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Abstract

Let M be a compact hypersurface in the Euclidean space with cohomogeneity
2. We show that if the scalar curvature is constant, then M is a standard sphere. This
gives a partial positive answer to a problem presented by Yau.

1. Introduction

In the famous problem section of the book [14], Yau posed the following
problem:

Yau’s proBLEM. Classify compact hypersurfaces in R which have
constant scalar curvature. Are they isometric to S¥? If they are convex, then
the answer is yes and was proved by Cheng-Yau.

In 1988, Ros [10] solved this problem affirmatively when the hypersurfaces
are embedded. So there remains the case when the hypersurfaces are immersed.
This situation is very similar to the Hopf’s conjecture about constant mean
curvature hypersurfaces. Hopf’s conjecture asks whether compact hypersurfaces
M in RM*! which have constant mean curvature are only round spheres. When
the hypersurfaces are embedded, Aleksandrov [1] proved M is a sphere in 1958.
25 years later, Hsiang-Teng-Yu [5] constructed nonspherical compact immersed
hypersurfaces with constant mean curvature of dimension N > 3 and solved the
conjecture negatively (soon after this, Wente [13] constructed an immersed torus
with constant mean curvature in R®). The technic they used in [5] is the method
of equivariant differential geometry. They assume a large isometry group acts
on M, and reduce the constant mean curvature equation to a system of ordinary
differential equations.
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It is natural to try to construct immersed compact hypersurfaces with
constant scalar curvature by using the same method. But unfortunately, we
cannot expect such an example to exist because the following theorem holds
which is the main result of this paper.

THEOREM 1.1. Let M be a generalized rotational closed hypersurface in the
Euclidean space with cohomogeneity 2. If the scalar curvature is constant, then M
is a standard sphere.

To end this introduction we cite a recent paper of Cheng [2] which proved
that Yau’s conjecture is true in the class of compact oriented locally conformally
flat hypersurfaces in R"*!.

The author would like to express his hearty thanks to the referee for in-
dicating several mistakes.

2. Preliminaries

Let (G,®,R""") be an orthogonal transformation group with codimension
two principal orbit type. They are classified completely by Hsiang-Lawson [4].
They are exactly those isotropy representations of symmetric spaces of rank 2.
Following [3] we give some basic facts.

(i) There exists a 2-dimensional linear subspace, R?, which is the fixed point
of a chosen principal isotropy subgroup H of (G,R""!) and intersects
every G-orbit perpendicularly.

(ii) The Weyl group, W = N(H,G)/H, acts on R* as a group generated by
reflections and R""!/G ~ R?/W. Therefore, the orbit space R""'/G
can be identified with the Weyl chamber of (W,R?) and the orbital
metric is flat, namely, a linear cone of angle n/d, d =1,2,3,4 or 6.

Let y = y(s) = (x(s), y(s)) be a curve in R?/W (s: arc-length). Let M, be a
G-invariant hypersurface generated by y. We call this hypersurface a generalized
rotational hypersurface with cohomogeneity 2. We have the following lemma [5]
which reduce the computation of the mean curvature of M, to that of y in R?/W.

LemMma 2.1.

0
(2.1) nH =x'y" — y'x" —

log ¢,
ov; log e

where ¢(x,y) is the volume of the principal orbit through (x,y), & is the unit

0
normal vector of y in R*/W such that {y' &} has a positive orientaition, and — is
0 0 v
the directional derivative in the direction &, that is, — = —y' — +x'—. H is the
Ove Ox Jy

mean curvature of M, in the direction v which projécts to &.

To compute the scalar curvature, we use the following variational formula of
Reilly [9] (see also [11]).
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LEMMA 2.2. Let M be an oriented hypersurface in R™™. Let v be a
unit normal vector field normal to M and let V = fv be a vector field along M
for some smooth function f on M. Let ¥, : M — R"™" be a variation of M with
Yo(x) =x for xe M and d\¥,(x)/dt|,_, = V(x), for all xe M. Then

(2.2) d J nH dv = —J S dv,
=0 I M M

dr|

where H and S are the mean curvature and the scalar curvature of M respectively.
Now we have the following useful lemma.

