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A NOTE ON BOUNDARY REGULARITY OF SUBELLIPTIC
HARMONIC MAPS*

ZHEN-RONG ZHOU

Abstract

Let M =Q be a bounded domain of R™. Jost and Xu in [7] introduced the
subelliptic harmonic map from it and proved the regularity up to the boundary of
subelliptic harmonic maps into small balls supposing that the boundary of the domain is
noncharacteristic and smooth. In this note, we investigate the boundary regularity of
this kind of maps from Q with non-smooth and partial noncharacteristic boundary.

1. Introduction, main result

Let M and N be two Riemannian manifolds. A critical point in Sobolev
space H'(M,N) of the energy functional is called a (weakly) harmonic map.
Denote a geodesic ball with radius R and center p € N by Bg(p). Br(p) is said

to be small, if R < min{i i(p)} where x is a positive upper bound of the

2K’
sectional curvature of N and i(p) is the injective radius of p. For instance, any
ball of the Euclidean space is small, and so is any geodesic ball with radius less
than 7/2 in unit spheres. Hildebrandt et al. proved that harmonic maps into a
small ball are regular up to the boundary (see [6]).

Let M™ =Q be a bounded domain of R”. Jost and Xu in [7] intro-
duced the subelliptic harmonic map (see the next section), which is a variant
of the classical harmonic map, and proved the regularity up to the boundary
of subelliptic harmonic maps into small balls supposing that the boundary of
the domain is noncharacteristic and smooth. In this note, we investigate the
boundary regularity of this kind of maps from Q with non-smooth and partial
noncharacteristic boundary.

We call a vector v a outward normal to 0Q at x € 0Q, if there is an Euclidean
ball B with center xg, such that BNQ = {x} and v = k(xy — x) for some positive
number k. Apparently, if x is a smooth point of the boundary, v is the usual
outward normal vector.
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Let X ={X),..., Xy} be a family of Hormander’s vectors, and Ay be the
subLaplacian defined by X (see next section). Write the terms of the second
order of —Ay by >3, a,]% Let x € 0Q. If there exists a outward normal
vector v= (v',...,v,) at x to 0Q such that Sy agv'v/ >0, x is called a non-
characteristic point of 0Q with respect to X. The set of all noncharacteristic
points is denoted by Sj.

Our main theorem is

THEOREM. Suppose that u:Q — Br(p) = N is subelliptic harmonic, where
Bgr(p) is a small ball. If u=¢ on 0Q where ¢ e C*(QUS), Br(p)), then u is
continuous to Sj.

The plan of this paper is: in Section 2, we collect some useful definitions
and facts; in Section 3, we prove the main theorem. In the last two sections, we
proof two lemmas which are used in the proof of the main theorem.

2. Preliminaries

Let Q be an open domain in R”, X = (X1, X2,..., X),) be a family of C*
vector fields on Q. We call X, to be Homander’s vector fields if they satisfy the
following Hormander’s condition:

Xay .., X, together with their commutators up to a fixed length r span the
tangent space at each point of Q.

For any collection of vector fields X = (X,,a=1,...,k), we define an as-
sociated operator of second order as follows:
(1) Ay =) XX,

where, X is the adjoint operator of X, with respect to the Lebesgue’s measure.
If X satisfies Héormander’s condition, the operator Ay is hypeoelliptic, i.e. if Ayu
is smooth, then so is . In this case, the operator is called Homander’s operator,
or called a subelliptic Laplacian or a sub-Laplacian. In general, this is a de-
generated elliptic operator.

Let N be a Riemannian manifold with Riemannian metric g. Without loss
of generality, we assume that N is a submanifold of R" by Nash’s embedding
theorem. Define

2) M'YQR") ={u:Q—-R|uel’; Xuel’ a=1,... k}
and define M,”(Q,R") to be the closure of Cy(Q,R") in M'7(Q,R") with
respect to the norm

(3) iy, = L juf? dx + jﬂ S Xa” dx.
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(4) MY Q,N) :={ue M"?(QR") : u(Q) c N ae.}.
(5) M (Q,N) == {ue My *(Q,R") : u(Q) = N ae.}.
Let u be in M'(Q, N) whose coordinate representation is also denoted by u.

