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MAXIMAL OPERATORS RELATED TO BLOCK SPACES
H. M. ArL-QASSEM

Abstract

In this paper, we prove appropriate L? bounds for a class of maximal operators %
related to singular integrals with kernels which belong to block spaces and are supported
by subvarieties. Also, we show that our condition on the kernel is optimal for the
L? boundedness of Y. Our results improve substantially the main result obtained by
L. K. Chen and H. Lin in [CL].

1. Introduction and statement of results

Let S"! denote the unit sphere in R” (n > 2) equipped with the normalized
Lebesgue measure do = do(-). Throughout this paper, p’ will denote the dual
exponent to p, that is 1/p+ 1/p’ = 1. Also, we shall let Q be a homogeneous
function of degree zero which satisfies Q € L'(S"™!) and

(L.1) L Qu) do(u) = 0.

Let # = the set of all radial functions / satisfying

R

Also, for d # 0, we say that a smooth function ¥ : R, — R belongs to the class
I';(R,) if for some positive constants C;, C,, Cs, and C4 independent of ¢z, the
following growth conditions are satisfied:

(1.2) ®(0)] < Ctd,  |¥"(1)| < Cr?2,
(1.3) Gyt < |9'(1)] < Gy

Now, a smooth function ¥ : R, — R belongs to the class I'(R.) if ¥ e 'y(R4)
for some d # 0.
For a function ¥ € I'(R;) we define the maximal operator S ¢ by
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(1.4) Faowf(x) = sup
heAx

[, 7= e pDRO " )

where y' = y/|y|€S" ! and f e .#(R"), the space of Schwartz functions.
The maximal operator Y w is closely related to the singular integral op-
erator Ty o given by

(1.5) Tq,,Q,,,f(x) =p.v. JR”JI(X - lIl(|y|)y,) gTJ(/Tn,)

h(|y]) dy,

where /4 is a measurable function on R,.

For the sake of simplicity, we denote Yqw = Yo and Ty q ;= T if
Y(r) =1t

In [CL], L. K. Chen and H. Lin studied the L? boundedness of the maximal
operator Yo under a smoothness condition on Q. In fact, they proved the
following:

THEOREM A [CL]. Assume n>2 and Qe C(S"™") satisfying (1.1). Then

L2 owey < Gl M Lo vy

Jor 2n/(2n—1)<p < oo and feLP. Moreover, the range of p is the best
possible.

On the other hand, the L? boundedness of the singular integral operator
Ty o, is known to hold under much weaker conditions on Q (see [CZ],
[Fe], [DR], [LTW], [FP], [AAl], [AP]). For example, if Qe Llog" L(S" ),
Calderéon-Zygmund showed that T ; is bounded on L? for all p € (1, 00) and the
condition Q € L log" L(S"™!) is essentially the weakest possible size condition on
Q for the L? boundedness of T ; to hold ([CZ]). Some years later, Connett
([Co]) and Coifman-Weiss ((CW]) obtained an improvement over the result of
Calderon and Zygmund by considering Q in the Hardy space H 1(S"*l). The
study of the L? (1 < p < o0) boundedness of the singular operator Tq ; began in
R. Fefferman in [Fe] if 4 e L*(R") and Q satisfies some Lipschitz condition on
S”"-1 and subsequently by many authors under various conditions on Q and A
(see for example, [Na], [Ch], [DR]). In 1997, Fan and Pan introduced the more
general class of operators Ty o ; and showed that Ty o is bounded on L”(R")
(1<p<o)if HY(S" ") and he L*(R,). Another condition on Q was given
by Jiang and Lu who introduced a special class of block spaces BS,O’ ">(S”’l) and
proved the following L?> boundedness result.

THEOREM B (([LTW]). Let Tq,, be given as above. Then if he L*(R.) and
Q eBE,O’O)(S”_l) with ¢ > 1, Ta, is a bounded operator on L*(R").

