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INFINITESIMAL AUTOMORPHISMS ON THE
COTANGENT BUNDLE

By KAM-PING MOK

§1. Introduction.

Let M be an n-dimensional differentiable manifold of class C*, TM its tangent
bundle and T*M its cotangent bundle. The problem of determining infinitesimal
affine transformations and infinitesimal isometries on TM has been considered by
several authors, including Yano and Kobayashi [9], Tanno [5, 6], Sato [4], Ya-
namoto [7] and Mok [1].

Starting from a torsion-free affine connection V on M, Patterson and Walker
[3] have shown how to construct a pseudo-Riemannian metric VX on T*M, which
they called the Riemann extension of V to 7*M. In [10], Yano and Patterson
have defined the complete lift V¢ of ¥V to T*M to be the Riemannian connection
of the metric V&,

In this paper, we shall use the method of adapted frames to determine the
most general infinitesimal affine transformation on (7T*M, V°) and also the most
general infinitesimal isometry on (T*M, V®). It is interesting to note that the
structure of these infinitesimal automorphisms on 7*M are quite similar to the
structure of their counterparts on TM.

§ 2. Preliminaries.

In this section, we shall summarize all the basic definitions and results that
are needed later. Most of them are well-known, and details can be found in
Yano [8] and Yano and Patterson [10]. Indices a, b, ¢, -+ ; h, 1, 7, --- have range

in {1, -, n}, while indices A4, B, C, - ; 2, p, v, --- have range in {1, -, n;
n=+1, ---, 2n}. We put 7=n-+1. Summation over repeated indices is always
implied.

Coordinate systems in M are denoted by (U, x*), where U is the coordinate
neighbourhood and x* the coordinate functions. Components in (U, x*) of geome-
tric objects on M will be referred to simply as components. We denote the

partial differentiation % by 0,.

Let V be an affine connection on M with components /™%. Its covariant dif-
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ferentiation will again be denoted by the same symbol V. The curvature tensor
R of V have components R,;”. We shall assume throughout the paper that V
is torsion-free.

A vector field X on M with components X* is an infinitesimal affine trans-
Jormation of V if

(2.1) 0,0, X"+ X0, =150, X" +1"2:0,X*+1"0,X*=0.
The left hand side of (2.1) are the components
(2.2) Ixr;'i:V]VlX”—l—Rkﬁth

of the Lie derivative .LxV of V with respect to X. The Lie derivative LxR of
the curvature tensor R is given by

(23) -EXRk]ih:XavaRkjih—Rk;zavaXh+Rajihkaa+RkalthXa+Rkjahsza-
It is known that
(2.4) LxRyji" =N Lx =N, Ly +T8 L.

Hence, £yR=0 if X is an infinitesimal affine transformation.
Let g be a pseudo-Riemannian metric on M with components g;;. As usual,

{]h i} is the Christoffel symbol of g,; and [g’*] is the inverse of the matrix

[g;i]. A vector field X on M with components X* is an infinitesimal isometry
on (M, g) if

(2.5) X%040g,it8a;0: X%+ g0:0,X*=0.

The left hand side of (2.5) are the components Lyg;; of the Lie derivative Lxg
of g with respect to X. In terms of the covariant differentiation in (M, g), we
have

(26) Ingz:ga;sza—l_gazv]Xa .

It is also known that
h 1 ..
(27) -L,X{] 1}:?g (VJInga+vz-[Xg]a—va~Exgji).

Thus an infinitesimal isometry is an infinitesimal affine transformation with
respect to the Riemannian connection of g.

We shall be using the following identities for a torsion-free affine connection
Y on M:
(28) Rkjih‘f‘Rjikh"‘Rikjh:O,

(2-9) kajilh+ijiklh+ViRkjlh:0;
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(2.10) ViV, XNV X" =R, " X% .

(2.8) and (2.9) are respectively Bianchi’'s first and second identity, while (2.10) is
the Ricci identity for a vector field with components X*,

Let n: T*M — M be the canonical projection of T*M onto M. The coor-
dinate system (U, x*) in M induces in a natural way a coordinate system
{x~W(U), (x*, pn)} in T*M, which we call the induced coordinate system. We
sometimes write p, as x* and (x*, p,) as (x4). Components in {z~%U), x4} of
geometric objects on 7*M will be referred to simply as components. We denote
—(—,j—ap—h— and %4— by 0;, 04 respectively.

