ON A CHARACTERIZATION OF THE EXPONENTIAL
 FUNCTION AND THE COSINE FUNCTION BY FACTORIZATION, III

By Mitsuru Ozawa

1. Introduction. This paper is a continuation of our previous one [1] with the same title, in which we proved the following fact.

Theorem A. Let $F(z)$ be an entire function, satısfying

$$
\begin{equation*}
F(z)=P_{m}\left(f_{m}(z)\right) \tag{a}
\end{equation*}
$$

with a polynomial P_{m} of degree m and an entire function f_{m} for $m=2^{3}$ (\jmath : natural numbers) and $m=3$. Then

$$
F(z)=A \cos \sqrt{H(z)}+B,
$$

unless $F(z)=A e^{H(2)}+B$. Here A, B are constants and H is an entıre function.
In this paper we shall firstly consider the case that (a) holds for $m=2,4$ and 3^{3}, where j runs over all natural numbers. Our theorem is the following.

Theorem 1. Let $F(z)$ be an entire function satısfying (a) for $m=2,4$ and 3^{3} $(\jmath=1,2, \cdots)$. Then

$$
F(z)=A \cos \sqrt{H(z)}+B,
$$

unless $F(z)=A e^{H}+B$. Here A, B and H are the same as in Theorem A.
The method of this paper gives more. Indeed (a) for i) $m=2,3,4$ and 5^{3}, or ii) $m=2,3,4,7^{3}$ or iii) $m=2,3,4$, and 11^{j} implies the result, respectively.
2. Proof of Theorem 1. The first step, in which the case that

$$
F(z)-b=A_{2}\left(f_{2}(z)-w_{0}\right)^{2}
$$

has only finitely many zeros was considered in [1], gives the same conclusion, that is, $F(z)=A e^{H(2)}+B$. Hence from now on we may assume that $F-b$ has infinitely many zeros and hence only infinitely many zeros of even order. The second step. Assuming that

$$
F(z)-b=A_{3}\left(f_{3}(z)-w_{1}\right)^{3},
$$

we have

$$
F-b=A_{4}\left(f_{4}-w_{1}^{*}\right)^{4}
$$

Assume inductively that $F-b=A_{3} p\left(f_{3} p-\alpha\right)^{3 p}$. Then $F-b$ has only zeros of order $4 \cdot 3^{p}$. We consider

$$
\begin{aligned}
& F(z)-b= A_{3} p+1 \\
& \prod_{\jmath=1}^{s}\left(f_{3 p+1}(z)-\alpha_{j}\right)^{l_{\jmath}} \\
& \sum_{j=1}^{s} l_{\jmath}=3^{p+1}
\end{aligned}
$$

Suppose that $\alpha_{1} \neq \alpha_{2}$. If l_{1} and l_{2} are not any divisor of $4 \cdot 3^{p}$, then $f_{3 p+1}(z)-\alpha$, $(j=1,2)$ has only zeros of order $4 \cdot 3^{p}$, which is impssible. If l_{1} is a divisor of $4 \cdot 3^{p}$ and l_{2} is not, then $f_{3 p+1}(z)-\alpha_{1}$ has only zeros of order $4 \cdot 3^{p} / l_{1} \geqq 2$ and $f_{3 p+1}(z)-\alpha_{2}$ has only zeros of order $4 \cdot 3^{p}$, wihch is again impossible. If l_{1} and l_{2} are divisors of $4 \cdot 3^{p}, f(z)-\alpha$, has only zeros of order $4 \cdot 3^{p} / l_{j} \geqq 2$, which is absurd. Hence $\alpha_{1}=\alpha_{2}=\cdots=\alpha_{s}$, that is,

$$
F(z)-b=A_{3 p+1}\left(f_{3} p+1(z)-\alpha_{1}\right)^{3 p+1} .
$$

This implies that $F(z)-b$ has only zeros of order $4 \cdot 3^{p+1}$. Thus $F(z)-b$ has only zeros of arbitrarily high order. This is absurd. Hence we may assume that

