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Abstract

Consider the group SLð2;ZÞ acting on the circle consisting of rays from the origin

in R2. The action of parabolic elements or transvections X A SLð2;ZÞ ðTr X ¼ 2Þ
have 2 fixed points on the circle. A half transvection is the restriction of the action of a

parabolic element to one of the invariant arcs extended by the identity on the other

arc. We show that the group G generated by half transvections is isomorphic to the

Higman-Thompson group T , which is a finitely presented infinite simple group. A

finite presentation of the group T has been known, however, we explain the geometric

way to obtain a finite presentation of the group T by the Bass-Serre-Haefliger theory.

We also give a finite presentation of the group T by the generators which are half

transvections.

1. Introduction

This paper concerns the following natural question posed by A’Campo to
the author. Consider the group SLð2;ZÞ acting on the circle consisting of rays
from the origin in R2. Parabolic elements X A SLð2;ZÞ ðTr X ¼ 2Þ have 2 fixed
points on the circle. These are called transvections. A half transvection is
the restriction of the action of a parabolic element to one of the invariant arcs
extended by the identity on the other arc. A’Campo asked the nature of the
group G generated by the half transvections. This paper shows that the group G
is isomorphic to the Higman-Thompson group T , which is a finitely presented
infinite simple group.

The Higman-Thompson groups are studied by many people. We refer the
reader to an excellent reference [4] for the Higman-Thompson group T as well as
F which we also need.
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Let Z½1=2� denote the ring of dyadic numbers fp=2n; p A Z; n A Zb0gHR.
The group T can be defined to be the group of the orientation preserving
piecewise linear homeomorphisms f of the circle R=Z such that f maps the set of
dyadic numbers Z½1=2�=Z to itself, the nondi¤erentiable points of f are contained
in Z½1=2�=Z, and the slopes of f are powers of 2.

This group T is isomorphic to the group of orientation preserving auto-
morphisms of the infinity of the infinite trivalent tree T ([7], [4] where this fact
is attributed to Thurston). It is well-known that the group of the orientation
preserving automorphisms of the tree T is isomorphic to PSLð2;ZÞ. Then the
group of piecewise PSLð2;ZÞ, C1-di¤eomorphisms of the circle at infinity is
isomorphic to the group T .

To show the isomorphism between the group G generated by half trans-
vections and the group T , it is enough to know about above equivalent defi-
nitions of the group T and the generators of the group T . This is shown in §2
after a review of the Higman-Thompson groups T and F .

The group F is the group of the orientation preserving piecewise linear
homeomorphisms f of the interval ½0; 1� such that the nondi¤erentiable points of
f are contained in Z½1=2�=Z and the slopes of f are powers of 2 (hence f maps
the set of dyadic numbers Z½1=2�V ½0; 1� to itself ).

The commutator subgroup ½F ;F � of the group F coincides with the subgroup
of F consisting of elements which are the identity on a neighborhood of f0; 1g.
It is easy to show that ½F ;F � is perfect (½F ;F � ¼ ½½F ;F �; ½F ;F ��) and this implies
that ½F ;F � is simple ([5], [1]). Since the group T has fragmentation property, the
group T is also a simple group ([5], [1]).

Thus the simplicity of the group T has a geometric proof. We may look for
a geometric way to find a finite presentation of the group T .

The group F is finitely presented and a finite presentation of F can be
obtained by looking at the action of the group F on a certain complex ([2], [3]).
For the group T , we look at the action of T on the complex consisting of triangle
with vertices in Z½1=2�=Z in §3. Then by the Bass-Serre-Haefliger theory ([8]),
we obtain a finite presentation of the group T . §3 also contains a brief review of
the Bass-Serre-Haefliger theory.

Since half transvections are also natural generators for the group T , we expect
to have a simple finite presentation with respect to half transvections. In §4, we
give the presentation of the group T by the generators which are half transvections.

A part of this paper was presented in a lecture at Encounter with Math-
ematics, at Chuo University, Tokyo, in October 1998. The author thanks Vlad
Sergiescu who pointed out several recent references on the Higman-Thompson
groups to him. The author also thanks Yakov Eliashberg for his warm hos-
pitality during his stay at Stanford University in 1999, where this paper is written.