Some years later, the L” boundedness of the more general operator Ty g
was proved for all p e (1,00) under the condition Q e 351070)(5,1,1) (see for ex-
ample, [AA1]). Also, it was proved in [AAP1] that the condition Q € BE,O’O) (8"
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is the best possible for the L?” boundedness of Tq ; to hold. Namely, the L7
boundedness of To 1 may fail for any p if it is replaced by a weaker condition
Qe B 0:0) (8" for any —1 <v < 0and ¢ > 1. The definition of the block space
B ")(S" 'y will be recalled in Section 2.

The results cited in [AA1] and [AAP1] above on singular integrals give rise
to the problem whether similar results hold for the maximal integral operator
Fo,w. More precisely, we have the following:

PROBLEM. Determine wether the LP boundedness of the operator o holds
under a condition in the form of Q € 15’(0 ">(S” Y, —1 < v, and, if so, what is the
best possible value of v.

The main focus of this paper is to obtain a solution to the above problem.
Our main result in this paper is the following:

THEOREM 1.1. Let n>2 and Yoy be given as in (1.4). Then
(@) If QeB,(IO’*lm(S"*l), q > 1, and satisfies (1.1), o w is bounded on
LP(R") for 2 < p < oo;

(b) If Qe L4(S" ") (for some q > 1) and satisfies (1.1), So.v is bounded on
LP(R") for 2nd/(2n+no —2) < p < o0, where 0 =max{2,q'}.
(c) There exists an Q which lies in B( 0) (8" for all =1 <v< -1 1 and
satisfies (1.1) such that ¢ is not bounded on L*(R").

We remark that on S"7!, for any ¢ > 1 and —1 < v, the following inclusions
hold and are proper:
(16) Cl(Sn—l) - U Lr(sn—l) o B(({O,v)(sn—l).

r>1

By the relationship in (1.6) remarked above one sees that parts (a) and (b)
represent a substantial improvement of the main result of L. K. Chen and H. Lin,
while part (c) shows that the condition Q € B;O’fl/ 2)(S”*l) is nearly optimal.

Throughout the rest of the paper the letter C will stand for a constant but
not necessarily the same one in each occurrence.

Acknowledgment. The author would like to thank very much the referee for
his very valuable comments and suggestions.

2. Definitions and lemmas

The block spaces originated in the work of M. H. Taibleson and G. Weiss
on the convergence of the Fourier series (see [TW]) in connection with the de-
velopments of the real Hardy spaces. Below we shall recall the definition of
block spaces on S"~'.  For further background information about the theory of
spaces generated by blocks and its applications to harmonic analysis, see the
book [LTW].
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DEFINITION 2.1. A g-block on 8"~ is an LY (1 < q < w0) function b(x) that
satisfies

(i) supp(b) =I; (i) [bll,. <177,

where |I| = o(I), and I = B(x},00) = {x' € S"™" 1 |x' — xj| < 0o} is a cap on 8"
for some xjeS"" and 0 € (0,1].

Jiang and Lu introduced (see [LTW]) the class of block spaces B,(IO’U) (8" 1
(for v > —1) with respect to the study of the singular integral operators Tgq ;.

DEFINITION 2.2.  The block space BEIO"”)(S"”) is defined by

BOV(S" ) = {QGL (S" Q= Zi by, M ({Aﬂ})<00}

n=1

where each J, is a complex number; each b, is a g-block supported on a cap 1, on
S 1 v>—1 and

o0

(2.7) ({4 = Z:I/l {1+ 1og"* V(7| ™)}

We remark that the definition of B(0 " (|a,b)), a,b € R will be the same as that of

B""(S"!) except for minor modifications,
0,v (0,v)

Let ||l 0.0 gr1) = NO(Q) = inf (M ({2,}): Q=37 4b, and each

b, is a g-block 'function supported on a cap I,on 8" '}, Then | - ||Bo.) &) is a

norm on the space By""”(S""!) and (BY""(S"" 1) [l - \|B<o,u>(s,171>) is a Banach space.

q

In their investigations of block spaces, Keitoku and Sato in [KS] showed that

these spaces enjoy the following properties:

BO»)(8"1) = BOI(S™) if vy >0 > 1

0“)(8” 1) CB<0 WIS if 1 < ¢; < ¢ and for any v > —1;

9
U qu”’ ¢ |JLys™!") for any o> 1.
q>1 g>1

The proof of Theorem 1.1 (c) will rely heavily on the following lemma from
[AAP1].

