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LIOUVILLE-TYPE THEOREMS FOR F-HARMONIC MAPS
ON NON-COMPACT MANIFOLDS*

JIANCHENG LiIU

1. Introduction and main results

Let F:[0,00) — [0,00) be a C>-function such that F'(¢) >0 on € (0, 0).
For a smooth map u: (M,g) — (N,h) between Riemannian manifolds (M, g)
and (N,h). In [1], M. Ara define the F-energy Er(u) of u by

2
(1.1) Er(u) = JMF<|d;| >vg,

where |du| denotes the Hilbert-Schmidt norm of differential due I'(T*M ®
u~'TN) with respect to g and /, and v, is the volume element of (M,g). We say
that u is an F-harmonic maps if it is a critical point of the F-energy functional.

For example, when F(1) =1, (20)"*/p, (1+20)" (x> 1,m=2) and ¢', F-
energy is the energy, the p-energy, the o-energy of Sacks-Uhlenbeck [2] and the
exponential energy respectively. So F-harmonic maps is a unified and gener-
alized theory for several varieties of harmonic maps. As a new or more general
variational problem suggested by Eells-Sampson [3], it provides many differential
geometry interest. Some geometric properties of F-harmonic maps, including the
first and the second variation formulas, conformal propertites, stability or in-
stability, have been developed in [1], [4] and [5].

In order to represent our interest, we recall that, when F(f) = ¢, i.e. the case
of harmonic map, Sampson conjecture that there is no non-constant harmonic
map with finite energy from complete simply-connected Riemannian manifolds
M (dim M > 3) to any Riemannian manifolds. It is true when M = R™ or H”
proved by Sealey [6]. The same conclusion had obtained by H. S. Hu [7] under
the assumption of slowly divergent energy which is the weakening of finite
energy. Then Y. L. Xin [8, 9] generalized that result to the more general
situation, i.e. the starting manifold with “small” negative curvature. More re-
cently, X. Zhang [10] obtain the similar results for p-harmonic map (in that case,

F(1) = (20)"7/ p).
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The main purpose in this paper contributes to discuss the nonexistence of
non-constant F-harmonic map from non-compact manifolds on which some
certain restrictions about curvatures are assumed. As a result, we obtain a large
classes of Liouville-type theorems for F-harmonic maps.

Firstly, we can state one special case of our result without assuming the
curvature conditions as follows:

THEOREM A. Let u: (R™, go) — (N", h) be smooth map from (R™,go) into n-
dimensional Riemannian manifold N, where gy is the standard Euclidean metric on
R™. Let F:[0,00) — [0,00) be a C*-function with F'(f) > 0 and F(t) < tF'(t) <

%F(t) onte(0,00). Suppose that u is F-harmonic map with finite F-energy, then

u is a constant map.

In fact, we will prove a theorem which is slight more general than Theorem
A.

THEOREM A’. Let u: (R™, fgo) — (N",h) be smooth map from (R™, fgo)
into Riemannian manifold N, where gy is the standard Euclidean metric and f is a
positive smooth function on R, which satisfies: there exist constant ¢ < 0 such that

m—2 of
(1.2) 2-m-q)f(x) < T2
Let F:[0,00) — [0,00) be a C*-function with F'(t) >0 and F(t) < tF'(t) <
%F (1) on t e (0,00). Suppose that u is F-harmonic map with finite F-energy, then

u is a constant map.

Remark 1.1. 1t is easy to see that theorem A is the special case of theorem
A’ when f =1 on R™.

Remark 1.2. In the cases of harmonic map and p-harmonic map, the
condition F(r) < tF'(f) < %F (t) say nothing but m > 2 and m > p respectively.
Therefore, theorem A’ is an extension of [6] and [11] for harmonic map and p-
harmonic map.

Secondly, using F-stress-energy tensor (defined by M. Ara in [1]), Hessian
comparison theorem and Laplace comparison theorem developed by Q. Ding in
[12], we obtain the following Liouville-type theorem for F-harmonic map.

THEOREM B. Let M™ be a m-dimensional (m > 1) complete noncompact
simply-connected Riemannian manifold, its sectional curvature Ky satisfies —a*> <
Ky < —b?%, where a, b are some positive constants. Assume that u: M — N be a
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F-harmonic map with slowly divergent F-energy (see the definition below) from M
to any n-dimensional Riemannian manifold N". Then u must be a constant map
when (m — 1)bF(t) — 2taF'(t) > 0.