2. The Higman-Thompson groups

In this section we review the Higman-Thompson groups F and T . An
excellent reference is the paper [4] by Cannon, Floyd and Parry. These groups
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F and T are represented as groups of piecewise linear homeomorphisms of the
interval or of the circle. We can write down a piecewise linear homeomorphism
f of ½a0; ak� to itself as follows.

f ¼ PL
a0; . . . ; ak
b0; . . . ; bk

� �
;

where a0 < � � � < ak, b0 < � � � < bk, a0 ¼ b0, and ak ¼ bk. This represents the
piecewise linear homeomorphism f of ½a0; ak� such that

f ðxÞ ¼ bi � bi�1

ai � ai�1
ðx� ai�1Þ þ bi�1 on the interval ½ai�1; ai�:

This can be described by the rectangle diagram [4]. We prefer to drawing
the map being from the right side to the left side of the rectangle as in Figure 2.1.

The Higman-Thompson group F is the group of piecewise linear homeo-
morphisms f of the interval ½0; 1� such that the nondi¤erentiable points of f are

Figure 2.1
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contained in Z½1=2� and the slopes of f are contained in f2n; n A Zg. Then an
element f of the group F maps the set of dyadic numbers ½0; 1�VZ½1=2� to itself.

It is known that the Higman-Thompson group F is generated by the fol-
lowing piecewise linear homeomorphisms x0 and x1 ([2], [3], [4]);

x0 ¼ PL
0; 1=4; 1=2; 1

0; 1=2; 3=4; 1

� �
;

x1 ¼ PL
0; 1=8; 1=4; 1=2; 1

0; 1=4; 3=8; 1=2; 1

� �
:

The rectangle diagrams of x0 and x1 are shown in Figure 2.1.
A presentation of the group F is given as follows ([2], [3], [4]). This

presentation can be obtained by looking at the action of the group F on a certain
complex ([2], [3]).

F ¼ hx0; x1: x2 ¼ x�1
0 x1x0; x3 ¼ x�2

0 x1x
2
0 ; x

�1
1 x2x1 ¼ x3; x

�1
1 x3x1 ¼ x�1

0 x3x0i:

The group F is a group of 2 generators and 2 relations. Figure 2.1 shows that
the piecewise linear homeomorphisms x0 and x1 satisfy the above relations.

The Higman-Thompson group T is defined to be the group of the orien-
tation preserving piecewise linear homeomorphisms f of the circle R=Z such that
f maps the dyadic numbers Z½1=2�=Z to itself, the nondi¤erentiable points of f
are contained in Z½1=2�=Z, and the slopes are contained in f2n; n A Zg.

A finite presentation of the group T is given in [4]. We explain the way to
obtain a finite presentation of the group T by the Bass-Serre-Haefliger theory [8]
in §3.

Now we look at the group G generated by half transvections and show that
GGT .

Theorem 2.1. Let G be the group of the C1 di¤eomorphisms of the circle
which is generated by half transvections, where a half transvection is the restriction

Figure 2.2
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of the action on the set of rays of a parabolic element X A SLð2;ZÞ to one of the
invariant arcs extended by the identity on the other arc. Then the group G is
isomorphic to the Higman-Thompson group T .

In order to look at the relationship between the groups G and T , it is better
to consider T as the group of orientation preserving automorphisms of the
infinity of the infinite trivalent tree T ([7], [4]). It is well-known that the group
of the orientation preserving automorphisms of the tree T is PSLð2;ZÞ. Then
the group of piecewise PSLð2;ZÞ, C 1-di¤eomorphisms of the circle at infinity is
isomorphic to the group T ([7], [4]).

Now the double covering group SLð2;ZÞ of PSLð2;ZÞ acts on the double
covering space ŜS1

y of the circle S1
y at infinity of the hyperbolic plane. For ŜS1

y,
we consider the double cover of the infinity of the tree T. Since this space
is isomorphic to the infinity of the original tree, SLð2;RÞ can be written as a
subgroup of T .

Remark 2.2. In the same way, the k-fold covering group of PSLð2;RÞ is
contained in the group T .

It is well-known that SLð2;ZÞ is generated by
1 1

0 1

� �
and

1 0

�1 1

� �
. As

an element of PSLð2;ZÞ, the matrix
1 1

0 1

� �
acts on the tree as a translation

fixing y A S1
y this corresponds to the element x0 of the group F HT . The

matrix
1 1

0 1

� �
A SLð2;RÞ is acting the double cover of the infinity of the tree

T, and we see that the action corresponds to the element x1y1 in the group
T , where y1 ¼ x2

0x
�1
1 x�1

0 . The set of rays is considered with clockwise orien-
tation here, because x=y is considered as an element of the circle at infinity of the
hyperbolic plane.