Then as in [1]

$$
\begin{aligned}
F(z)-b & =A_{2}\left(f_{2}-w_{0}\right)^{2} \\
& =A_{3}\left(f_{3}-w_{1}\right)\left(f_{3}-w_{2}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
F(z)-b= & A_{4}\left(f_{4}-d_{1}\right)^{2}\left(f_{4}-d_{2}\right)^{2} \\
= & A_{3} p \prod_{\nu=1}^{s}\left(f_{3} p-e_{\nu}\right)^{\mu_{\nu}}, \\
& \sum_{\nu=1}^{s} \mu_{\nu}=3^{p}, \quad e_{2} \neq e_{j}(i \neq j) .
\end{aligned}
$$

Hence we can make use of several results in the third and fourth steps in [1]. We summarize them here.

Let us put $f_{3}-w_{1}=T^{2}$. Then

$$
\begin{aligned}
T^{3}-\left(w_{2}-w_{1}\right) T+C_{1} & =\left(T-\alpha_{11}\right)\left(T-\alpha_{21}\right)^{2} \\
& =\left(\frac{A_{2}}{A_{3}}\right)^{1 / 2}\left(f_{2}-x_{1}\right)=M_{1}^{2} \\
T^{3}-\left(w_{2}-w_{1}\right) T-C_{1} & =\left(T-\alpha_{12}\right)\left(T-\alpha_{22}\right)^{2} \\
& =\left(\frac{A_{2}}{A_{3}}\right)^{1 / 2}\left(f_{2}-x_{2}\right)=L M_{2}^{2}
\end{aligned}
$$

for

$$
\begin{gathered}
C_{1}=\sqrt{\frac{4}{27}\left(w_{2}-w_{1}\right)^{3}}, \\
x_{1}=w_{0}-\left(\frac{A_{3}}{A_{2}}\right)^{1 / 2} C_{1}, \quad x_{2}=w_{0}+\left(\frac{A_{3}}{A_{2}}\right)^{1 / 2} C_{1} .
\end{gathered}
$$

Let us put

$$
f=-1+a_{1}\left(f_{2}-x_{1}\right), \quad f=1+a_{1}\left(f_{2}-x_{2}\right)
$$

with $a_{1}=2 /\left(x_{2}-x_{1}\right)$. Then $f=a_{1}\left(f_{2}-w_{0}\right)$ and $f^{2}-a_{1}{ }^{2} L M_{1}{ }^{2} M_{2}{ }^{2}=1$. Let $\Theta(z)$ be

$$
\frac{1}{l} a_{1} \sqrt{L(z)} M_{1}(z) M_{2}(z) f(z)-2 a_{1} \frac{1}{2} \int_{a_{1}}^{z} \sqrt{L} M_{1} M_{2} f^{\prime} d z .
$$

Then

$$
f+a_{1} \sqrt{L} M_{1} M_{2}=e^{i \theta}
$$

and

$$
f-a_{1} \sqrt{L} M_{1} M_{2}=e^{-i \theta},
$$

Hence

$$
f(z)=\cos \Theta
$$

$\Theta(z)$ depends on paths of integration connecting with α_{1} to z.
The fifth step. We now have

$$
\begin{aligned}
F(z)-b= & A_{2}\left(f_{2}-w_{0}\right)^{2}=A_{3}\left(f_{3}-w_{1}\right)\left(f_{3}-w_{2}\right)^{2} \\
= & A_{4}\left(f_{4}-d_{1}\right)^{2}\left(f_{4}-d_{2}\right)^{2} \\
= & A_{3 p} \prod_{\nu=1}^{s}\left(f_{3 p}-e_{\nu}\right)^{\mu_{\nu}}, \\
& \sum_{\nu=1}^{s} \mu_{\nu}=3^{p}, \quad e_{\imath} \neq e_{\jmath}(\imath \neq j) .
\end{aligned}
$$

Excepting only one μ_{j}, say μ_{1}, all μ_{ρ} are even in the above case. We can say more on $\left\{\mu_{\nu}\right\}$ and s.