Lemma 2.3. For any v > —1, a,beR,
G If feBOU ([a,b]) and g is a measurable on |a,b] with |g| < |f|, then

ge BE,O ")([a,b]) with

0,v 0,0 .
NE(g) < NOV(f);
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(i) Let I} and I, be two disjoint intervals in [a,b] with |I\|,|L| <1 and
or,00 € RT.  Then

N oz, + oog,) = NN ougg,) + N o0y, )
(iif) Let I be an interval in [a,b] with |I| < 1. Then
NP () 2 110+ log™™ (1))

LEMMA 2.4. Let g>1, ue NU{0} and I;,, be a function on S™" satisfying (i)
Jsr1bu(¥) da(y) = 0; (i) [|b,ll, < |Iﬂ|71/ql for some cap I, on S"" with |I,| < e7%;
and (iii) ||b,|, < 1 Assume that ¥ belongs to the class T'(Ry) for some d # 0.

k+1

Let w, = — 2log(L[™) gnd for £eR", let
wp zdl 1/2
Yiil(&) = (J : 7)
@y

Then there exist positive constants C and o with 0 < aq’ <1 such that

J by (x)e P OED dg(x)
Sn—l

(28) |Yui(€)] < Cllogln ™)',
_ -1
(2.9) | Vi@ < Clogl,| ™) e =ioetid ),
where t=* =inf{t*,t*} and C is a positive constant independent of k, & and p.

Proof. We shall prove our estimates only for the case d > 0, because the
proof for the case d < 0 is essentially the same. First, by condition (iii), it is
easy to verify that (2.8) holds.

Next, since

2

J Bu(x)e Y 0ED do(x)
sl‘l*l

:J  b(R)bu(y)e ™M) do(x) o)
Sn SIX
we get

(210) |Y,u,k(é)|2
~ = Pu —i'¥ (o) Kpé(x— (ll
J\SVI*I xS"! b'u(X)blu(y) (Jl ( A ) do-( ) do-(y).

By integration by parts, it is easy to verify that

% ke dI
[[" emetoctom Z‘ < Caylafe e (v -
1

which when combined with the trivial estimate
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Wy . d
J oW (OfNE(x-) ‘ < C(log|l, )
1

yields

(2.11)

o elel’(ca ¢ dt
1 l

Clog|1,| ey e| e (v = )|
for any 0 <o < 1. ~
By Hélder’s inequality, condition (ii) on b, and (2.10)—(2.11) we get

Ve (O)]

Clog ™) o after 2 |

Sn—l ><Sn—l

1/2
& (=)™ do(x) da<y>)
By choosing ag’ < 1, we get
Yk (€)] < ClloglL,|™) 2o/ |wfde| "

which, when combined with the trivial estimate (2.8), yields the estimate (2.9)
with a minus sign in the exponent. To get the second estimate, we use the
cancellation condition (i) on b, to get

st = [ ([ Bl ™5 1 dot)) £

By (1.2) and condition (iii), we get
(2.12) | Yk (€)] < Cllog|L| ™) ek,

By interpolation between this estimate with the trivial estimate (2.8) we get the
second estimate in (2.9). This completes the proof of the lemma.

By the proof of Lemma 3.1 in [AAP2], we get the following:

LemMa 2.5. Let {vi : k € Z} be a sequence of non negative Borel measures
on R". Suppose that for all k € Z, £ e R", for some a > 2, o, C > 0 and for some
constant B > 1 we have

() [l <B;

(ii) |9e(&)| < CBla*Be| "

(i) [92(6) — 1] < CBla*Be[®.