In a similar way,
1 0

�1 1

� �
A SLð2;RÞ corresponds to the element u1v1 in

the group T , where the piecewise linear homeomorphisms u1 and v1 are drawn in
Figure 2.3.

Now the transvections x1y1, u1v1 are the products of the half transvections
x1, y1, u1, v1. We are considering the group G generated by x1, y1, u1, v1.
Since x1, y1, u1, v1 are elements of the group T , we see that the group G is a
subgroup of T . Note that the group G is precisely the group of piecewise
SLð2;ZÞ, C 1-di¤eomorphisms of the circle.

Remark 2.3. The group T acts on the dual tesselation of the infinite
trivalent tree. This is studied by Penner and others ([11], [12], [9], [10]).

We are going to show that G ¼ T . Since the group G is a subgroup of T ,
it is just necessary to show that generators of the group T are written by x1, y1,
u1, v1.
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Proof of Theorem 2.1. The group T is known to be generated by x0, x1 and
o, where o is represented as a piecewise linear homeomorphism of R=Z such that
oð½0; 1=4�Þ ¼ ½1=4; 1=2�, oð½1=4; 1=2�Þ ¼ ½1=2; 1�, and oð½1=2; 1�Þ ¼ ½0; 1=4� ([4], see
also §3). (As a piecewise PSLð2;ZÞ, C1-di¤eomorphism, o is represented by

1 1

�1 0

� �
A PSLð2;ZÞ.)

Now x0 and o are written as follows (see Figure 2.4).

x0 ¼ y1u1x1;

o ¼ x1v1 y1 y1u1x1:

Thus we showed G ¼ T . r

Figure 2.3

Figure 2.4
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3. A finite presentation of the group T

In this section we explain a method by Haefliger [8] to give a finite pre-
sentation of the group T and carry it out.

We consider a simply connected simplicial 2-complex ~XX where the group
T acts without inversion. Then the quotient space X ¼ ~XX=T has the structure
of a complex of groups. Haefliger showed the following theorem for the finite
presentation of the group T ([8]).

Theorem 3.1 (Finiteness Theorem [8]). Let ~XX be a simply connected
simplicial 2-complex where the group T acts without inversion. If X ¼ ~XX=T is
finite complex and the isotropy groups associated to triangles, edges and vertices
are finitely presented, then T is finitely presented. Moreover there is an algorithm
to give a presentation.

Let ~YY be the 2-dimensional simplicial complex of the triangles with vertices
in the dyadic numbers Z½1=2�=Z. More precisely, let Cn be the set of sets of n
distinct points of the dyadic numbers Z½1=2�=Z. We have the face operators
Cnþ1 ! Cn and its geometric realization is an infinite dimensional simplex with
vertices Z½1=2�=Z. Let ~YY be its 2-skeleton. Then ~YY is simply connected as the
2-skeleton of a contractible space.

Since the group T contains the rotation by any number in Z½1=2�=Z, the
group T acts transitively on Z½1=2�=Z. The isotropy group of a point is iso-
morphic to the group F . Since for any point t in ð0; 1ÞVZ½1=2�, ½0; t� and ½t; 1�
can be subdivided into a union of intervals of length of powers of 1=2, the group
F acts transitively on ð0; 1ÞVZ½1=2�. Hence the group T is doubly transitive on
Z½1=2�=Z. Then by the same reasoning, the group T acts transitively on the sets
of 3 distinct points of Z½1=2�=Z.

Now we look at the simplicial action of the group T on the simplicial
complex ~YY . There are elements of the group T which fix an edge and the
restrictions of their actions to the edge are not the identity but the inversions.
There are also elements of the group T which fix a triangle and the restrictions
of their actions to the triangle are not the identity but the simplicial rotation of
order 3.

A simplicial action of a group is said to be without inversion if an element of
the group fixes a simplex then the restriction of its action to the simplex is the
identity.

Since the action of the group T on the simplicial complex ~YY has inversions,
we look at the action of the group T on the barycentric subdivision ~XX ¼ ~YY 0 of
~YY . Then the action of the group T on ~XX is without inversion.