Lemma 1.

$$
F(z)-b=A_{3 p}\left(f_{3 p}-e_{1}\right) \prod_{\nu=2}^{(3 p+1) / 2}\left(f_{3 p}-e_{\nu}\right)^{2} .
$$

Proof. We inductively assume that Lemma 1 is true for p. Let us put $f_{3 p}-e_{1}=S_{p}{ }^{2}, f_{3 p+1}-e_{1}{ }^{*}=S_{p+1}{ }^{2}$. Then

$$
\begin{array}{rl}
A_{3}{ }^{1 / 2} & T\left(T^{2}-w_{2}+w_{1}\right) \\
& =A_{3 p^{1 / 2}} S_{p} \prod_{\nu=2}^{(3 p+1) / 2}\left(S_{p}{ }^{2}-e_{\nu}+e_{1}\right) \\
& =A_{3 p+1^{1 / 2}} S_{p+1}{ }^{\mu_{1}} \prod_{\nu=2}^{s}\left(S_{p+1}{ }^{2}-e_{\nu}{ }^{*}+e_{1}^{*}\right)^{\mu_{\nu} / 2}
\end{array}
$$

Since

$$
\begin{aligned}
& A_{3}^{1 / 2} T\left(T^{2}-w_{2}+w_{1}\right)+A_{3}{ }^{1 / 2} C_{1}=M_{1}{ }^{2} A_{3}{ }^{1 / 2} \\
& A_{3} p^{1 / 2} S_{p} \prod_{\nu=2}^{\left(3 p^{p}+1 / 2\right.}\left(S_{p}{ }^{2}-e_{\nu}+e_{1}\right)+A_{3}^{1 / 2} C_{1} \\
& \quad=A_{3 p^{1 / 2}} \prod_{j=1}^{t}\left(S_{p}-\alpha_{j}\right)^{l}, \quad \sum_{j=1}^{t} l_{j}=3^{p} .
\end{aligned}
$$

Here only one l_{j}, say l_{1}, is odd and the others are even. Hence $S_{p}-\alpha_{1}=X^{2}$. Therefore

$$
\bar{N}\left(r, \alpha_{1}, S_{p}\right) \leqq \frac{1}{2} N\left(r, \alpha_{1}, S_{p}\right) \leqq \frac{1}{2} m\left(r, S_{p}\right) .
$$

Now we have

$$
\begin{aligned}
&(1+o(1)) 3^{p} m\left(r, S_{p}\right) \\
& \leqq \bar{N}\left(r, 0, S_{p}\right)+\sum_{\nu=2}^{\left(3 p_{+1}\right) / 2}\left\{\bar{N}\left(r, \sqrt{e_{\nu}-e_{1}}, S_{p}\right)+\bar{N}\left(r,-\sqrt{e_{\nu}-e_{1}}, S_{p}\right)\right\} \\
&+\bar{N}\left(r, \alpha_{1}, S_{p}\right) \\
& \leqq \bar{N}\left(r, 0, S_{p+1}\right)+\sum_{\nu=2}^{s}\left\{\bar{N}\left(r, \sqrt{e_{\nu}^{*}-e_{1}^{*}}, S_{p+1}\right)+\bar{N}\left(r,-\sqrt{e_{2}^{*}-e_{1}^{*}}, S_{p+1}\right)\right\} \\
&+\frac{1}{2} m\left(r, S_{p}\right) \\
& \leqq(2 s-1) m\left(r, S_{p+1}\right)+\frac{1}{2} m\left(r, S_{p}\right)
\end{aligned}
$$

Evidently $3^{p} m\left(r, S_{p}\right) \sim 3^{p+1} m\left(r, S_{p+1}\right)$. Hence

$$
3^{p} \leqq \frac{2 s-1}{3}+\frac{1}{2}
$$

that is,

$$
s \geqq \frac{3^{p+1}+1}{2}-\frac{3}{4} .
$$

Hence

$$
s \geqq \frac{3^{p+1}+1}{2} .
$$

On the other hand

$$
\sum_{j=1}^{s} \mu_{j}=3^{p+1}
$$

Hence

$$
2(s-1) \leqq 3^{p+1}-\mu_{1} \leqq 3^{p+1}-1,
$$

that is,

$$
s \leqq \frac{3^{p+1}+1}{2}
$$

Therefore

$$
\begin{aligned}
& s=\frac{3^{p+1}+1}{2} \\
& \mu_{1}=1, \mu_{2}=\cdots=\mu_{s}=2
\end{aligned}
$$