Define the energy density of u by

(6) e(u)(x) = %Z i (u(x)) Xou' (x) X1/ (x)

and the energy by E(u) = [ e(u) dx.
A critical point of the energy functional is called a subelliptic harmonic map.
The Euler-Lagrange equations of the energy functional reads (see [11])

(7) (u) =: ZX;XWI - Zl"iﬁchu"Xg_uk =0.

When N is the Euclidean line, the above system is linear, and its solutions are
called subelliptic functions. We have

LemMa 1. Suppose that Q<R" is a bounded domain. If ge
M'NL*(Q,R) satisfies

Axyg<0 in Q

8
®) g<0 on 0Q

Then, g <0 in Q.

Proof. Let g© =max(g,0). Then by hypothesis, g* € M}(Q,R). So we
can use it as a test function and obtain

) J Axg-g" dx = J X9t X,9" dx
Q Q

<0.

Hence we have X,g* =0 on Q for any a=1,2,...,ko. Hence [X,, X3]g" =
(X, Xp — XpX,)g™ =0, ([Xs, X5, Xo)gt = ([ Xy, Xp| X, — X, [Xo, Xp])gT =0,....
By Hormander’s condition we have Xg™ = 0 for any tangent vector field X on Q.
Therefore g™ = const. whence g+ =0 because g*|,, = 0. Q.E.D.

3. Proof of the main theorem

Let xo € 0Q. Denote f be a convex function over Br(p) = N with unique
minimum 0 at u(xp) € Bg(p). Such a function exists if Bg(p) is a small ball.
For example, we can take

1 —cos(y/x dist(u(xo), x))
Jx) =— cos(v/r dist(p, x))
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The proof of the convexity of f is arranged in the last section (see Lemma 3).
Note that dist?(p,x) is convex in regular ball Bg(p), but u(xp) is not its
minimum, and that dist(u(xo), x) has unique minimum 0 at u(x), but it may not

be convex in small ball Bg(p) because dist(u(xy), x) may be bigger than —— 5 \/_ If
we let x tend to zero, then f(x) tend to 4 (dist(u(x), x))%. Hence we call this
function the modified distance. Let ¢ be a bounded solution of the following
problem:

Ayg=0 in Q
(10) xd
g=fou on 0Q.

The solvability of this problem is proved in Section 4 (see Lemma 2). The chain
rule is (see [7] or [11])

(11) —Ax(fou)= Z Hess f(X,u, Xyu) — {grad f,(u)).

Because u is subelliptic harmonic and f is convex, we have —Ax(f ou) >0 by
the chain rule. So

(12) —Ax(fou—g)=0.
But (recall ¢ is the boundary value of u)
(13) (fou—gla=(od—fohla=0
which combined with Eq. (12) implies
(14) fou—g<0
in Q by Lemma 1. Hence we have
(15) 0= f(u(x)) —g(x)
S (u(x)) = f($(x0)) + f($(x0)) — g(x)
S (W(x)) = f($(x0)) + g(x0) — g(x)
= f((x)) + 9(x0) — 9(x)
because f(¢(xo)) = f(u(xo)) =0 by the definition of f. Hence we get
(16) f(u(x)) < g(x) — g(xo)

On the other hand, by Taylor’s expansion and the convexity of f (Lemma 3),
we have

(17) f(u(x)) :% Hess f(&)(h,h) where h = expu(m (u(x))
> 1JnP?
= 1) dist(u(x), u(x0))*
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where Hess f is the Hessian of f, 4 is the infimum of the smallest eigenvalue of
Hess /" on Br(p), and &€ By (u(xo)). So

(18) dist(u(), u(x0)) < /5 (9() — wlgn)).

If xy € S;, then g is continuous to xy by Lemma 2. Letting x tend to x,, we
have dist(u(x),u(xp)) — 0, since g(x) — g(xo) = f(u(xo)) = 0. Q.E.D.