Remark 1.3. In the cases of harmonic maps and p-harmonic maps,

o L -1
the condition (m — 1)bF(t) — 2taF’(t) > 0 implies that me —a>0 and
-1 . . .
me —a > 0 respectively. Therefore, Theorem B is an extension of [9] and

[10] for harmonic maps and p-harmonic maps respectively.

THEOREM C. Let M™ be a m-dimensional (m > 1) complete noncompact
simply-connected Riemannian manifold, its sectional curvature Ky, satisfies —a®> <
Ky <0, and its Ricci curvature Ricy < —b>, where a, b are some positive
constants. Assume that u: M — N be a F-harmonic map with slowly divergent
F-energy (see the definition below) from M to any n-dimensional Riemannian
manifold N". Then u must be a constant map when bF(t) — 2taF'(t) = 0.

Remark 1.4. Theorem C is also an extension of the result of [9] for
harmonic maps, since the condition bF(t) — 2taF’(t) > 0 implies that b > 2a

when F(f) =1t
For smooth map u: M — N, we called the F-energy slowly divergent, if
o 1
there exists certain positive function W(r) on M satisfy L:— dr =400,
(R; > 0), such that ()
du®
FlE=D
(1.3) ( .
1.3 lim J — v, < 400,
R—=® Jpr(0) Y(r(x) ¢

where r(x) be the distance function from fixed point O € M, and Bg(O) denotes
the geodesic ball of radius R and centered at O. In particular, when y(r) is a
positive constant, (1.3) is nothing but the finiteness of F-energy.

2. Preliminaries and some lemmas

Let F:[0,00) — [0,00) be a C>-function such that F' >0 on (0,0). Let
u: M — N be a smooth map from an m-dimensional Riemannian manifold
(M,g) to a Riemannian manifold (N, /). We call ¥ an F-harmonic map if it is
a critical point of F-energy functional. That is, u is an F-harmonic map if and
only if
d

— Er(u)] = =0,

(2.1) -

for any compactly supported variation u, : M — N (—¢ < t < ¢&) with uy = u.
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Let V and ¥ V always denote the Levi-Civita connections of M and N
respectively. Let V be the induced connection on u 'TN defined by VyW =
NV,..xW, where X is a tangent vector of M and W is a section of u"!TN. We
choose a local orthonormal frame field {e;};2, on M, then the F-tension field
tr(u) of u defined by (cf. [1))

e ,hwv ) ,ij }
tr(u) = Ve | F'| —— |use; | = F'| —— |u. Ve
= 3ofou (1 ‘

=F' <|d3|2> w(u) + u*{grad (F’ <|d;¢|2>> },

where t(u) = 3.7, (Vou.e; — u.Vye;) is the tension field of u.
Under the notation above, following from [1], the first variation formula for
F-harmonic map reads as

d
22) GER W= BV e,
d . .
where V' = % . Therefore a smooth map u: M — N is an F-harmonic map
1=

if and only if the F-tension field 7x(u) = 0. Many examples of F-harmonic map
are given in [1].

For the smooth map u: (M™,g) — (N",h), M. Ara introduces in [1] the
stress energy tensor Sr(u) of u associated to the F-energy functional Ep (which
we call, the F-stress energy tensor of u, in short) is given by

2 2
Se(u) = F('d;" ) g Ff('”l;" ) uh,

For any vector field X on M, the relation between F-tension field and F-
stress energy tensor can be written as

(2.3) (div Sp(u))(X) = —h(tr(u), u.X).
LemMma 1. Let D < M be a compact domain, its boundary 0D be a smooth

hypersurface in M. Then, for any C>-map u:(M,g) — (N,h) and any smooth
vector field X on M, we have

(2.4) J"D F(%)g(X, n)v, = LD F' <@>h(u*X, u.n)v, + J (div Sg(u))(X)v,

D

+J (Se(u), VX Do,
D

where n be the unit normal vector of 0D.
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Proof.  Choosing a local orthonormal frame field {e;}!", on M, and define
VX(ei,e;) :=<Ve,X, e, then

2
F”P%P%mW(mXuka h(u. X, t(u)) — <VX, u*hd}
d1v< <|dg| >h(u*X, u*e[)ei> —h(uX,tr(u)) — <VX F’ <|d3| ) u h>.
Therefore

2o w(r(4))
<VE,F<"’;" ))g(x, &)+ F' ("ﬁ") (Ve X )
v F<'d;" ) +F<'d” )<VX 9

2
= div (F' (@)h(u*X, u*e,-)e,) — h(u.X,tr(u)) + <VX, Sr(u)).