The quotient space X ¼ ~XX=T has 3 vertices p0, p1, p2, where p0 corresponds
to the vertices of ~XX , p1 to the barycenters of the edges of ~XX and p2 to the
barycenters of the triangles of ~XX . The edges of the quotient space X are p0 p1,
p1 p2 and p0 p1. There are 2 triangles t1 and t2, and X is topologically a 2-
sphere. A fundamental domain for X is drawn in Figure 3.1.
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The isotropy groups of the lifts of a simplex of X are isomorphic. The
isomorphism classes of the isotropy groups of the simplices are as follows.

Gp0 GF ; Gp1 GF 2 zZ=2Z; Gp2 GF 3 zZ=3Z;

Gp0p1 GF 2; Gp1p2 GF 3; Gp0p2 GF 3;

Gt1 GF 3; Gt2 GF 3:

Here the groups F , F 2 and F 3 are isomorphic to the subgroups of T fixing
1, 2, and 3 points in Z½1=2�=Z, respectively, and the isotropy groups Gp1 and Gp2

permute these points cyclically.
Since the group F is finitely presented (hence so are F 2, F 3, F 2 zZ=2Z,

F 3 zZ=3Z), Finiteness Theorem 3.1 already says that the group T is also finitely
presented ([8]).

In order to obtain the presentation of the group T , we need the following
information on the relationship between the isotropy groups ([8]).

Figure 3.1

Figure 3.2
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The group T acts on ~XX without inversion. We consider that the isotropy
groups are attached to the vertices of the barycentric subdivision X 0 of X . Take
a lift of each simplex of X in ~XX , or equivalently take a lift ~pp of each vertex p of
X 0 in ~XX 0. Then in the group T , we have the isotropy subgroups G~pp of ~pp A ~XX 0.

Take an edge pq of X 0, where p is a face of q in X . Since we lift q to ~qq, p
is a face of q in X and the action is without inversion, we have a unique lift ~pp 0 ~qq
of the edge pq. Then the isotropy subgroup G~qq is a subgroup of the isotropy
subgroup G~pp 0 . The lifted vertex ~pp 0 may be di¤erent from ~pp, however by taking
an element h~pp 0 ~qq of the group T which sends ~pp 0 to ~pp, h~pp 0 ~qqG~qqh

�1
~pp 0 ~qq is a subgroup of

the isotropy subgroup G~pp.
Let pqr be a triangle of X 0, where p is a face of q in X and q is a face of r

in X . Since we lift r to ~rr and the action is without inversion, we have a unique
lift ~pp 00 ~qq 0~rr of the triangle pqr, where ~qq 0~rr is the previously chosen lift for qr and ~pp 00~rr
is the previously chosen lift for pr. Moreover h~qq 0~rr sends ~pp 00 ~qq 0 to ~pp 0 ~qq, where ~pp 0 ~qq
is the previously chosen lift for pq. Now h~pp 00~rrG~rrh

�1
~pp 00~rr and h~pp 0 ~qqh~qq 0~rrG~rrh

�1
~qq 0~rrh

�1
~pp 0 ~qq are

subgroups of the isotropy subgroup G~pp. They are conjugated by g~pp 00 ~qq 0; ~qq 0~rr ¼
h~pp 0 ~qqh~qq 0~rrh

�1
~pp 00~rr A T which is an element of G~pp.

Now assume that we only know of the information of the isotropy groups
and their relationship. That is, assume that we have the presentations of the
isotropy groups Gp for the vertices p of X 0, the injective homomorphism cpq :
Gq ! Gp for each edge pq of X 0 (which was given by a conjugation by h~pp 0 ~qq), and
elements gpq;qr A Gp such that gpq;qrcprg

�1
pq;qr ¼ cpqcqr for triangles pqr of X .

The complex X with the data Gp, cpq, gpq;qr is called the complex of groups
([8]). The elements gpq;qr satisfy the cocycle condition ([8]). Then we have the
following presentation theorem [8].

Theorem 3.2 (Presentation Theorem [8]). Let ðX ¼ ~XX=T ;Gp;cpq; gpq;qrÞ be
the complex of groups obtained from the action of the group T without inversion
on simply connected simplicial complex ~XX . Let T be a maximal tree for the
barycentric subdivision X 0. Then a presentation of the group T is given as follows.