4. Linear boundary valued problem

In this section, we solve the linear boundary valued problem which is used in
Section 3. We have

Lemma 2. Let Sy be the noncharacteristic part of the boundary of Q which
satisfies the exterior ball condition. Suppose that ¢ € C*(QU S, R). Then there
exists a bounded solution u to the following linear boundary valued problem:

Ayu=0 1in Q
u=4¢ on 0Q.

The solution u is smooth in Q and continuous to Sj.

(19)

Proof. Denote
(20)  Br(¢) = {ue M'(Q;N)|u—¢e M}(Q;N) and dist(u(x), p) < R}.
Let R < R’ <min{i(p),n/2+/ic}. Then, we have ([7]):
Let ue Br(¢p) satisfy E(u) = ve,glf,(qs) E(v). If ¢(Q) = Br(p),
then, u e %Br(4), and u is weakly subelliptic harmonic.

If N =R, the one dimensional Euclidean space, the above fact implies the
existence of bounded weak solutions of (19).

Because Ay is hypoelliptic, u is smooth in Q. In the following, we discuss
the boundary regularity of u. Let v =u — ¢. Then v solves the boundary valued
problem

(21) {Axl)z—Ax¢ in Q

v=20 on 0Q.
i ,
Write Ay as =33, 5 iai + 30 15 . Let x;€8) and let v= (v') be a

outward normal vector to dQ at x; such that Y a;v'v/ > 0. Let B,(xo) be the
Euclidean ball centered at xo such that B,(xo) NQ = x;, and that v = k(xo — x;)
for some positive number k. Let h(x) = e <=l — g=ko—x1I” where |x| denotes
the Euclidean norm of x. It is easily to check /(x) < 0 for all x e Q\{x;} and
h(x1) =0. Then we have




530 ZHEN-RONG ZHOU

(22)  —Axh(x) = <4k2 > ay(x] = x)(x] = x}) + lower terms of k) K=z’
(=1

> 2¢

where ¢ is a positive constant, if we let k large enough. Hence there is a
neighborhood U of x| such that —Ay/i(x) >¢>01in U. Let V=UNQ and
0V = BiUB,, where B; =0dQNAJV and By = 0V\B;. Then vz =0, hlz <0
and h|p, < —¢ for some small positive number ¢&. Choose a positive number
M large enough, we have (note that A¢ is bounded on QUS;, because
e C*(QUSI,R))
23 ~Ax(Mh +v) > McFAx¢p>0 inV

(Mh +v)<0 on JV.
By Lemma 1 and also noting # <0, we reach +v < —Mh = M|h|. Thus
(24) [o| < M|h| in V.

Because A(x) — h(x;) =0 as x — xj, we have v(x) — 0 =uv(x;). Therefore, v is
continuous at x; and hence u. Q.E.D.

5. Convexity of the modified distance

Let N" be a Riemannian manifold, the sectional curvature of which is
bounded above by a positive number x. Let pe N and Bgr(p) be a regular
ball. For a fixed point g € Br(p), define

o 1 —cos(y/x dist(q, x))
/() = i cos(y/x dist(p, x))

In this section, we prove the following lemma:

LemMA 3. Hess f(v,v) > Alv|* on Br(p), where 1 is a positive number, v
is any tangent vector at the point under consideration.

Proof. The following calculation is at xe€ Bg(p). Let ® be a smooth
function on Bg(p), V the Riemannian connection, grad the gradient operator.
Then

(25) grad e® = ¢® grad @,

(26) V, grad e® = ¢®(grad ®, v) + ¢®V, grad ®.
Hence

(27) Hess e®(v,v) = ¢®(grad @, v)? + ¢® Hess ®(v,v).