Thus we have the desired result.
Simultaneously we have

$$
\begin{gathered}
A_{3 p^{1 / 2}}\left\{S_{p} \prod_{\nu=2}^{(33 p+1) / 2}\left(S_{p}^{2}-e_{\nu}+e_{1}\right)+\left(\frac{A_{3}}{A_{3 p}}\right)^{1 / 2} C_{1}\right\} \\
=A_{3 p^{1 / 2}}\left(S_{p}-\alpha_{1}\right)^{l_{1}} \prod_{\jmath=2}^{t}\left(S_{p}-\alpha_{\jmath}\right)^{2 \lambda_{\jmath}} .
\end{gathered}
$$

Here l_{1} is odd. Hence the above expression reduces to

$$
A_{3 p^{1 / 2}}\left(S_{p}-\alpha_{1}\right)\left(S_{p} \frac{3 p+1}{2}-1+p_{1} S_{p}^{\frac{3 p+1}{2}-2}+p_{2} S_{p}^{\frac{3 p+1}{2}-3}+\cdots+p_{(3 p-1) / 2}\right)^{2} .
$$

Let us put $p_{j}=\beta_{\jmath} p_{1}{ }^{\jmath}$ for $\jmath=1,2, \cdots,\left(3^{p}-1\right) / 2$ and $S_{p}=2 p_{1} x$. Then by $\alpha_{1}=2 p_{1}$ we have

$$
\begin{aligned}
&(x-1)\left(x^{\frac{3 p-1}{2}}+\frac{1}{2} x^{\frac{3 p-3}{2}}+\frac{\beta_{2}}{4} x^{\frac{3 p-5}{2}}+\cdots+\frac{\beta_{(3 p-1) / 2}}{2^{(3 p-1) / 2}}\right)^{2} \\
&=x \prod_{\nu=2}^{\left({ }^{(3 p+1) / 2}\right.}\left(x^{2}-\delta_{\nu}\right)+D, \\
& \delta_{\nu}=\frac{e_{\nu}-e_{1}}{4 p_{1}}, \\
& D=\frac{A_{3^{1 / 2} C_{1}}^{A_{3} p^{1 / 2} 2^{3 p} p_{1}{ }^{3 p}}=-\frac{\left.\beta_{(3 p-1}^{2}-1\right) / 2}{2^{3 p}-1} \neq 0 .}{} .
\end{aligned}
$$

Let us put

$$
\begin{aligned}
X_{n}(x) & \equiv x \prod_{\nu=2}^{n+1}\left(x^{2}-\delta_{\nu}^{*}\right) \\
& =(x-1)\left(x^{n}+\frac{1}{2} x^{n-1}+\cdots+\beta_{n}^{*}\right)^{2}-D^{*} \\
& \equiv(x-1) Q(x)^{2}-D^{*} .
\end{aligned}
$$

Evidently

$$
-X_{n}(-x)=X_{n}(x)
$$

Hence

$$
\begin{aligned}
X_{n}(x) & =(x+1) Q(-x)^{2}+D^{*} \\
& \equiv(x+1) P(x)^{2}+D^{*} .
\end{aligned}
$$

Lemma 2. $\quad X_{n}(x)$ is the Chebyshev polynomial $T_{2 n+1}(x)$.
Proof. The following proof is due to Amemiya. $X_{n}(x)$ satisfies

$$
\begin{aligned}
X_{n}(x) & =(x+1) P(x)^{2}+D^{*} \\
& =(x-1) Q(x)^{2}-D^{*}
\end{aligned}
$$

where $P(x), Q(x)$ are polynomials of degree n, whose leading coefficients are equal to 1 , and D^{*} is a non-zero constant. By differentiation

$$
\begin{aligned}
& \left(2(x+1) P^{\prime}(x)+P(x)\right) P(x) \\
& \quad=\left(2(x-1) Q^{\prime}(x)+Q(x)\right) Q(x)
\end{aligned}
$$

