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ON VALUE DISTRIBUTION OF NONDEGENERATE HOLOMORPHIC
MAPS OF A TWO-DIMENSIONAL STEIN MANIFOLD M TO C?
AND CLASSIFICATION OF M

YUKINOBU ADACHI

Abstract

We classify nondegenerate holomorphic maps of a two-dimensional Stein manifold
M to C? by study about the value distribution of them.

Introduction

In 1941, R. Nevanlinna [Ne] who had established the value distribution
theory of entire functions of one complex variable, studied ‘“nullberandeten
Flachen” which formed a class of open Riemann surfaces having the value
distribution property similar to C, and made an epoch in the classification theory
of open Riemann surfaces.

The author studied value distribution of the nondegenerate entire maps of C*
to C? in [Al, 2], which was based on the value distribution theory of entire
functions of two complex variables studied by Nishino [Nil, 2, 3], Yamaguchi
[Y1, 2] and others, not on the Nevanlinna theory of higher dimension.

Such value distribution theory of two complex variables was extended to the
value distribution theory of holomorphic functions on a two-dimensional Stein
manifold by Suzuki [Sul, 2] and Nishino [Ni3].

In this article, we study nondegenerate holomorphic maps of a two-
dimensional Stein manifold to C? using above theory and classify the two-
dimensional Stein manifolds by the criterion of existence or nonexistence of
certain maps.

We lay down a new paradigm that a generalization of a holomorphic
function of one complex variable is an equi-dimensional nondegenerate holo-
morphic map of several complex variables.
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Chapter 1. Definitions of types of nondegenerate holomorphic maps of a
two-dimensional Stein manifold M to C*

§1. Open Riemann surfaces

Let R and R’ be abstract open Riemann surfaces.

DerINITION 1.1. We call that R is hyperboric, if there is a Green function
on it. We call that R is parabolic, that is, R € Og, if there is no Green function
on it. According to Nishino, we say that R is specially parabolic if it is
parabolic and its genus is finite, and we say that R is of algebraic type, if its
genus ¢ is finite and its boundary consists of n(<oo) punctures. We say that
such an algebraic type Riemann surface is of type (g,n). If there is no non-
constant bounded holomorphic function on R, we denote that R e Oyp.

The following proposition is well known.
ProrosITION 1.2. Og & Oyp.
It is easy to see the following

PROPOSITION 1.3.  Let R and R' be hyperbolic Riemann surfaces which do not
belong to Oyp. Then there is no analytic curve in R x R’ whose normalization is
holomorphically isomorphic to a Riemann surface belonging to Oypg. It is similar
for a bounded domain of C?, that is, there is no analytic curve in it whose
normalization is holomorphically isomorphic to a Riemann surface belonging to O4p.

The following proposition is well known.

ProPOSITION 1.4 (cf. [Ni3]). Let R and R’ be open Rieamann surfaces. If
there is a nonconstant holomorphic map R — R’ then R’ is parabolic (specially
parabolic, of algebraic type) in case R is parabolic (resp. specially parabolic, of
algebraic type).

§2. Type of nonconstant holomorphic functions on M

We assume that f € O(M), the set of the holomorphic functions on M, is
nonconstant and we put D = f(M) < C, the image of M.

DEeriNITION 2.1 (cf. [Ni3]).

(1) We say that f is a hyperbolic type function if there exists at least one
value o« € D such that the normalization of one of the irreducible components of
{f = o} is holomorphically isomorphic to a hyperbolic Riemann surface, in short,
a surface of hyperbolic type. Then we denote f € Oy(M).
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(2) We say that f is a parabolic (specially parabolic, algebraic) type func-
tion if for every o € D, {f = o} consists of surfaces of parabolic (resp. specially
parabolic, algebraic) type. Then we denote f € Op(M) (resp. Osp(M), O4(M)).

The following theorem is known as a principle of uniformity or resonance.

THEOREM 2.2 ([Y1, 2], [Ni3], [Sul, 2]). If there is a set E = D whose
capacity is positive such that {f = o} for any o € E contains a surface of parabolic
(specially parabolic, algebraic) type, then f € Op(M) (resp. Osp(M), O4(M)).

§3. Type of nondegenerate holomorphic maps of M to C>

We call a holomorphic map F : M — C? is nondegenerate if F (M) contains
an open set in C>. Then we denote F e E(M).

, DeriNITION 3.1. Let F € E(M) and P(x, y) be a nonconstant polynomial in
C-.

(1) We say that F is of genuinly hyperbolic type if Po F € O (M) for every
P, and denote F e GH(M).

(2) We say that F is of hyperbolic type if Po F € Oy(M) for some P, and
denote F e H(M).