Then the inequality

(2.13) vl < CBI,

holds for all 1< p<oo and [ in LP(R"), where v*(f)=sup|vk* f|. The
constant C, is independent of B. kez
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For any ueN and I;,, eLl(S"*I), we define the maximal operator

| B
| £l —w(p)y) 20 4yl
k< [y]<cok*! |y|

(2.14) v, f(x) = sup
keZ

log(| 1| 1) -
where @, =2""" " for some cap I, on S".

By Lemmas 2.4 and 2.5, we get immediately the following:

_ Lemma 2.6/. Let ueN and let Bﬂ be a function on S"! satisfying (i)
1bull, < |I#|_1/q for some q>1 and for some cap I, on S""; (i) ||b,||, < 1.
Assume that ¥ belongs to the class T'(Ry) for some d #0. Then

(2.15) e (O, < G loglZd M)A,
for 1 < p<oo and feL?, where C, is independent of u and f.

Let .#s be the spherical maximal operator defined by
Msf(x) = supJ |f(x —r6)| da(6).
r>0 Jsr!

By the results of E. M. Stein [St3] and J. Bourgain [Bo] we have

LemMa 2.7.  Suppose that n >2 and p > n/(n—1). Then Ms(f) is bounded
on LP(R").

3. Proof of the main result

Proof of Theorem 1.1 (a). Assume that Q€ BS,O’_I/Z) (8" for some ¢ > 1
and satisfies (1.1). Thus Q can be written as Q = >, /,b,, where 7, € C, b,

is a g-block supported on a cap I, on S"' and M;O‘_l/z)({/l,,}) < oo. To each
block function b,(-), let b,(-) be a function defined by

() bu) = b0 = | Byl dotw)
Let J={ueN:|[|<e?}. Let hy=Q— Z;ZJ/L,E,,. Then for some positive
constant C, the following holds for all ue JU{0}:
(3.2) J lzsﬂ(u) do(u) =0,
s"
(33) ||l;ﬂ||q < C|I#|_l/f],’
(3:4) Ibull; < .,
(3.5) Q= > b

neJu{o}
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where I is any cap on S"°! with |[Ip| =e™3. By (3.5) we have
(3.6) 1Sowfl, < Y 14l e/,
neJu{o}

Thus, by (3.6), Theorem 1.1 (a) is proved if we can show that
(3.7) 15, w/l, < CplloglL ™) 2|1 11,

for each ©e JU{0}, 2 < p < oo and for some positive constant C, independent
of u. To this end, we let {g; ,}*, be a smooth partition of umty in (0,00)
adapted to the intervals [w, kil af’“”‘d'] To be precise, we require the
following:

—kd—|d| . — Aoy (1)
supp (pk”u s [wﬂkd ‘dlawﬂkd+‘d‘]7 ‘4‘#

where C; is independent of the lacunary sequence {w{f :keZ}. Define the
partial sum operators S, on R" by

(Senf)(E) = 00 W (1EDF ().

Since f(x) = > 4 cz(Sk+1,.f)(x) for any fe ¥ (R") and /€ Z, by duality and
applying Minkowski’s inequality we get

Sl (¥) < <J:

Js!

Il
T~
g

":SE

ZEkthf

leZ

w,/fﬂ zdl ]/2
< (ZJ B,/ ) 7) ,

where

Now if we let
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w/f+]

1/2
4 zdt
1@ =S| 0P )
kezJof
then we have
(3.8) Lyl (%) <> Ty b S (%)
leZ
Therefore, to prove (3.7), it suffices to prove
(3.9) 17,5, (O, < GylloglL,| ™) 224 £

for some positive constants C,, ¢, and for all 2 < p < c0.

To prove (3.9), let us first compute the L? norm of T, b, (f).

cherel’s theorem and using Lemma 2.4 we obtain

k+1
S dt

5 , '
1T, D= [ S| B 0P S
R" ez w/;

<> J Va1 de

keZ

< Cloglt, 2 Y | 1P e
ke ) Dt
< C(log|z, =211 1113,
where Y, () is defined as in Lemma 2.4 and
Ar={¢eR": a);’“H‘” <|¢ < w;k‘”‘d‘}.