Since $P(x)$ and $Q(x)$ have no common zero,

$$
(2 n+1) P(x)=Q(x)+2(x-1) Q^{\prime}(x)
$$

and

$$
(2 n+1) Q(x)=P(x)+2(x+1) P^{\prime}(x)
$$

Suppose that there is another pair $\left(P_{1}(x), Q_{1}(x)\right)$ with the desired condition. Then P_{1}, Q_{1} satisfy the above simultaneous differential equation. Hence by its linearity

$$
P(x)-P_{1}(x), \quad Q(x)-Q_{1}(x)
$$

satisfy the same equation. Evidently $s=\operatorname{deg}\left(P-P_{1}\right)<n$ and $t=\operatorname{deg}\left(Q-Q_{1}\right)<n$ and $s=t$. Assume that the leading coefficients a_{s} and b_{s} of $P-P_{1}$ and $Q-Q_{1}$ are not equal to zero. Then we have

$$
\begin{aligned}
& (2 n+1) a_{s}=(2 s+1) b_{s} \\
& (2 n+1) b_{s}=(2 s+1) a_{s}
\end{aligned}
$$

This is absurd. Hence $P(x) \equiv P_{1}(x)$ and $Q(x) \equiv Q_{1}(x)$. The Chebyshev polynomial $T_{2 n+1}(x)$ satisfies

$$
\begin{aligned}
T_{2 n+1}(x) & =\frac{1}{2^{2 n}} \cos ((2 n+1) \arccos x) \\
& =(x-1) \prod_{\jmath=1}^{n}\left(x-\cos \frac{2 j \pi}{2 n+1}\right)^{2}+\frac{1}{2^{2 n}} \\
& =(x+1) \prod_{\jmath=1}^{n}\left(x+\cos \frac{2 \jmath \pi}{2 n+1}\right)^{2}-\frac{1}{2^{2 n}}
\end{aligned}
$$

By the unicity of the pair $(P, Q) X_{n}(x)$ coincides with $T_{2 n+1}(x)$. Thus we have the desired result.

The above proof implies that $D^{*}=-2^{-2 n}$.
Returning back to the original problem we have

$$
D=-\frac{1}{2^{3^{p}-1}}
$$

and hence

$$
\frac{A_{3}{ }^{1 / 2} C_{1}}{A_{3 p^{1 / 2}} p_{1}{ }^{3 p}}=-2, \quad \beta_{\left(3 p^{2}-1\right) / 2}=1 .
$$

The sixth step. Let us put $T=B u, B^{3}=4 C_{1}$. Then

Therefore

$$
u=\cos \frac{\Theta+2 \pi j}{3}, \quad j=0,1,2 .
$$

By Lemma 1 and Lemma 2 we have

$$
\begin{aligned}
& A_{2}{ }^{1 / 2}\left(f_{2}-w_{0}\right) \\
& \quad=A_{3}{ }^{1 / 2} T\left(T^{2}-w_{2}+w_{1}\right) \\
& \quad=A_{3} p^{1 / 2} S_{p}\left(S_{p}{ }^{2}-e_{2}+e_{1}\right) \cdots\left(S_{p}{ }^{2}-e_{p}+e_{1}\right) \\
& \quad=A_{3} p^{1 / 2} 2 p_{1}{ }^{3 p} 2^{3 p-1} T_{3 p}(x) \\
& \quad=A_{3} p^{1 / 2} 2 p_{1}{ }^{3 p} \cos \left(3^{p} \arccos x\right) .
\end{aligned}
$$