(3) We say that F is of parabolic (specially parabolic, algebraic) type if
PoFeOp(M) (resp. Osp(M), 04(M)) for every P, and denote F € P(M) (resp.
SP(M), A(M)).

(4) We say that F is of quasi-parabolic type if there are polynomials P;
and P, such that (P, P;)oFe E(M) and P;o F e Op(M) (i =1,2), and denote
Fe QP(M).

Remark 3.2. If M =C?, the map F:z=e%, w=¢” is contained in
QP(C?) — P(C?). Because F € H(C?) (see Proposition 6.4 in [A2]) and if we set
Py =z, Py=w, then PjoF e (4(C?) < 0p(C? (i=1,2).

Chapter 2. Value2 distribution of nondegenerate holomorphic maps of M
to C

§4. BL(Blaschke)-type map

Let R be an open Rieamann surface. Heins [H] (cf. [S-N] and [K] p. 280)
introduced the notion SOgp for a domain in R. Roughly speaking, it is a non-
relatively compact subdomain G in R, whose relative boundary 0G consits of at
most countable Jordan curves which may not necessarily be closed and do not
accumulate in R, and it is called of SOgp type, if its terminal domain has some
parabolical property. Conventionally, a relatively compact subdomain in R is
assumed to belong to SOpyp type.
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Let R and R’ be open Riemann surfaces and ¢ : R — R’ be a nonconstant
holomorphic map.

DeriniTION 4.1 ([H], [K] p. 291). We call that ¢ is locally of BL-type at
p’ € R’ if there is a neiborhood U’ of p’ such that every connected component of
¢ ' (U') is of SOyp type. We say that ¢ is of BL-type if ¢ is locally of BL-type
for every point of R’.

It is easy to see the following

ProrosiTioN 4.2 ([K] p. 292). If Re Og, then for every R', every non-
constant holomorphic map ¢ : R — R’ is of BL-type.

DEFINITION 4.3, We denote by n,(p’) the number of {p~!(p’);p’ e R’}
counted with multiplicity, and set n, = sup, g 1,(p’) (< 0).

THEOREM 4.4 (Heins in [H], [K] p. 292). If ¢ is a BL-type map of R to R,
then n, = n,(p') for every p'e R', except for a set of capacity zero.

§5. Value distribution of nondegenerate holomorphic maps of M to C>

The class QP(M) includes P(M) and a part of H(M)— GH(M), and it
has a value distribution property similar to QP(C?). In [A2] we proved a
generalization of the little Picard theorem for QP(C?) and we will prove it for
QP(M) by the same method.

Let FeE(M) and E, be the set of points p e C? such that {F~'(p)}
contains a curve of M. It is easy to see that E, consists of at most countable
points.

Tueorem 5.1. Let Fe QP(M). We denote that Np =sup,_c2_p Nr(p),
where Np(p) is the number of {F~'(p)} counted with multiplicity (0 < Np(p) <
o). Then there isa set E: Ey < E < C? with four-dimensional Lebesgue measure
0 such that Ngp(p) = N for every point p e C* —E and Np(p) < Np for every
point pe E — Ej.

Proof. Since F e QP(M), there are polynomials P; and P, such that
(PioF,PyoF)e E(M) and PioFeOp(M) (i=1,2). We set F=(f,g9)=
(PyoF,Py0F) anew.

We will separate the proof into two cases.

(1) There is a point p| such that Nr(p)) = Nr. If Np < oo, there is always
such a point. Let pj = (a,f) and L ={x"=0a}. Since f is a parabolic type
function on M, F~'(L) = S;US,U---UT UT>U--- where S; and T; are surfaces
of parabolic type such that the holomorphic map ¢; = Flg : S; — L is non-
constant and the map F]| I — pj € LNEy is constant. By Proposition 4.2,
¢; is a BL-type map. Then Np = n, +n,, + --- and there is a set e = L whose



VALUE DISTRIBUTION OF NONDEGENERATE HOLOMORPHIC MAPS 515

capacity is zero such that for every point p’ € L — e, Np(p’') = Nr by Theorem
4.4. We have used the fact that the capacity of the union of countable zero
capacity sets is zero.

Let L' ={y'=p'} where B’ is an arbitrary number such that («,f’) e
L —e. Since g is a parabolic type function on M, F~'(L") = S{US;U---UT/U
T,U--- where S; and 7 are surfaces of parabolic type such that ¢; = F| :
S/ — L' is a BL-type map and F |T,’ is a constant map. Then Np:n(/,l/'Jr

Ry + - and there is a set ¢/ = L’ whose capacity is zero for every point p’ e
L' —¢' and Ng(p') = Np.