Therefore, we have
(3.10) 17,5, (N> < Clog|1,) ™) 22721 ]

By Plan-

Now, let us compute the L”-norm of T} by (f) for p > 2. By duality, there

is a function g in L/ (R") with ||g|| (p/2y <1 such that

k+1

U)ﬂ d
lsz,mﬂ(f)Hi:ZJ J Vs C1g(o)] dx

keZ

1«+1

~ d
<CZJ J J (O 1Sis0,0 ()Pl s+ #())| do(&) L ax
keZ wk S”
<ch |Skarnf (¥)2V:(@)(—x) dv,  where §(x) = g(~x)
kel
C Z|Sk+l,uf|2 v (@ (2
kez (p/2)
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Thus, using Lemma 2.6, the Littlewood-Paley theory and Theorem 3 along
with the remark that follows its statement in [Stl], p. 96, we have

(3.11) 17,5, (0, < GolloglZ ™) 211, for 2< p < oo,

Interpolating between (3.10) and (3.11) we get (3.9) which in turn ends the proof
of Theorem 1.1 (a).

Proof of Theorem 1.1 (b). Assume that Q e L4(S""") for some ¢ > 1. By
Theorem 1.1 (a) and since for any fixed r > 1, B,(.O’fl/z)(S”’l) > L4(S"™ 1) for all
¢ > 1, we need to prove Theorem 1.1 (b) only for Q e L(S""") for some ¢ > 1
and 2nd/(2n+no —2) < p <2. By the same arguments employed in the proof
of Theorem 1.1 (a), it suffices to show that

(3.12)  Twoal(f)l, < GlfI, for 2n6/(2n+nd—2) < p<2and g > 1.

By definition of 7790 and by a simple change of variable we have

5 1/2
Tio.0f(x) < (ZJ |Fie1,0f (x) 2?) :

kez 1

where

Fnaf (9= | ) (Skirof)(x = #2402 do(2).

We notice that, to prove 77 q(f) € L?(R"), it suffices to show that Fy;,f(x) €
dt . . .
L? <12 [LZ ([1 2], > k},dx). By duality, there is a function g = gx(x,?) sat-

gel” (12 [L2<[1 2), ‘i’) k},dx)

isfying ||g|| <1 and

such that

1770,

- | ZJZJ Q) (3, 1) Sk ) (x — $40)) do() L
= Re g gt S )9k (X, k+1,0] )(X g ; X

1

=[] Ssonte@ute+ wete o) % a
= w2z )y Jo k+1,0) J\X 730 ole) - dx

1

<I(x(9) "1,

)

(Z [Sks1,0/] ) N

keZ

p
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where
2
2 dt

¥ =Y ([, 2+ vete 0 do )

By the Littlewood-Paley theory we have

17000, < Gl IX(9) 1],
Since |[(X(9))"*ll,, = IX(g)[|)/, and p’ > 2, there is a function a € L"'/?'(R")

p'/2
such that [laf|, , <1 and
2 dr\
@l = [ (] [ 20at+vetnen a©®) ) ax
keZ

Now, we need to consider two cases:

Case 1. 2n0/2n+nd—2)<p<2 and ¢=>2. In this case we have
2n/2n—1) < p < 2.

By Holder’s inequality, we have
2

(3.13) (J 2 L QE)gi(x +¥(2"1)¢, 1) do(©) %

1

2 , 2/q/d
<105 [ (| lots+ wiogop aote)) &
2 d
<190 [ [ oo+ w0 0P do0 5
By (3.13) and a change of variable we get
X (2
2 2( . >dz
Y(2 d —d
< jkzj el (|, o+ @400 do(@) ) F
2 d
<| (ZJ e z)ﬂ’) s lal)(x) d
"\kez /1

By noticing that (p’/2)" > n/(n— 1), applying Holder’s inequality, the choice of
a and Lemma 2.7 we get

X2 <C
which in turn gives (3.12) for 2nd/(2n+ndé—2) < p <2 and ¢ > 2.

