r, T)<N(r, 0, T)+N{r, Vw2-wlr T)

+N(r, -Vwt-wu T)+N(r, an, T)

SN{r, 0, S)+N(r, Ve2-ely S)+N(r, -Vez-elr S)

+ γm(r, T)

^3m(r, S)+±-m(r, T)

Evidently 3m(r, T)~5m(r, S). Hence

3_1<1
ό 2 = 5 '

which is absurd. Thus by induction Lemma 1 holds.
Now we can proceed similarly as in Theorem 1.
The following cases give the same result as in Theorem 2.

i) m = 2 , 3 , 4 , 7 ' 0 = l , 2, •••),

ii) m = 2 , 3 , 4 , l l ' O = l , 2, •••),

iii) m = 2 s ( s = l , - , />^2), 3, ^ 0 = 1, 2, •••)

? < 3 2 P , (?, 6 ) = 1 ,

iv) m = 2 s ( s = l , - , p^2), 3, 5, ^ 0 = 1, 2, •••)

<7<15 2% (?,30)=l,

v) m = 2 s ( s = l , - , p>2), 3, 7 , qKj = l, 2, •••)

vi) m = 2 s ( s = l , - , p^2), 3, 11 , q>(j=l, 2, •••)

q<33-2p, (q, 66)=1.
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