If we set E=EqyU{p' e M — Ey; Nr(p') < Nr}, the four-dimensional Leb-
esgue measure of E is zero by Fubini’s thorem.

(2) There are points p{, p5,... such that Ng(p]) — o (i — o0). From the
proof of case (1), there is a set E; whose Lebesgue measure is zero such that, for
every point p’ € C* — E;, we have Nr(p') = N; = Nr(p!). Then for every point
pleC?— Uzl E;, we have Np(p') = co. Since the Lebesgue measure of Uzl E;
is zero, we proved Theorem 5.1. O

COROLLARY 5.2. If FeE(M) has an exceptional set of positive four-
dimensional Lebesgue measure, then F e H(M) — QP(M).

COROLLARY 5.3 (A generalization of the little Picard thorem). If the map
F e QP(M) and Ny = oo, then Np(p) = oo for pe C* —E where E is a set of
four-dimensional Lebegue measure zero.

Chapter 3. Classification of two-dimensional Stein manifold A/

§6. Classification of M

DEFINITION 6.1.

(1) M is called of hyperbolic type (M € #) when P(M) = 0.

M is called of parabolic type (M € #) when P(M) # §).

M is called of special parabolic type (M € %) when SP(M) # 0.

M is called of algebraic type (M € .«/) when A(M) # 0.

M is called of quasi-parabolic type (M € 22) when QP(M) # 0.

M is called of genuinly hyperbolic type (M e %#) when E(M) =

By proposition 1.4 it is easy to see the following

PROPOSITION 6.2. If there is a biholomorphic map ® : M — M', the type of
M and M’ are coincident.

PRrOPOSITION 6.3.  For every Stein manifold M, GH(M) # (.
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Proof. Let ® be a Fatou-Bieberbach map of C? to C?, that is, C> — ®(C?)
has an inner point. Since M is assumed to be a Stein manifold, it follows
from the well known Grauert’s theorem that there is a scattered inverse holo-
morphic map W : M — C?. 1t is easy to see that F = ®o¥ € GH(M). O

THEOREM 64, O #GH c H. HNP=0. O£ A SPETPcIPS
(PUK) — G

Proof.

(1) (0 # 9#) By Proposition 1.3, a bounded Stein domain in C? is in-
cluded in 9#. And let R and R’ be hyperbolic non-O,p Riemann surfaces and
set M =R x R’. Then by the same reason above, M| € 4# .

2) (94 < H, 22 < (PUK)—9#) Let M, be a connected component
of {(x,y) € C%|f(x, )| < 1} where f € Op(C?). Tt is easy to see that M, ¢ GH.
By Theorem 7.1 M, ¢ 2. Let Re Og and R’ be hyperbolic non-O,p Riemann
surface and set M3 = R x R’. By the same reason above, M3 € (# — 4H') — 2.

(3) (0 #.o7) If My has a compactification (My, ®, M) where M is a com-
pact complex manifold, ® : My — My = ®(Mj) is a biholomorphic map and C =
M — My is an analytic curve of M, and if there is a meromorphic extension on
Mz such that F|,, € E(Mo), then My € o/ because F o ® e A(My). For example
C e

@4) (o £ SP) Set Ms=C*(x,y) —{x=ay,a,...} —{y=b1,by,...}
where {a;} and {b;} are infinite sequences of complex numbers which do not
accumulate in inner points of C. It is easy to see that Ms e ¥%. By Corollary
7.4, Ms ¢ of.

(5) (92 < 2) Let R be a Riemann surface of /(e? — 1)(e? + 1) which is
a parabolic Riemann surface of the genus oo and set Mg = C(w) x R. At first,
we will prove that Mge 2. Set F:x=w, y=,/(e?—1)(e?+1). We will
show that F € P(Ms). Let P(x,y) be a nonconstant arbitrary polynomial. If

. . 0 opP . .
P(x, y) is a polynomial such that e and % are not identically zero, then for

every complex value o, {P(x,y)o F =o} be a covering space of C(z) except
for at most countable values o and the genus = co because it is expressed
w=2¢&(/(e? —1)(e? + 1)), where &(y) is an algebraic function defined by
0P .
{P(x,y)=0o}. If o =0, then P(x,y) = P(x) and {P(x)o F =oa} consists of
. . 0P
the set such as {w;} x R, where w; is a solution of P(w)=0. If (;_x =0, then

P(x,y) = P(y) and {P(y) o F = o} consists of the set such as C(w) x {p;} where
pj € R. Therefore F e P(Ms).