CASE 2. 2n6/(2n+né—2)<p<2and 1 <g<2.
By Holder’s inequality, Fubini’s theorem and a change of variable we have
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1X @),
’ d

<lolf ij [ 0@ s+ w02 017 dot) Lo ax
=C Zrlé (x Z)IZ(J Iﬂ(é)lz“’|a(x+\1’(2kt)f)|da(¢)>ﬂdx
- ez h gl s ¢

’ 2 k 42 2 gy
<c[ 3| s ([, tatx+vetooi o) 4 ax

’ 2 dt q'/2y( )2/
=C XJN%W0W7@%WV)®)qW
R" \kezJ1

: ar\"

=¢ (ZJ o . f>27> Al -
) p'/2

Since (2/¢')(p'/2)" > n/(n—1), by Lemma 2.7 we get
X2 < C

which implies (3.12) for 2nd/(2n+nd —2) < p<2 and 1 < g < 2. This com-
pletes the proof of Theorem 1.2 (b).

Proof of Theorem 1.1 (c). By duality, the operator Y, is simply

12
2£/
R

It is obvious that g is bounded on L?(R") if and only if the multiplier

1/2

2 dr /
t

(e_znizé’-(x—y) ?) do(x) da(y).

0

Sl (x) = ( | =2 doty)

JO

(3.14) m(e) = ( h L ¢ 2IEQ(x) do(x)

0

is an L* function. It is easy to see that
Me|

N—o0,6—0 £l
Notice that
.N’lé‘ 727_”.’5/'(\,7},) dl ’ -1 '7[ ’
. (€775 T — cos(2ar)) — — log|¢” - (x = y)[ 7 = i5sgn(E - (x = ¥))
g|é

as N — o and ¢ — 0, and the integral is bounded, uniformly in ¢ and N,
C(1 +log|¢" - (x — p)|). Therefore, using (1.1) and the Lebesgue dominated con-
vergence theorem we obtain
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m@) = eWRogd (=9I = Fsgnl& - (v = ) do(x) o)

Sn—l ><Sn—]

Now, if Q is a real-valued function, we have

@)= | () ogle (x= )| dol) daty).

Now, we are ready to prove part (c) of Theorem 1.1. For the sake of
simplicity we shall present the construction of Q only in the case n =2 and
g = oo. Other cases can be obtained by minor modifications. Also, we shall
work on [—1, 1] instead of S'. We follow a similar argument as in [AA2]. For

e[—1,1], let

(3.15) Q(x) = Jubi(x)
k=1

here I, = Ll for k>2

WIE = k1) T e

0

Hm b1(x) = ~2-1,0/(%),

1

W; bi(x) = |Ik|71)(1,c(x)~

i =

Then Q has the desired properties. More precisely, Q satisfies the fol-
lowing:

1
(3.16) J Q(x) dx = 0;
-1
(3.17) Qe BYY([-1,1]) for each v, -1 <v < —%;
(3.18) Q¢ BL2([-1,1);
(3.19) 5 = L L(@WI0) loglx ") dsdy = -
0,1
(3.20) S, = J 1Q(x)Q(y) loglx — y| | dxdy < .
(=1 17°\[0, 1]

The proof of (3.16)—(3.17) is straightforward. Now we turn to the proof
of (3.18). We first notice that each by is an oo-block supported on the interval
I;. So to prove (3.18), we only need to show that NG (Q) = 0. To this
end, by Lemma 2.3 we have for each /,
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m

NOV2Q+ Ay o10) 2 Z\)k\llk NOD ()

= Z (1 4+ Tog (11 7).
k=2

Letting m — oo we get NQ’_I/Z)(Qﬁ—)qX[,LO]) = 0. Since, Nég’_l/z)()bl)([,l,o])

< oo we get N l/2)(9) = 0.
Now, we verify (3.19). Notice that for (x, y) € I x I;, we have log|x — y| !
> 0. Therefore, we have

0 o0

EDIDY

T ( 10gk3/2 (log /)

-1
73 Jlkxl,- log|x — y|” dxdy.