By $A_{3}{ }^{1 / 2} C_{1}=-2 A_{3} p^{1 / 2} p_{1}{ }^{3 p}$

$$
f=4 u^{3}-3 u=2^{3^{p}-1} T_{3 p}(x) .
$$

Hence

$$
x=\cos \frac{\theta+2 \pi j}{3^{p}}, \quad j=0,1, \cdots, 3^{p}-1
$$

Now let us consider the Riemann surface defined by $y^{2}=L$. Let C be a cycle on the surface, along which $\Theta(z)$ has non-zero period $v \pi$. Then $(\Theta(z)+2 \pi j) / 3^{p}$ has period $v \pi / 3^{p}$ along C. Therefore x and hence $S_{p}=2 p_{1} x$ is not one-valued along C. This is absurd. Now by the same reason as in [1]

$$
F(z)=A \cos \sqrt{H(z)}+B
$$

3. We shall consider a variant of Theorem 1.

Theorem 2. Let $F(z)$ be an entire functıon satısfying (a) for $m=2,3,4$ and $5^{\prime}(\jmath=1,2,3, \cdots)$. Then

$$
F(z)=A \cos \sqrt{H(z)}+B,
$$

unless $F(z)=A e^{H}+B$.
Proof. We have to consider Lemma 1 correspondingly.
Lemma 3. If $F(z)-b$ satısfies

$$
\begin{aligned}
F(z)-b & =A_{2}\left(f_{2}-w_{0}\right)^{2}=A_{3}\left(f_{3}-w_{1}\right)\left(f_{3}-w_{2}\right)^{2} \\
& =A_{4}\left(f_{4}-d_{1}\right)^{2}\left(f_{4}-d_{2}\right)^{2}
\end{aligned}
$$

$$
=A_{5} p\left(f_{5} p-e_{1}\right) \prod_{\nu=2}^{\left(5 p^{p}+1\right) / 2}\left(f_{5 p}-e_{\nu}\right)^{2}, \quad p=1,2, \cdots, p_{0}
$$

then

$$
F(z)-b=A_{5} p_{0+1}\left(f_{5} p_{0+1}-e_{1}^{*}\right)^{\mu_{1}} \prod_{\nu=2}^{s}\left(f_{5}^{p_{0+1}}-e_{\nu}^{*}\right)^{\mu_{\nu}}
$$

with either $s=\left(5^{p_{0}+1}+1\right) / 2, \mu_{1}=1, \mu_{2}=\cdots=\mu_{s}=2$ or $s=\left(5^{p_{0}+1}-1\right) / 2, \mu_{1}=3, \mu_{2}=\cdots$ $=\mu_{s}=2$ or $s=\left(5^{p_{0}+1}-1\right) / 2, \mu_{1}=1, \mu_{2}=\cdots=\mu_{s-1}=2, \mu_{s}=4$.

Proof of Lemma 3. We abbreviate $5^{p_{0}}$ as n_{0}. Let us put $f_{n_{0}}-e_{1}=S^{2}$ and $f_{5 n_{0}}-e_{1} *=V^{2}$. Then as in the proof of Lemma 1 there is a constant α_{1} for which

$$
\begin{aligned}
\bar{N}\left(r, \alpha_{1}, S\right) & \leqq \frac{1}{2} N\left(r, \alpha_{1}, S\right) \leqq \frac{1}{2} m(r, S) \\
\alpha_{1} \neq 0, \pm \sqrt{e_{\nu}-e_{1}} & \left(\nu=2,3, \cdots,\left(n_{0}+1\right) / 2\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
& (1+o(1)) n_{0} m(r, S) \\
& \begin{aligned}
& \leqq \bar{N}(r, 0, S)+ \sum_{\nu=2}^{\left(n_{0}+1\right) / 2}\left\{\bar{N}\left(r, \sqrt{e_{\nu}-e_{1}}, S\right)+\bar{N}\left(r, \sqrt{e_{\nu}-e_{1}}, S\right)\right\} \\
&+\bar{N}\left(r, \alpha_{1}, S\right) \\
& \leqq \bar{N}(r, 0, V)+\sum_{\nu=2}^{s}\left\{\bar{N}\left(r, \sqrt{e_{\nu}{ }^{*}-e_{1}{ }^{*}}, V\right)+\bar{N}\left(r,-\sqrt{e_{\nu}{ }^{*}-e_{1}^{*}}, V\right)\right\} \\
&+\frac{1}{2} m(r, S)
\end{aligned} \\
& \leqq(2 s-1) m(r, V)+\frac{1}{2} m(r, S) .
\end{aligned}
$$