LemMa 2.3.  The scalar curvature S of M, is given by
o 2 0 e
(2.3) S=-2(xy" = yx")s—logp+|-—logep| +—-— loge.
ove ove ov

¢

Proof. Let f(s) be a function on y with compact support. We can natu-
rally consider f as a function on M,. Set y,(s) = (X(s,1), ¥(s,1)) = (x(s), ¥(s)) +
tf (s)(—y'(s),x'(s)) and consider a Glnvarlant hypersurface M, generated by
P, Thus we have a variation W,: M — R""! satisfying ‘PO( ) =M, and
d¥,/dt|,_, = fv. Note that s is not an arclength parameter except for ¢ = 0.
From Lemma 2.1 (or from the first variational formula of area) we obtain

Xy -y 1 00
(2.4) nH(t) = T J_}/z}s/z NS ( Y% + 5 o log o,
where H(t) is the mean curvature of M, and we used “’” for differentiation with
respect to s. Therefore
(2.5) 4 J nH(t) dv = d {nH()p(y,)} ds
. dil o) _ddl‘, P\V:

d

X'y — y'x"
t(){x +—/2}3/2 (p

1l N

Tt

=0
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because s is the arclength of y. Now we compute each terms of the right hand

side of (2.5) separately. By using (x ) + () =1, Xx"+y'y" =0 we obtain
d

2. “ 111 / "

06 G| &)
_ d =1 d = d =/ = =/ d =
_(dtro )y +x(dt[0y dtzoy o r:ox
=~y + ()" = () %"+ (")

(2.7) E {)_Clz + )—}/2} _ —2f(x’y" o y/x//).

t=0

Therefore by using integration by parts we get

(2.8)  The first term of R.H.S. of (2.5)
= [ A+ 0 )
F = 2 Y d
= [ 216+ 0" o= £ 0+ 9,0

+3f( 1o y/x//)Z(p] ds.
(2.9) The 2nd term of R.H.S. of (2.5)

=| —f(xy"—y'x ”); log ¢ - ¢ ds
y

=| S =y x")(='o+Xp,) ds.
Y

(2.10) The 3rd term of R.H.S. of (2.5)

= {(fx) — logp+ () i log(p}wds

y

= [ LX) o+ (") 0, } s

(2.11)  The 4th term of R.H.S. of (2.5)
0 0 0 d
— /_ _ /_ . l e = =
L (y ox 5y) (6x B z:ox+ _0y>¢ds

0 0 0 0
_ /__ /_ _ . i I . !
—L<y . X éy)( P log ¢ - fy +6y log ¢ - fx >(pds

9 og0n &
o 2,
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) 07 2 0°
Jy —f'(yl) wloggo—f-(x’) Wl()gﬁ”

2

)
1.,/
+2 f(xy)axay

log (p}¢ ds.

Combining (2.5), (2.8),..., and (2.11), by an easy calculation, we obtain

d
(212) &

. JM nH(t) dv

2
= J [—ZJ‘{(X”)2 + (" e+ 3 (Y = X" o+ f{—(y’)z% log ¢
bV

0? 0?
- (X’)ZW log ¢ + 2(x"y") axdy log (P}(P —f - (nH)*- 4 ds

A2 2
1o 112 n2 ¢ /2a
—L [f(xy = y'x") ¢+f{—(y) 2 log ¢ — (x) 2 log ¢

2

3
+2(x"y")

2
oxdy log ¢}¢—f-(nH) -(p] ds.

Comparing this equation with (2.2), we get

(213)  S=(nH)*— (x"y" — y'x")?
2 2 2

2a 1. /2a
—loggp—2 1 — log ¢.
2 log v (xy)axay og ¢+ (x') 57 08¢

Let 4y =x"y" — y'x", Z2,...,4, be the principal curvatures of M,. From (2.1)
we get

+ (")

(2.14) }v2+---+/1n:—ilog(p.
an

Plug this into (2.13) we obtain

K 2
215 S= <X'y" - y'x" - 3 log (p) — (" = y'x")?

2 2 2

0 0 0
?—— log ¢ — 2(xy') = log ¢ + (X’)Z@ log ¢.

+ ) 0x2 0xdy

a a 2 2
:_2 ///_ ///_1 _1 _1
(xy yX)avi 0gw+(avé 0g<ﬂ> +av§ og ¢,

which proves Lemma 2.3. ]
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3. Proof

Suppose M, is a generalized rotational closed immersed hypersurface of
cohomogeneity 2 with constant scalar curvature S. Since M, is compact, it is
1.1 1

easy to see that S >0. Let 1y =x"y"— y'x" 1,...,2, be the principal cur-
vatures of M,. From (2.1) we get

0
.1 o+ + Ay =—= log .
(3.1) 2444 e og ¢
From Lemma 2.3, by using S =23, ;44 we obtain
62
(3.2) 3+t Ay =——— logo.
6\/5

2
If there is a point such that 6% log ¢ = 0, by (2.3) we obtain S = % log ¢ at the
¢ v

¢
point. From (3.2) we get S <0, which contradicts with the assumption S > 0.
Thus we have proved the following lemma.