We notice that, for each (x,y) el x I w1th k>2(j+1), we have y > 2ux.
Thus |[x—y|=y—x < = and so 10g|x— y|™' > log j which in turn leads to

2 I
logJ (k 2(,;1 k(log k) 2)

= log J)

IV

IV

Mq &Mg

Fmally, e verify (3.20). To this end, we divide the integral domain
[—1,1]3\[0,1]* into three parts: [—1,0] x [0,1], [0,1] x [=1,0], and [—1,0] x
[-1,0]. First, the integral over [—1,0] x [0,1] is dominated from above by

0 k J JO O
o log|x — y|™ dxdy|.
i= (log k)3/2 L J-1 | |

By straightforward calculations, we have
0 1
J J (log|x — y| ™) dxdy‘ <C
i) k
for some positive constant independent of k. Thus, we have

k-
= (log k)™

1

—< o0
k(log k)**

J log|x — y|~ dxa’y‘ < CZ
I

Similarly, the integral over [0,1] x [—1,0] is finite. Finally,zthe integral over

. . o 1 o
[-1,0] x [-1,0] is finite because (Zkz(k+l)(logk)3/2> X-1,0x[-1,0) € L.

This finishes the proof of Theorem 1.1 (c).
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4. A further result

In this section, we are concerned with a maximal operator related to the
Marcinkiewicz integral operator g , which is defined by
)1/2

o (I e 207D,
Honf (x) = (L Jquf(x D TP

where / is a measurable function on R* and Q € L'(S"™!) is a function satisfying
(1.1).

Marcinkiewicz integral operators have been investigated by many authors,
dating back to the investigations of such operators by A. Zygmund on the circle
and E. Stein on R”. For a sampling of past studies, see [St2], [BCP], [Wa],
[AACP] and [AA2]. In particular, Al-Qassem and Al-Salman in [AA2] showed
that uqg  is bounded on LP(R”) (1< p<oo) if QeBSIO’*l/z)(S”’l) and there
exists an ©Q which lies in Bq (S” D for all -1 <v< —% such that uq | is not
bounded on L?(R"). '

Motivated by the definition of Y, a maximal operator Sq corresponding to

Uo., can be defined by
)1/2

where Q e L'(S"!) is a function satisfies the cancellation condition (1.1).
We have the following result concerning this maximal operator .#gq:

@) daf() = s (JO J, st SR

THEOREM 4.1. Let n>2 and Mg be given as in (4.1). Then

() If QeBgo’flm(S”*l) (for some q > 1) and satisfies (1.1), then Mq is
bounded on LP(R") for 2 < p < o0;

(b) If Qe L4(S™") (for some q > 1) and satisfies (1.1), then Mg is bounded
on LP(R") for 2nd/(2n+nd —2) < p < oo, where 6 = max{2,q’}.

Proof. By Minkowski’s inequality we obtain

(JI ) é)1/2
0

2
Q
j £0= 029 p50) ay| &
Iy <t Bd t

(1 (1
I (0

IA

NV
LIH f(x—s9)Q(y) da(y)’ 12(5) 110, (5) ds) i)

’ an\"?
Js"*l S (x = 59)Q(y) da(y) (5)21[0,1](3)73) ds
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-l

1 o0
!
Thus, by Hoélder’s inequality we have

[ rte—smau st ol ([ 4) " o

s

[, o= 90000 dot)| )| %
.

1 ®© 2ds 12 1
42 af < (| T - 5are.

Therefore, Theorem 4.1 follows immediately from by Theorem 1.1.

|, =120 doty)

REFERENCES

[AA1] H. AL-QASSEM AND A. AL-SALMAN, L? boundedness of a class of singular integral operators
with rough kernels, Turkish J. Math. 25 (2001), 519-533.