At the second, we will prove that Mg ¢ 2. For this, we will show that
for every F € P(Mg) there is a polynomial P(x,y) such that Po F ¢ Osp(Mp).
Since F = (p(w, p),¥(w, p)), where we C(w) and pe R, is nondegenerate, at
least one of ¢ or ¥ includes the variable w. So, we may assume that ¢ is such
a function. Then for P(x, y) = x, every level curve of P(x, y) o F is a level curve
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of ¢p(w, p) and it has a nonconstant projection to R, except for at most countable
level curves. Since every level curve of ¢ consits of surfaces of specially par-
abolic type, it is a contradiction by Proposition 1.4. Then SP(Mg) =0 and
Mo ¢ S2. O

Remark 6.5. Unfortunately, we have no example of M such that
M e 2% — 2, but we can not prove that 22 = 2.

§7. Property of some class of M

THEOREM 7.1. There is no nonconstant bounded holomorphic function on
M e 22.

Proof. Assume that there is a bounded function g € O(M). Since M € 22,
there is a map F where Pyo F, PyoF e Op(M), (PioF,Py0F)e E(M) and P
are polynomials (i =1,2). Since P;o F € Op(M) and Og = Oyp, g is constant
on each level curve of P,o F. As, on each level curve of P, o F, almost all level
curves of Pjo F intersect transversally, g is constant on M. O

Remark 7.2. Let R,R' € O3 — Og and set M7 = Rx R’. Then by the
same reason of the above theorem, there is no nonconstant bounded holomorphic
function on M;. On the other hand, from Proposition 1.4 it is easy to see that
M7 €GN .

By virtue of Nishino [Ni2, 3] and Suzuki [Su2] following theorem is proved.

THEOREM N-S (Theorem IV in [Ni3]). Let M be topologically finite, that is,
dim H;(M,Z) < w0, i>0, and M € o/. Let F be an arbitrary map in A(M).
Then there is a compactification (M, ®, M) and F o &' is a rational holomorphic
map of ®(M) to C>.  Generally (M,®, M) depends on F.

Remark 7.3. If M =C? we proved elementarily in [Al] that ® is an
element of Aut(Cz). In this case the compactification is independent of F.

COROLLARY 7.4. Let M be topologically finite and M € /. Then M is
limited a sort of My in the proof of Theorem 6.4.

PrOBLEM 7.5. According to the properties of topological compactifications
of the elements of ¥% and 2, can we clarify the difference between % and 2?.

REFERENCES

[Al] Y. ApacHi, On value distribution of entire maps of C? to C?, Kodai Math. J. 23 (2000),
164-170.

[A2] Y. ApacHi, Nondegenerate entire maps of C> to C?, Far East J. Math. Sci. 10 (2003),
163-186.



518 YUKINOBU ADACHI

[H] M. Hens, On the Lindeldf priciple, Annals of Math. 61 (1955), 440-473.

[K] Y. Kusunoki, Function Theory (in Japanese), Asakurashoten, 1973.

[Ne] R. NEVANLINNA, Quadratisch integrierbare Differential auf einen Riemannschen Man-
nigfaltigkeit, Ann. Acad. Sci. Fenn., Ser. A. 1. (1941), 1-33.

[Nil] T. Nisumwo, Nouvelles recherches sur les fonctions entieres de plusieurs variables complexe
(IV), Types de surfaces premiérs, J. Math. Kyoto Univ. 13 (1973), 217-272.

[Ni2] T. NismiNno, Nouvelles recherches sur les fonctions entiéres de plusieurs variables complexe
(V), Foctions qui se réduisent aux polynémes, Ibid. 15 (1975), 527-553.

[Ni3] T. NisHiNo, Value distribution of analytic functions in two variables (in Japanese), Stgaku,
32 (1980), 230-246.

[S-N] L. Sario aND M. Nakal, Classification theory of Riemann surfaces, Springer, Berlin, 1970.

[Sul] M. Suzuki, Sur les intégrales premiers de certains feuilletages analytiques complexes,
Séminaire F. Norget, 1975-1976, Springer, 31-57.

[Su2] M. Suzuki, Sur les opérations holomorphes du groupe additif complexe sur ’espace de deux
variables complexe, Ann. Scient Ec. Norm. Sup. 10 (1977), 517-546.

[Y1] H. YamacucHi, Parabolicité d’une fonction entieres, J. Math. Kyoto Univ. 16 (1976), 71-92.

[Y2] H. YamacucHi, Famille holomorphe de surfaces de Riemann ouverts, qui est une variété de
Stein, Ibid. 16 (1976), 497-530.

12-29 KURAKUEN 2BAN-CHO
NisHiNomIYA, HYoGO 662-0082
JAPAN

E-mail: fwjh5864@nifty.com