By $n_{0} m(r, S) \sim 5 n_{0} m(r, V)$

$$
s \geqq \frac{5 n_{0}-1}{2}-\frac{1}{4} .
$$

Thus

$$
s \geqq \frac{5 n_{0}-1}{2} .
$$

On the other hand we easily have

$$
s \leqq \frac{5 n_{0}+1}{2} \equiv s_{1}
$$

If $s=s_{1}$, then $\mu_{1}=1, \mu_{2}=\cdots=\mu_{s}=2$. If $s=s_{1}-1$, then either $\mu_{1}=3, \mu_{2}=\cdots=\mu_{s}=2$ or $\mu_{1}=1, \mu_{2}=\cdots=\mu_{s-1}=2, \mu_{s}=4$. This is just the desired result.

Next we shall prove Lemma 1. Assume inductively that Lemma 1 holds for $p-1$. We abbreviate 5^{p} as n. By Lemma 3 we have

$$
\begin{aligned}
& A_{n}{ }^{1 / 2}\left\{V^{\mu_{1}} \prod_{\nu=2}^{s}\left(V^{2}-e_{\nu}{ }^{*}+e_{1}^{*}\right)^{\mu_{\nu} / 2}+\left(\frac{A_{3}}{A_{n}}\right)^{1 / 2} C_{1}\right\} \\
& \quad=A_{n}^{1 / 2}\left(V-\alpha_{1}{ }^{*}\right)^{l_{1}} \prod_{\jmath=2}^{t}\left(V-\alpha_{\jmath}{ }^{*}\right)^{2 \lambda_{\jmath}}
\end{aligned}
$$

with $f_{n}-e_{1}{ }^{*}=V^{2}$ and with odd l_{1} and $\alpha_{j}^{*} \neq 0$, since

$$
T\left(T^{2}-w_{2}+w_{1}\right)+C_{1}=M^{2} .
$$

Now we put $V=\alpha_{1}{ }^{*} x$. Then

$$
\begin{aligned}
X(x) & \equiv x^{\mu_{1}} \prod_{\nu=2}^{s}\left(x^{2}-\delta_{\nu}\right)^{\mu_{\nu / 2}} \\
& =(x-1)^{l_{1}} \prod_{j=2}^{t}\left(x-\varepsilon_{j}\right)^{2 \lambda_{j}}-D \\
& \equiv(x-1) Q(x)^{2}-D .
\end{aligned}
$$

Here

$$
D=\frac{A_{3^{1 / 2}} C_{1}}{A_{n}^{1 / 2} \alpha_{1}^{* n}} \neq 0 .
$$

Since $-X(-x)=X(x)$, we have

$$
\begin{aligned}
X(x) & =(x-1) Q(x)^{2}-D \\
& =(x+1) P(x)^{2}+D .
\end{aligned}
$$

Thus by Lemma $2 X(x)$ reduces to the Chebyshev polynomial $T_{n}(x)$. Hence $X(x)$ must have the following form:

$$
\begin{gathered}
x \prod_{\nu=2}^{(n+1) / 2}\left(x^{2}-\delta_{\nu}\right) \\
\delta_{\nu} \neq 0, \quad \delta_{\nu} \neq \delta_{\mu}(\nu \neq \mu)
\end{gathered}
$$

and

$$
D=-\frac{1}{2^{n-1}} .
$$

Now returning back to V and then to f_{n} we have

$$
\begin{gathered}
F(z)-b=A_{n}\left(f_{n}-e_{1}^{*}\right) \prod_{\nu=2}^{(n+1)^{\prime 2}}\left(f_{n}-e_{\nu}^{*}\right)^{2}, \\
e_{\nu}^{*} \neq e_{\mu}{ }^{*} \quad \text { for } \quad \nu \neq \mu .
\end{gathered}
$$