Generators of Gp for the vertices p of X 0.
Generators hpq corresponding to the oriented edges pq outside of the tree T.
Relations of Gp for the vertices p of X 0.
Relations coming from the edges; hpqgh

�1
pq ¼ cpqðgÞ for the generators of Gq,

that is, hpqgh
�1
pq is written in terms of the generators of Gp.

Relations coming from the triangles; gpq;qrhpr ¼ hpqhqr for the triangle pqr.

Remark 3.3. If X is not a simplicial complex, then the set of vertices may
not determine an edge or a triangle. In practice, however, X would be given as a
simplicial complex with identification and we do not meet the ambiguity coming
from this fact.

Remark 3.4. We are assuming that Gp are presented. For an edge pq of
X 0, choosing the lift ~pp to be the lift ~pp 0 which is determined by ~qq is choosing Gq to
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be the subgroup of Gp and the homomorphism cpq to be the inclusion. For the
edges pq in the tree T, one can always choose the homomorphism cpq to be the
inclusion. These simplify the computation.

The complex of groups associated to X usually uses the barycentric sub-
division of X as above. In our case, we note that the inclusions Gt1 ! Gp0p2 and
Gt2 ! Gp0p2 can be taken to be the identity. Hence we can use the complex in
the following figure (Figure 3.3). The reason will become clear during the actual
computation.

Now we proceed as follows to give an explicit finite presentation.
We take the triangle D with vertices 0, 1=4, 1=2 in ~YY . See Figure 3.1. We

look at the barycentric subdivision of D. We take the lift ~pp0 of p0 to the vertex
0, then the isotropy group G~pp0 is the isotropy subgroup T0 at 0 of the action of
the group T and it is identified with the group F generated by x0 and x1. We
lift the 2 triangles t1 and t2 to the triangles of the barycentric subdivision of D
which has the vertex 0. Then p0 p2 is lifted to the common edge ~pp0 ~pp2. By the
choice of the lift ~pp0 ~pp2, G~pp0 ~pp2 GF 3 is the subgroup T0;1=4;1=2 of the group T which
fixes 0, 1=4 and 1=2, hence it is generated by x2, x3, y1, y2, z2, z3 shown in
Figure 3.4.

We choose the lift ~pp0 ~pp1 of p0 p1 on the edge joining 0 and 1=2. Then
G~pp0 ~pp1 GF 2 is the subgroup T0;1=2 of the group T which fixes 0 and 1=2 and it
is generated by x1, x2, y1, y2. The group G~pp1 ~pp2 GF 3 is also the group T0;1=4;1=2

generated by x2, x3, y1, y2, z2, z3.
Let r denote the half rotation. Then the isotropy group G~pp1 GF 2 zZ=2Z

is the subgroup Tf0;1=2g of the group T which fixes the set f0; 1=2g and it is
generated by x1, x2, y1, y2 and r.

Let o be the element order 3 of the group T defined before. Then G~pp2 G
F 3 zZ=3Z is the subgroup Tf0;1=4;1=2g which fixes the set f0; 1=4; 1=2g and it is
generated by x2, x3, y1, y2, z2, z3 and o.

Let q1, q2, and q0 denote the barycenters of ~pp0 ~pp2, ~pp1 ~pp2, and ~pp1 ~pp2, re-
spectively. Put ~pp 0

1 to be the other lift of p1 on the other triangle, and q 0
0 and q 0

2
to be the barycenters of ~pp 0

1 ~pp2 and ~pp0 ~pp
0
1, respectively.

Figure 3.3
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We take a maximal tree consisting of four edges ~pp2q0, q0q1, q2q1, ~pp0q2,
~pp1q2. On these edges the corresponding homomorphisms are inclusions.

Note that the edge ~pp2 ~pp
0
1 is sent to ~pp2 ~pp1 by o�1 and the edges ~pp0 ~pp

0
1 is sent

to ~pp0 ~pp1 by ro�1. Hence Gq 0
0
¼ oGq0o

�1 and Gq 0
2
¼ ðro�1Þ�1

Gq2ro
�1. We use

the identification by o�1 between G~pp 0
1
and G~pp1 ; G~pp 0

1
¼ oG~pp1o

�1.