[AA2] H. AL-QassEM AND A. AL-SALMAN, A note on Marcinkiewicz integral operators, J. Math.
Anal. Appl. 282 (2003), 698-710.

[AACP] A. Ar-SaLmaN, H. AL-QasseM, L. CHENG AND Y. PaN, L7 bounds for the function of
Marcinkiewicz, Math. Res. Lett. 9 (2002), 697-700.

[AAP1] H. AL-QassEM, A. AL-SALMAN AND Y. PAN, Singular integrals associated to homogeneous
mappings with rough kernels, Hokkaido Math. J. 33 (2004), 551-569.

[AAP2] H. AL-QassEM, A. AL-SALMAN AND Y. PAN, Rough singular integrals with kernels sup-
ported by submanifolds of finite type, Asian J. Math. 9 (2005), 19-30.

[AP] H. AL-QassEM AND Y. Pan, L? estimates for singular integrals with kernels belonging to
certain block spaces, Revista Matematica Iberoamericana 18 (2002), 701-730.

[BCP] A. BENEDEK, A. CALDERON AND R. PANZONE, Convolution operators on Banach space valued
functions, Proc. Nat. Acad. Sci. U.S.A. 48 (1962), 356-365.

[Bo] J. BoURGAIN, Average in the plane over convex curves and maximal operators, J. Analyse
Math. 47 (1986), 69-85.

[CZ] A. P. CALDERON AND A. ZYGMUND, On singular integrals, Amer. J. Math. 78 (1956), 289
309.

[CL] L. K. CHeEN AND H. LIN, A maximal operator related to a class of singular integrals, Illi.
Jour. Math. 34 (1990), 120-126.

[CW] R. CorrmaN AND G. WEIss, Extension of Hardy spaces and their use in analysis, Bull. Amer.
Math. Soc. 83 (1977), 569-645.

[Co] W. C. ConNETT, Singular integrals near L', Proc. Sympos. Pure. Math. (S. Wainger and
G. Weiss, eds.) 35, Amer. Math. Soc., Providence, RI, 1979, 163-165.

[DR] J. DUOANDIKOETXEA AND J. L. RuBlo DE FrANCIA, Maximal functions and singular integral
operators via Fourier transform estimates, Invent. Math. 84 (1986), 541-561.

[Fe] R. FEFFERMAN, A note on singular integrals, Proc. Amer. Math. Soc. 74 (1979), 266-270.

[KS] M. Kerroku aAnD E. SaTto, Block spaces on the unit sphere in R”, Proc. Amer. Math. Soc.
119 (1993), 453-455.

[LTW] S. Lu, M. TAIBLESON AND G. WEIsS, Spaces generated by blocks, Beijing Normal Uni-
versity Press, Beijing, 1989.

[Stl] E. M. SteIN, On the functions of Littlewood-Paley, Lusin and Marcinkiewicz, Trans. Amer.
Math. Soc. 88 (1958), 430-466.



510 H. M. AL-QASSEM

[St2] E. M. StEIN, Singular integrals and differentiability properties of functions, Princeton
University Press, Princeton, NJ, 1970.

[St3] E. M. StEIN, Maximal functions: spherical means, Proc. Nat. Acad. Sci. USA 73 (1976),
2174-2175.

[St4] E. M. StEIN, Harmonic analysis real-variable methods, orthogonality and oscillatory in-
tegrals, Princeton University Press, Princeton, NJ, 1993.

[TW] M. H. TamBLEsON AND G. WErss, Certain function spaces associated with a.e. convergence of
Fourier series, Univ. of Chicago Conf. in honor of Zygmund, Woodsworth, 1983.

[Wa] T. WaLsH, On the function of Marcinkiewicz, Studia Math. 44 (1972), 203-217.

DEPARTMENT OF MATHEMATICS
YARMOUK UNIVERSITY

IRBID

JORDAN

E-mail: husseink@yu.edu.jo