Let B be a vector field, C a tensor of type (1, 1) and F a 1-form on M, and
suppose that their components are B", C; and F, respectively. They induce
vector fields B¢, yC and FY on T*M whose components are

@11) B | ﬁ?athl | re: | pf)c,: |RaE [Iffh |

B¢ is called the complete lift of B while FV the vertical lift of F. On the other
hand, we can prove that a (2, 0) tensor field A on M with components A*“
induces a vector field A* on T*M whose components are

@2.12) a | I’{f;:f;bip, |

For a torsion-free affine connection ¥V on M, its Riemann extension V¥ is a
pseudo-Riemannian metric on T*M whose components are

—2pp 07 0y ]

213) we [ oG
ji

Let V¢ be the complete lift of V, i.e., the Riemannian connection associated
with the metric V& It is known that the non-zero components I'4; of V° are

ﬁ@i:[,?iy ffizpa(ahr(fi—ajrﬁ—‘az["}n-i-ZF%bF?i) s

(2.14) N ] _ )
F?E:—Ffih: F"'Ll:_[’{u.-

§3. Adapted frames in T*M.

With the affine connection V given on M, we can introduce on each induced
coordinate neighbourhood 7= %U) of T*M a frame field which is very useful in
our computations. It is called the adapted frame on 7 (U) and consists of the
following 2n linearly independent vector fields {D;} ={D,, D;} on =z '(U):

0 0

0
GD D=ty Dr=v,
v 7
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In what follows, we shall often consider the components of tensors and affine
connections on T*M with respect to the adapted frame on = *(U). We call such
components the frame components to distinguish them from the ordinary com-
ponents of §2. By using (3.1), it is not difficult to show that the frame com-
ponents of the vector fields yC and FV are the same as the ordinary components,
namely

0 0
2 : , V. ,
3.2 rc [pic,:] F [Fh]
while the frame components of B® and A* are
Bh . Ahap
C. E 3 a
(33) B '[—prhBl]’ ax [ A0,

Similarly, the frame components of the Riemann extension VZ are easily seen
to be

(3.4) *: [640=] gﬂ_ gﬁ |

Let V¢ be the complete lift of V.~ It has been shown in Mok [2] that the
possibly non-zero frame components /%, of V¢ are

(35) f?l: 91', f?"i:paRhl;:a ’ f'?i':—]—’;h ’

and that the possibly non-zero frame components ﬁwz#” of the curvature tensor
R of V¢ are

Rkjih:Rk]ih » ﬁkjiE:pa(kahua-ijhika) ,

Rkﬁ’z:—Rkth; Rkjiﬁ:_ﬁjktﬁ:—Rhik]-

(3.6)

If X is a vector field on T*M with frame components )?”, it can be shown that
the frame components V¢X* of the covariant derivative VX of X are given by

(3.7) V§Xr=D (X + 1, X .

There are formulas analogous to (3.7) for tensor fields of other types.

§4. Decomposition of infinitesimal affine transformation.

Suppose X is an infinitesimal affine transformation on (7*M, V9. By (2.1),
its components X4 satisfy

(4.1) 000p XA+ XEo s — TE 0 XA+ T 500 XE+ T 505 XE=0,

where I'4; are the components of V given in (2.14).
Let us put (ACB)=(hj7) in (4.1). We get 0;0;X"=0 and so
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(4.2) Xr=Ahrap, 4 B

where A"%, B" are functions of x* only. It is easy to see that A"? and B" are
respectively the components of a (2, 0) tensor A and a vector field B on M.
If we put (ACB)=(hji) in (4.1) and use (4.2), we get

(4.3) 8,AM 4T, Are I Asr=0),

i.e.,, VA=0.
If we put (ACB)=(hji) in (4.1) and use (4.2), considering only those terms
not involving p,, we get

0,0:B"+B*0,I"—1I"%0,B*+1"}0,;B*+1"3,B°=0,
which is the condition for B to be an infinitesimal affine transformation.
Let us now put (ACB)=(hji) in (4.1) and use (4.2). We get
(4.4) 0;0;XF =T}, A +T'j, A" .
Hence, X* can be expressed in the form
(45) Xi=T}A"pspi+Eip+F,

where Ei, F, are functions of x" only.
h

B
Ellzpz_l_Fh

X—A*. By looking at its transformation law, it is easy to see that F, are the
h

B
. E.p.
vector field X—A*—FY. Guided by the form of the components of B® (cf. (2.11)),

we put Ei=—3,B'+Ci. Then [

It now follows that [ ] are the components of the vector field

components of a l-form F on M. Thus, [ ] are the components of the

C?p ] are the components of the vector field
h

X—A*—FV—B°. By looking at its transformation law, we see that Cj are the
components of a (1, 1) tensor C on M and that

X—A*—F"—B°=yC.
Let us obtain further information on C. We put (ACB)=(hji), use (4.2) and
(4.5) and consider only those terms not involving p,. What we get is
— L, +V,C=0.
As B is an infinitesimal affine transformation, we see that YC=0.