Now, for compact domain D in M, taking local orthonormal frame field
{e;};~, on M along dD, such that ey,..., e, € (T3D), and e, = n be the unit
normal vector of dD. Integrating (2.5) on D, by means of Green’s theorem and
(2.3), we complete the proof of Lemma 1.

3. The Proof of Theorem A and A’

Define a family {V;}, g+ of maps V;: R”™ — N by V;(x) = u(tx) for x e R"™,
and set

(3.1) mmo:LwFG%fym

where B(R) = {xeR"||x| < R}. Applying Green’s theorem, we have
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0 A 1av? d
. — = dv;,—(dV, ’
(2 ORI, B(R)F< 3 ) (g @) v
(5 v (a(5))
= F'| — | du,V|dul r— v
B(R)< ( 2 or g
_ o o [l 2
= B(R)<d (F( 5 du |, du r&r vy
JrRJ F' |du|2 du 2 du ri o
0B(R) 2 an ’ (’3r R

0 J . .
where PP f _16_ 1s the unit normal and o denotes the volume element
n r

of the induced Riemannian metric on dB(R). By the F-harmonic condition

2 ja)
| F |dul dul =0 and dul 2 = du g , it follows that
2 on or

d
(3.3) < O(R,1)|,_; 0.

On the other hand, reparameterizing the integral (3.1), we get

By a direct calculation, we have

(3.5)
%(D(R, 1)
= et [P (3 Yt AL 2N i (Y)

B %tim J B(1R) r (% ef (é) hia (u(x)) auakx(ix ) au@l)EjC) A (3_’6) (% j—j;) *

0 RE 2 (3 (ratun TE EE (o

o e 584 ()
(

X hy(u(x)) auakx(f) ab;lg) {[fl (?) * % o C)
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At t=1, we obtain from (3.5)

(36) <R,

2 2
Lo () ()
/ |du|2 |du|2 m |du|2 "(m—2)/2 af
+JB(R) Fil=-] = —5Fl > S (x)<x,-a—xi> dx

+RJ Rm—ZF |du| fm/Z( )
0B(R)

If F(r) <tF'(r) < %F(l), combining (1.2) and (3.6), we get

i |dl/l| m/2
(37) GORD=q| ( )f (x) d

+RJ Rm72F |du| fm/Z( )
0B(R)

d
= (R 1) + R O(R.1).

d
From (3.3) and (3.7), we have ¢®(R,1) +Rd—<D(R, 1) > 0. Therefore, for all
R >0, it follows that R

(3.8) %{R‘@(R, 1)} > 0.

Now, suppose that u is a nonconstant F-harmonic map, by the continuation
property, |du|> cannot vanish identically on some open set in R”. Thus there
dul? .
exists Ry >0 and C >0, such that fB % vy, > C, meanwhile, for all

R > Ry, we have

2 q 2 q
J 714 ng(&) J (1l ngC(&),
B(R) 2 R )by 2 R

since ¢ < 0, hence

. |du|?
Ep(u) = 1;13}) JB(R)F< 5| v > o0,
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which gives a contradiction to the finiteness condition of Ep(u). We complete

the proof of theorem A’ and theorem A as a corollary of theorem A’.

4. The Proof of Theorem B and C

Proof of Theorem B. Denoted by D = Bg(xy) the geodesic ball of radius R
and centered at xo € M. Taking X = r% eT\M (% denoted unit radial vector
field and r =r(x) denoted the distance function from xp). Choosing a local
orthonormal frame field {el,...,eml,%} on M. After applying D = Bgr(xo)

and X = r% to (2.4), we have

@.1) JB( (an SF(u))(X)vg—i—J Sk (), VX o,

Br(xo)

e |
= F - g(X,n)v, — F > h(u. X, u.n)v,
0BR(x0) 0BRr(xo)
2 2
=RJ (1] Ug_RJ (1l h<u*£7u*ﬁ>vg
0Br(x0) 2 0BRr(x0) 2 or or
<RJ F |du|2 Ug.
B 0Br(x0) 2 !