LemMma 3.1. If M, is a compact immersed hypersurface with constant scalar

0 .
curvature S, then i log ¢ never vanishes.
Ve

. .. 0 .
We examine the condition e log ¢ # 0 for 14 types of cohomogeneity 2
¢

orthogonal transformation groups (G,R™!) [4], separately.

1) (G,R™!) = (SO(n—1),R").

It is easy to see that a compact SO(n — l)-invariant hypersurface with
constant scalar curvature is a round sphere (see, for example, [6]).

2) (G,R"™1) = (SO(m) x SO(I),R™).

Since ¢ = cx™ ' y'~", we have
0 y' x'
33 — 1 = m-DN=+{-1=
(3-3) ov; g (m = 1)~ +( )5

sin o COS o
=—(m-1)—+ (-1
m =) (- D=,

where we set (x/,y') = (cosa,sina). Now we put y/x=tan . Then 0< 0

0
< z/2. From (3.3) the condition o log 9 = 0 becomes
¢

(3.4) C:(l-=1)cosacost— (m—1)sinasin=0.

It is easy to see that each connected component of C is a graph over #-axis and
each connected component of C is 7 apart in the vertical direction (see Figure
1). If y has a self-intersection y(a) = y(b), then the total change of o from y(a)
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to p(b) is greater than or equal to m. Therefore y must intersect with some

connected component of C (see Figure 1). This contradicts with Lemma 3.1.
3) (G, ®) = (SO(3),S%p; — 1), (SU(3), Ad), (Sp(3), A*v3 — 1), or (Fy,1).
Then ¢ = ¢{y(3x2/4 — y2/4)}* for k = 1,2,4,8, respectively.

0 . 6x 1 2y
(35) Eavé logfﬂ:—Slna-m—f—cosa-——cosa-m.
The condition 6?} log ¢ = 0 becomes
¢
(3.6) C :cos(o+20) =0.

So the rest of the proof is the same as the case 2).

4) (G, @) = (SO(5),4d),  (SO(2) x SO(m),p, ® p,,),  (S(U(2) x U(m)),
[ty ®c ttylw): (Sp(2) x Sp(m),v-2 ®uv,), (U(S),[Auslg) or (U(1) x Spin(10),
10 ®cA[Ty). o

In this case ¢ = c(xy)"(x2 — y2)* for some meN and some k > 1. The

.\ 0
condition — log ¢ = 0 becomes
Ve

(3.7) C : sin 0{(m + 2k) cos® 0 — m sin? 0} sin «
— cos O{m cos> 0 — (m + 2k) sin® 0} cos « = 0.
Set
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(3.8) 7(0,0) = sin 0{(m + 2k) cos’> 0 — m sin® 0} sin o
— cos O{m cos’> 0 — (m + 2k) sin® 0} cos a.
Then
(3.9) fy, = sin 0 (m + 2k) cos®> & — m sin® 0} cos o
+ cos Of{m cos® O — (m + 2k) sin® 0} sin «.

Suppose that f = f, =0. Since (sin a, —cos ), (cos a,sin o) are linearly inde-
pendent, we obtain

(3.10) sin O((m + 2k) cos®> @ — m sin® §) = cos O(m cos’ 0 — (m + 2k) sin* §) = 0.

Since 0<6<n/2, we obtain (m+2k)cos?0—msin®>0=0, mcos?0—
(m+ 2k) sin® @ = 0. Thus m+ 2k =m. This contradicts with the assumption
k = 1. Therefore each connected component of C is a graph over 0-axis and is 7
apart in the vertical direction. The rest of the proof is the same as 2).

5) (G, ®) = (G, Ad) or (SO(4),o—3).

In this case ¢ =c{xy(3x/4— y2/4)(x2/4 —3y2/4)}* for k=2,1. The

.. 0
condition — log ¢ = 0 becomes
5\}5

(3.11) C: {5 cos* 0 — 10 cos® 0 sin® 0 + sin* 0} sin 0 sin o
— {cos* 0 — 10 cos? 0 sin* O + 5 sin* 0} cos O cos o = 0.

It is easy to see that each connected component of C is also a graph over #-axis,
and this finishes the proof of Theorem 1.1.

Remarks.

1. By using Lemma 2.3, we can compute constant scalar curvature equations
for generalized rotational hypersurfaces of cohomogeneity 2. By analyzing these
ODE systems we can construct noncompact complete hypersurfaces with constant
scalar curvature in the Euclidean spaces. We will discuss this in the future. See
[7] for the most easy case.

2. For construction of complete hypersurfaces with 0 scalar curvature, see
the works by Palmas [8] and Sato [12].
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