We summarize what we obtain so far in

PROPOSITION 4.1. Let V¢ be the complete lift of a torszan;free affine connec-
ton V¥ on M to T*M. An infimtessmal affine transformation X on (T*M, V¢) can
be expressed uniquely in the form
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X=A*+B°+yC+F7,

where A is a (2, 0) tensor field on M satisfying VA=0,
B 1s an infinitesymal affine transformation on (M, V),
Cis a (1, 1) tensor field on M satisfying NC=0

and F s a 1-form on M.

We can obtain further conditions on A, B, C, F by considering terms involv-
ing p, after putting (ACB)=(hji) in (4.1) and so on. In theory, by carrying this
process to the end, we should get the general form of an infinitesimal affine
transformation on (7*M, V). But in practice, this process becomes more and
more involved and tends to be unmanageable. However, having succeeded in
decomposing an infinitesimal affine transformation as the sum of vector fields,
we now switch to the adapted frames.

§5. Infinitesimal affine transformations on (7T*M, V°).

Let X be an infinitesimal affine transfoNrmation on (T*M, V¢ and suppose
that it is expressed uniquely in the form X=A*+B°+yC+F" as in Proposition
4.1. By (3.2) and (3.3), the frame components X” of X are given by

S Ahapa+Bh
©1) [x ]—[ p{(Ci—V,BY)+F, ] )

In what follows, we shall compute the frame components .L‘;zfﬁﬂ of .£3V° accord-
ing to (cf. (2.2))

(5.2) L3I, =X+ R, X .

By equating .E,;fﬁﬂ to zero, we then get the conditions on A, B, C, F for X to
be an infinitesimal affine transformation. We do our computations in stages.

First, the frame components VZ)?“ of V°X can be calculated by using (5.1),
(35) and (3.7). The expressions thus obtained, after simplification by the condi-
tions on A, B, C in Proposition 4.1, become

VeXr=v,B",

VeXr=AM,
(5.3 o
V?Xh:papthbLaAbc+paRhibaBb+viFh ’
VeXi=Ci—V,B".

We remark that to obtain the coefficient of p, in V?)?’Z, we have to use the Ricci
identity (2.10) for the vector field B.

Next, the frame components of VfVﬁ)?” can be calculated by using (5.3) and
(3.5). The expressions thus obtained, after simplification by the conditions on
A, B, C in Proposition 4.1, become
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(5.4) VVOX =Y,V B" —po Ry, " A,

VOVeXr=VIVe K =TVIVIX =0,

VIV K = papeT R A+ Pal Vi Rus® BY)+ Ry * Vi B+ RV, B

— Ry, CLI+ VL Fy,

VoV X = =T,V B4 po Ry, A%

VOVOX = po(R o AP+ R 1y, A¥)+ Ry s’ B,

VeVIX"=0.

Finally, the frame components of .L’,zfi,, can be calculated by using (5.2),
(5.4), (3.6)?and (5.1). The expressions thus obtained, after simplifications by the
conditionsjon A, B, C in Proposition 4.1, become

(5.5) Ll =pa(Ryji" A — Ry, )" A)

,..C\"'f"]’zi

Il

‘ DaPe(VoRpa,* —V Ry, *) A%
A Ppal LRy,  +(Ryo ! Co— Ry, *Co) 1+, F o+ Ry, Fy
LT =Pa(Rup, A% — Ry A®?)
L2l =Ppa(Ryp® AV — Ry’ A",

Lil'=0.

i

Let us analyse the conditions we get when we equate (5.5) to zero. Apart
from the expression for L3I'%, the rest of (5.5) when equated to zero is equi-

valent to
(5.6) ijihAba:Rib]aAbh:Rb”aAhb.

Let us assume (5.6) and try to simplify the expression for ,.L’gfgi-. We first write
Papc<vahz;u‘Vijma)Abc as

1
?papc[(vah l]a ——ijbiha>Abc+(vah uc_ijbihc)Aba]

1
= ‘é‘papc[(vhRibja+vinhJa+ijbiha)Abc

H(VnRip, + ViR, + Vi Ry YA ],

using the Bianchi’s second identity (2.9). We then use (5.6) to transform it into
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1
- ?papc[(vhRibJu+vinh]a+ijbiha)Abc
+<VILijia+viijha+Vthbla)Abc:|
1
= E‘Pa Pc(vnRjiba +Vithba +VjRinoa)Abc .