Now, we will compute the item {Sr(u), VX on the left hand side of (4.1).

. . 0l .. .
For this purpose, using local orthonormal frame field {el Ve ,em_l,a—}, it is easy
to see that r
0 0
VojarX = R Ve, X =1V, Fr r Hess(r)(e;, e))e;,

div X = 1 +r Hess(r)(e;,e;), 1<i<m-—1,

where Hess(-) denoted the Hessian operator, i.e. Hess(r)(e;, ¢;) = V,, Ver — (Ve,ei)r.
So

du?
F > h(u.e,, uep) - g(Ve, X, ep)

_ o ldul’ e o 0
F< 3 r Hess(e;, e;)h(u.e;, u.e;) + h u*a,u*a .

Then
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2 2
{Sp(u),VX) = F<|d;|> divX — F' <d;| )h(u*ea,u*eﬁ) -g(Ve, X, €p)

|dlul
F( 3 )( + r Hess(r)(e;, €:))

)

“or

If the sectional curvature K, of M satisfy the condition in Theorem B,
applying Hessian comparison theorem (cf. [9]), we compute directly and get
(4.2) <Sp(u),VX)

> ('d”|>{1 (m — 1)(br) coth(br)}

S

> <|du|>{1 (m — 1)(br) coth(br)}

- F' (@) {(ar) coth(ar)

<|du| ){l + (m — 1)(br) coth(br)} — F' <|d2| )(ar) coth(ar)|du)?

> <|d;‘| >+r coth(br){( —1)b- F<|d”| ) aldu)*F’ ('d;‘ )}

Hence, when (m — 1)bF(t) —2taF'(t) = 0, it follows from (4.2)

(4.3) (Sp(u), VX >F<|d;| )

+ r Hess(r)(e;, €;)h(u.e;, u*ej)}.

F 2

*or

+ (ar) coth(ar)h(u.e;,u.e;) }

2
Uy

o + (ar) coth(ar)h(u.e;, u*ei)}

According to (2.3), (4.1) and (4.3), for F-harmonic map u, we obtain

(4.4) RJ F Jdi* b >J F du” v
. g = g-
0BR(xo) 2 ! Bg(x0) 2

Suppose that u: (M™,g) — (N",h) is a non-constant F-harmonic map, i.e.
|du|* # 0 at some point of x € M, then there exists Ry > 0, such that, when

R > Ry,
2
J F<M> vy > Co,
2
Br(x0)
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where Cy be a positive constant. From (4.4), then

|du| 2 Co
4.5 J F v, > —.
( ) Ba(x0) ( 2 9 R

Since the F-energy of u divergent slowly, therefore, (4.5) will imply

dul?
F( 2|>(x) “ 4R du”
wf I (),
Br(xo) 0BRr(xo)

R—x 0 lp(R 2

* dR
=G Jo RU(R)

“ dR
>0 | -
That’s in contradiction with F-energy of u being slowly divergent. So u must be
a constant map. We complete the proof of Theorem B.

Proof of Theorem C. We will continue using the symbol in the proof
. . 0 . .
of theorem B. Taking another form of divergence for X = ra re. divX =

1+ rAr. Since Ricy < —b?, the Laplace comparison theorem (cf. [12]) due to
Q. Ding says
Ar = b - coth(br),
then
(4.6)  <Sr(u),VX)

> ('d“| ){1 (br) coth(br)}

A

> ('d”| ){1 (br) coth(br)}

—F' (@) {(ar) coth(ar)|u

<|du >{1 (br) coth(br)} — F' <d2 )(ar) coth(ar)|dul*

(4 mnfo (4) o ().

62

*or

+ (ar) coth(ar)h(u.e;, U*ei)}

2

5 + (ar) coth(ar)h(u.e;, u*e,-)}
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Meanwhile, when bF(t) — 2taF'(t) > 0, (4.6) becomes
duf?
2

(4.7) (Sp(u), VX > F

For F-harmonic map u, applying D = Bgr(xp) and X = I to (2.4), com-

bining (2.3) with (4.7), by proceeding similarly as in the proof of theorem B, we
proved that ¥ must be a constant map.
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