By Presentation Theorem 3.2, the group T has the following presentation:

Generators of G~pp0 ¼ T0, G~pp1 ¼ Tf0;1=2g, G~pp2 ¼ Tf0;1=4;1=2g,
Gq0 ¼ G~pp1 ~pp2 ¼ T0;1=4;1=2, Gq1 ¼ G~pp0 ~pp2 ¼ T0;1=4;1=2, Gq2 ¼ G~pp0 ~pp1 ¼ T0;1=2.
Generators corresponding to the oriented edges outside of the tree:
h~pp0q1 , h~pp1q1 , h~pp2q1 , h~pp 0

1
q1 , hq 0

0
q1 , hq 0

2
q1 , h~pp1q0 .

Relations for G~pp0 ¼ T0, G~pp1 ¼ Tf0;1=2g, G~pp2 ¼ Tf0;1=4;1=2g,
Gq0 ¼ T0;1=4;1=2, Gq1 ¼ T0;1=4;1=2, Gq2 ¼ T0;1=2.
Relations coming from the edges:
g ¼ c~pp0q2

ðgÞ, g ¼ c~pp1q2
ðgÞ for the generators g of Gq2 .

g ¼ cq0q1
ðgÞ, g ¼ cq2q1

ðgÞ,

Figure 3.4

Figure 3.5
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h~pp0q1gh
�1
~pp0q1

¼ c~pp0q1
ðgÞ, h~pp1q1gh

�1
~pp1q1

¼ c~pp1q1
ðgÞ,

h~pp2q1gh
�1
~pp2q1

¼ c~pp2q1
ðgÞ, h~pp 0

1
q1gh

�1
~pp 0
1
q1
¼ c~pp 0

1
q1
ðgÞ,

hq 0
0
q1gh

�1
q 0
0
q1
¼ cq 0

0
q1
ðgÞ, hq 0

2
q1gh

�1
q 0
2
q1
¼ cq 0

2
q1
ðgÞ for the generators g of Gq1 .

g ¼ c~pp2q0
ðgÞ, h~pp1q0gh

�1
~pp1q0

¼ c~pp1q0
ðgÞ for the generators g of Gq0 .

Relations coming from the triangles:
g~pp0q2;q2q1h~pp0q1 ¼ 1, g~pp1q2;q2q1h~pp1q1 ¼ 1,
g~pp1q0;q0q1h~pp1q1 ¼ h~pp1q0 , g~pp2q0;q0q1h~pp2q1 ¼ 1,
g~pp2q 0

0
;q 0

0
q1h~pp2q1 ¼ hq 0

0
q1 , g~pp 0

1
q 0
0
;q 0

0
q1h~pp 0

1
q1 ¼ h~pp1q0hq 0

0
q1 ,

g~pp 0
1
q 0
2
;q 0

2
q1h~pp 0

1
q1 ¼ hq 0

2
q1 , g~pp0q 0

2
;q 0

2
q1h~pp0q1 ¼ hq 0

2
q1 .

Here the homomorphisms c�� are as follows.

c~pp0q2
is the inclusion T0;1=2 HT0.

c~pp1q2
is the inclusion T0;1=2 HTf0;1=2g.

cq0q1
is the identity map of T0;1=4;1=2.

cq2q1
is the inclusion T0;1=4;1=2 HT0;1=2.

c~pp0q1
is the inclusion T0;1=4;1=2 HT0.

c~pp1q1
is the inclusion of T0;1=4;1=2 HT0;1=2 HTf0;1=2g.

c~pp2q1
is the inclusion of T0;1=4;1=2 HTf0;1=4;1=2g.

c~pp 0
1
q1

is the composition of T0;1=4;1=2 HTf0;1=4g ! Tf0;1=2g, where the arrow is
the conjugation by o�1: g 7! o�1go.
cq 0

0
q1

is the outer automorphism of T0;1=4;1=2 given by the conjugation by

o�1: g 7! o�1go.
cq 0

2
q1

is the composition of T0;1=4;1=2 HT0;1=4 ! T0;1=2, where the arrow is the

conjugation by ro�1: g 7! ro�1gðro�1Þ�1.
c~pp2q0

is the inclusion T0;1=4;1=2 HTf0;1=4;1=2g.
c~pp1q0

is the inclusion T0;1=4;1=2 HT0;1=2 HTf0;1=2g.