Thus, 1)11;)6(‘7,,1?,”,“*V,]’?,,ih“)fl"“:0.~ Next, we note that LzR;,,°=0 by the
remark following (2.4). Hence, £:I'% reduces to

‘Cfffl:pa(Rhwag—sz]aCz)_‘_vjviFh+Rhwab .

It follows that the result of equating (5.5) to zero is equivalent to (5.6) and
(57) Rh”bc‘,f:RbuaC,bL » V,ViFn%-Rh”be:O .

Thus, the conditions in Proposition 4.1 together with (5.6) and (5.7) determine
the most general infinitesimal affine transformation on (7*M, V¢). We state this
as our main result in

THEOREM 5.1. Let V¢ be the complete lift of a lorsion-free affine connection
VonM to T*M. The most general nfinitesimal affine transformation X on
(T*M, N°) can be expressed umquely in the form

(5.8) X=A*+BC+yC+F",
where A is a (2, 0) tensor field on M satisfying
YA=0 , ijinAba:Rib]aAbh___Rb”aAhb ,

B is an infinitesimal affine transformation on (M, V),
Cis a (1, 1) tensor field on M satisfying

VC=0 ’ Rhwbcg:RbuaClbz )
and F is a 1-form satisfying V,V.F,+R;.,’F,=0.

§ 6. Infinitesimal isometries on (T*M, VF).

Let us return to the Riemann extension V% of the affine connection V and
determine its infinitesimal isometries. Thus, let X be an infinitesimal isometry
on (T*M, V®). In particular, X is an infinitesimal affine transformation on (T*M,
V) (cf. remark following (2.7)) and according to Theorem 5.1, it can be expressed
uniquely in the form

X=A*+BC+7C+F”

with A, B, C, F satisfying the conditions listed in Theorem 5.1. What we now
do is to compute the frame components LG, of L3V according to (cf. (2.6))
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(6.1) L£362,=G VX +G V5 X

and then equate the expressions thus obtained to zero.

On substituting the frame components G and VZX” listed in (3.4) and (5.3)
into (6.1) and simplifying the resulting expressions by the conditions in Theorem
5.1, we get the following frame components for L£3G;,:

L%G ji=pap R jp.* + Ry, A +V,F,+V,F,,
6.2) IX-G;;Z.['}GUZC; ,
L3Gi=AT+ AV,

We now look at (6.2) in greater detail. First, write pyp.(R,;,*+R,%)A% as

1
?papc[(ijta +Ribja)Abc+(ijtc+ Rib;c)Aba]

1
:gpapc[(lena+Ribja)Abc+(Rbua +ijza)Abc] .

Thus pop(Rjp.%+Rip,*)A*=0. Hence, the infinitesimal transformation in Theorem
5.1 is an infinitesimal isometry iff

(6.3) A7+ Av=0, Ci=0 and V,F,+V,F,;=0.

Next, we note that (6.3) implies some of the conditions in Theorem 5.1. In fact,
the last equality in

(5.6) Ry ;" A" =R,;,,*A**=R,, 2 A"

is a consequence of (6.3),. On the other hand (6.3); implies
(5.7, VN F Ry, Fy=0

because of the following

LEMMA 6.1. Let VN be a torsion-free affine connection and F a 1-form on M.
Let H;;=N,;F,+;F,, F, being the components of F. Then

1
VjviFh—'_Rhtijb: —E(VJHh?."_viHhJ_vthi) .

The proof of Lemma 6.1 is a direct calculation, using the following Ricci
identity for a 1-form on Af:

V,VhFl—VthFiz—ijbe.
Finally, we summarize the result of this section in

THEOREM 6.2. Let V¥ be the Riemann extension of a torsion-ree affine con-
nection N on M to T*M. The most general wnfimtesumal sometry X on (T*M, V%)
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can be expressed umiquely in the form

where

and

(1]

L2]

£8]
L9]

[10]

X=A*4+BC+Fv
A is a (2, 0) tensor field on M satisfying
Aji‘l‘A“:O ) VA:() y ijihAba:RwlaAbh »

B is an infinitesimal affine transformation on (M, V),
F is a 1-form on M satisfying V,F,+V,F;=0.
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