In order to complete the proof of Lemma 1 we should consider the case f_{5}. Then

$$
\begin{aligned}
F-b= & A_{2}\left(f_{2}-w_{0}\right)^{2}=A_{3}\left(f_{3}-w_{1}\right)\left(f_{3}-w_{2}\right)^{2} \\
= & A_{5}\left(f_{5}-e_{1}\right)^{\mu_{1}}\left(f_{5}-e_{2}\right)^{\mu_{2}}\left(f_{5}-e_{3}\right)^{\mu_{3}}, \\
& \sum_{j=1}^{3} \mu_{j}=5, \quad \mu_{1}: \text { odd, } \quad \mu_{2}, \mu_{3}: \text { even. }
\end{aligned}
$$

If $\mu_{1}=1, \mu_{2}=\mu_{3}=2$, there is nothing to prove. Hence there remain two cases:
or

$$
\mu_{1}=3, \quad \mu_{2}=2, \quad \mu_{3}=0
$$

$$
\mu_{1}=1, \quad \mu_{2}=4, \quad \mu_{3}=0 .
$$

Let us put $f_{3}-w_{1}=T^{2}$ and $f_{5}-e_{1}=S^{2}$. Then

$$
\begin{aligned}
& A_{3}^{1 / 2} T\left(T^{2}-w_{2}+w_{1}\right) \\
& \quad=A_{5}^{1 / 2} S^{\mu_{1}}\left(S^{2}-e_{2}+e_{1}\right)^{\mu_{2} / 2}
\end{aligned}
$$

Since there is a constant $\alpha_{11}\left(\neq 0, \pm \sqrt{w_{2}-w_{1}}\right)$ such that

$$
\bar{N}\left(r, \alpha_{11}, T\right) \leqq \frac{1}{2} N\left(r, \alpha_{11}, T\right) \leqq \frac{1}{2} m(r, T) .
$$

Hence

$$
\begin{aligned}
&(1+o(1)) 3 m(r, T) \leqq \leqq \bar{N}(r, 0, T)+\bar{N}\left\{r, \sqrt{w_{2}-w_{1}}, T\right) \\
&+ \bar{N}\left(r,-\sqrt{w_{2}-w_{1}}, T\right)+\bar{N}\left(r, \alpha_{11}, T\right) \\
& \leqq \bar{N}(r, 0, S)+\bar{N}\left(r, \sqrt{e_{2}-e_{1}}, S\right)+\bar{N}\left(r,-\sqrt{e_{2}-e_{1}}, S\right) \\
&+\frac{1}{2} m(r, T) \\
& \leqq 3 m(r, S)+ \frac{1}{2} m(r, T)
\end{aligned}
$$

Evidently $3 m(r, T) \sim 5 m(r, S)$. Hence

$$
3-\frac{1}{2} \leqq \frac{9}{5},
$$

which is absurd. Thus by induction Lemma 1 holds.
Now we can proceed similarly as in Theorem 1.
The following cases give the same result as in Theorem 2.
i) $m=2,3,4,7^{\jmath}(\jmath=1,2, \cdots)$,
ii) $m=2,3,4,11^{j}(\jmath=1,2, \cdots)$,
iii) $m=2^{s}(s=1, \cdots, p \geqq 2), 3, q^{\jmath}(\jmath=1,2, \cdots)$

$$
q<3 \cdot 2^{p}, \quad(q, 6)=1
$$

iv) $m=2^{s}(s=1, \cdots, p \geqq 2), 3,5, \quad q^{\rho}(\jmath=1,2, \cdots)$

$$
q<15 \cdot 2^{p}, \quad(q, 30)=1,
$$

v) $m=2^{s}(s=1, \cdots, p \geqq 2), 3,7, \quad q^{\jmath}(\jmath=1,2, \cdots)$

$$
q<21 \cdot 2^{p}, \quad(q, 42)=1
$$

vi) $m=2^{s}(s=1, \cdots, p \geqq 2), 3,11, \quad q^{3}(\jmath=1,2, \cdots)$

$$
q<33 \cdot 2^{p}, \quad(q, 66)=1
$$

Bibliography

[1] Ozawa, M., On a characterization of the exponential function and the cosine function by factorization. Kodai Math. J. 1 (1978), 45-74.

Department of Mathematics
Tokyo Institute of Technology