Let w be a smooth function on Bg(p). By a straightforward calculation, we have
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(28) Hess(e®w) = w Hess e® (v, v) + e® Hess w(v, v)
+ 2¢grad e®, v>{grad w, v).
Inserting (25) and (27) into (28) yields
(29) e ® Hess(e®w)(v,v) = Hess w(v,v) + w Hess @ (v, v) + w{grad @, v)>
+ 2{grad @, vy{grad w,v).
Let ® =wo, where y : Br(p) = R and w: R — R. Then
(30) grad ® = w o grad ,
(31) Hess @ (v,v) = é o y{grad i, v)* + @ o Hess y(v, v).
Substituting (30) and (31) into (29), we have
(32) e ® Hess(e®w) (v, v)
= Hess w(v, v) + w(@ o y{grad y, v>*> 4+ @ o Y Hess (v, v))
+ w(wo lp)2<grad Y, 2+ 2do Y{grad ¥, vy<{grad w,v).
If & = >, then
(33) e ® Hess(e®w)(v,v)
= Hess w(v, v) + 2w(a o ) *(grad ¥, v>? 4 wa oy Hess (v, v)
+ 2 o y{grad y,vy{grad w,v).

1 1 .
Let w>0. By Young’s inequality: ab < zta2 +zb2 with a= —2mo
y{grad y,v), b= {grad w,v), and 1 =w, we have
(34)

—2a o Y<grad Y, vd<{grad w, v> < 2w( o )*(grad ¥, vd> + % (grad w, v)>.

Applying (34) to (33) we have
(35) e~ ® Hess(e®w)(v,v) = Hess w(v,v) + wa oy Hess (v, v)

1
— —<grad w, v)>.
2w

1 . . . . .
Set ¢, (7) = cos(v/xt), s,(t) = N sin(v/xt). It is easily to get ¢, = —KSx, Sk = Cx,
. 1
and xs2 +c2=1. Let r,(x)=dist(q,x), gx(t) = ;(1 — (1)), and w=g,or,.
Then

(36) grad w = s, o r, grad r.
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Furthermore, if x # ¢ we have w > 0. By a straightforward calculation, one has
(37) Hess w(v, v) = §, o ry,{grad ry, v+ 50 rqy Hess ry(v,v).

Let y be the minimizing geodesic from y(0) =g to y(p) = x, where p = r,(x).
Denote v" = (v, 7(p)>7(p), vt =v—v". By [6] (p. 59), we have (it is sufficient
to take v; =0 and vy =v)

S, OF 12
(38) Hess r,(v,v) > ﬁh} |°.

Apply (38) to (37). We have

(39) Hess w(v, v) > §, o r,{grad ry, v)% + 8, o rolv*|?
=380 ”q|UT|2 + 80 "q|UL|2

: 2

= §ic 0 1y|v]
= (1 —xw)[v]

Let Y =g.or,. Then by (39) we have

(40) Hess (v, 0) = (1 — xy)[o]*.

Take (f) = —log(l —xt) and notice that 0 <rxy <1 since x#g¢ and

rp(x) <ﬁ. Then (f) = x/(1 —xt), & = @*. Taking use of (39) and (40)
in (35), we get
(41) e~® Hess(e®w) (v, v)

1
> (1 — ww)[v]> 4+ wa o (1 — k) |v]* — ﬁ<grad w, 0>
1
= (1 — &w)[v]* + kwlv|* — ﬂ<grad w,v)?

1
= |U|2 - m(sk o Vq)2<grad Ty, U>2

1
= |v|* - 5(1 + ¢ o rg){grad ry, v)?
>0 if x# ¢ and v #0.
At x=¢, w=0 and grad w=s,0r,=0. Then by (32) and (36) we have

(42) ¢~® Hess(e®w)(v,v) = Hess w(v,v) > [v]> > 0
. . 1
when v #0. Hence ¢®w is a convex function on Bg(p) for any R<F’
1 , *
hence for R’ where R < R’ < ——. Therefore, e®w is convex on Bgr(p). Let

2K
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/. be the infimum of the smallest eigenvalues of Hess(e®w) on Bg(p). Then
Hess(e®w)(v,v) > Alv|>. Apparently, 1>0 because of the compactness of

- 1 —
Br(p). On the other hand, eq’w:ﬂ:f. The lemma follows.
K ©Tp Q.E.D.
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