The elements g�;� are as follows.

g~pp0q2;q2q1 ¼ 1 A T0, g~pp1q2;q2q1 ¼ 1 A Tf0;1=2g,
g~pp1q0;q0q1 ¼ 1 A Tf0;1=2g, g~pp2q0;q0q1 ¼ 1 A Tf0;1=4;1=2g,
g~pp2q 0

0
;q 0

0
q1 ¼ o�1 A Tf0;1=4;1=2g, g~pp 0

1
q 0
0
;q 0

0
q1 ¼ 1 A Tf0;1=2g,

g~pp 0
1
q 0
2
;q 0

2
q1 ¼ ðro�1Þo ¼ r A Tf0;1=2g, g~pp0q 0

2
;q 0

2
q1 ¼ ro�1 ¼ x0 A T0.

Then by the information on g�;�, the elements h� are determined to be 1
except

hq 0
0
q1 ¼ o�1; h~pp 0

1
q1 ¼ o�1; hq 0

2
q1 ¼ ro�1

and we have a relation coming from g�;�:

ro�1 ¼ x0:

We have the following generators for the group T .

x0; x1; x2; x3; y1; y2; z2; z3;o; r:

The elements x1, x2, x3, y1, y2, z2, z3 belong to di¤erent isotropy groups.
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However those inclusions appeared in c�� identify the elements x1, x2, x3, y1, y2,
z2, z3 in di¤erent isotropy groups.

The relations for G~pp0 ¼ T0, G~pp1 ¼ Tf0;1=2g, G~pp2 ¼ Tf0;1=4;1=2g, Gq0 ¼ T0;1=4;1=2,
Gq1 ¼ T0;1=4;1=2, Gq2 ¼ T0;1=2 are written as follows.

T0: x�2
0 x1x

2
0 ¼ x�1

1 x�1
0 x1x0x1; x�3

0 x1x
3
0 ¼ x�1

1 x�2
0 x1x

2
0x1:

T0;1=2: x�2
1 x2x

2
1 ¼ x�1

2 x�1
1 x2x1x2; x�3

1 x2x
3
1 ¼ x�1

2 x�2
1 x2x

2
1x2;

y�2
1 y2 y

2
1 ¼ y�1

2 y�1
1 y2 y1y2; y�3

1 y2 y
3
1 ¼ y�1

2 y�2
1 y2 y

2
1 y2;

x1y1 ¼ y1x1; x1y2 ¼ y2x1; x2 y1 ¼ y1x2; x2 y2 ¼ y2x2:

T0;1=4;1=2: x�2
2 x3x

2
2 ¼ x�1

3 x�1
2 x3x2x3; x�3

2 x3x
3
2 ¼ x�1

3 x�2
2 x3x

2
2x3;

y�2
1 y2 y

2
1 ¼ y�1

2 y�1
1 y2 y1y2; y�3

1 y2 y
3
1 ¼ y�1

2 y�2
1 y2 y

2
1 y2:

z�2
2 z3z

2
2 ¼ z�1

3 z�1
2 z3z2z3; z�3

2 z3z
3
2 ¼ z�1

3 z�2
2 z3z

2
2z3;

x1y1 ¼ y1x1; x1y2 ¼ y2x1; x2 y1 ¼ y1x2; x2 y2 ¼ y2x2;

y1z1 ¼ z1y1; y1z2 ¼ z2 y1; y2z1 ¼ z1y2; y2z2 ¼ z2 y2;

x1z1 ¼ z1x1; x1z2 ¼ z2x1; x2z1 ¼ z1x2; x2z2 ¼ z2x2:

Tf0;1=2g: x�2
1 x2x

2
1 ¼ x�1

2 x�1
1 x2x1x2; x�3

1 x2x
3
1 ¼ x�1

2 x�2
1 x2x

2
1x2;

r2 ¼ 1; rx1r ¼ y1; rx2r ¼ y2;

x1y1 ¼ y1x1; x1y2 ¼ y2x1; x2 y1 ¼ y1x2; x2 y2 ¼ y2x2:

Tf0;1=4;1=2g: x�2
2 x3x

2
2 ¼ x�1

3 x�1
2 x3x2x3; x�3

2 x3x
3
2 ¼ x�1

3 x�2
2 x3x

2
2x3;

o3 ¼ 1; o�1x2o ¼ y1; o�1x3o ¼ y2; ox2o
�1 ¼ z2; ox3o

�1 ¼ z3;

x1y1 ¼ y1x1; x1y2 ¼ y2x1; x2 y1 ¼ y1x2; x2 y2 ¼ y2x2;

y1z1 ¼ z1y1; y1z2 ¼ z2 y1; y2z1 ¼ z1y2; y2z2 ¼ z2 y2;

x1z1 ¼ z1x1; x1z2 ¼ z2x1; x2z1 ¼ z1x2; x2z2 ¼ z2x2:

Strictly speaking, we should use di¤erent letters for di¤erent groups. Using the
same letters is justified by the inclusions in the following relations coming from
the edges. In the following, the letters in the left-hand-sides and the letters in
the right-hand-sides are in the di¤erent groups. However the following relations
justify that they are identified.

c~pp0q2
: x1 ¼ x1; x2 ¼ x�1

0 x1x0;

y1 ¼ x2
0x

�1
1 x�1

0 ; y2 ¼ x0x
2
1x

�1
0 x�1

1 x0x
�1
1 x�1

0 :

c~pp1q2
: x1 ¼ x1; x2 ¼ x2; y1 ¼ y1; y2 ¼ y2;

cq0q1
: x2 ¼ x2; x3 ¼ x3; y1 ¼ y1; y2 ¼ y2; z2 ¼ z2; z3 ¼ z3:
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cq2q1
: x2 ¼ x2; x3 ¼ x�1

1 x2x1; y1 ¼ y1; y2 ¼ y2;

z2 ¼ x2
1x

�1
2 x�1

1 ; z3 ¼ x1x
2
2x

�1
1 x�1

2 x1x
�1
2 x�1

1 :

c~pp0q1
: x2 ¼ x�1

0 x1x0; x3 ¼ x�2
0 x1x

2
0 ;

y1 ¼ x2
0x

�1
1 x�1

0 ; y2 ¼ x0x
2
1x

�1
0 x�1

1 x0x
�1
1 x�1

0 ;

z2 ¼ x2
1x

�1
0 x�1

1 x0x
�1
1 ; z3 ¼ x1x

�1
0 x2

1x
�1
0 x�1

1 x0x
�1
1 x0x

�1
1 :

c~pp1q1
: x2 ¼ x2; x3 ¼ x�1

1 x2x1; y1 ¼ y1; y2 ¼ y2;

z2 ¼ x2
1x

�1
2 x�1

1 ; z3 ¼ x1x
2
2x

�1
1 x�1

2 x1x
�1
2 x�1

1 :

c~pp2q1
: x2 ¼ x2; x3 ¼ x3; y1 ¼ y1; y2 ¼ y2; z2 ¼ z2; z3 ¼ z3:

c~pp 0
1
q1
: o�1x2o ¼ y1; o�1x3o ¼ y2; o�1y1o ¼ z2; o�1y2o ¼ z3;

o�1z2o ¼ x2; o�1z3o ¼ x3:

cq 0
0
q1
: o�1x2o ¼ y1; o�1x3o ¼ y2; o�1y1o ¼ z2; o�1y2o ¼ z3;

o�1z2o ¼ x2; o�1z3o ¼ x3:

cq 0
2
q1
: ro�1x2ðro�1Þ�1 ¼ x1; ro�1x3ðro�1Þ�1 ¼ x2;

ro�1y1ðro�1Þ�1 ¼ y21 y
�1
2 y�1

1 ;

ro�1y2ðro�1Þ�1 ¼ y1y
2
2 y

�1
1 y�1

2 y1y
�1
2 y�1

1 ;

ro�1z2ðro�1Þ�1 ¼ y2; ro�1z3ðro�1Þ�1 ¼ y�1
1 y2 y1:

c~pp2q0
: x2 ¼ x2; x3 ¼ x3; y1 ¼ y1; y2 ¼ y2; z2 ¼ z2; z3 ¼ z3:

c~pp1q0
: x2 ¼ x2; x3 ¼ x�1

1 x2x1; y1 ¼ y1; y2 ¼ y2;

z2 ¼ x2
1x

�1
2 x�1

1 ; z3 ¼ x1x
2
2x

�1
1 x�1

2 x1x
�1
2 x�1

1 :

Here the way of writing y2, z2 and z3 by the generators of di¤erent groups are
drawn in Figures 3.6, 3.7 and 3.8.

In the presentation of the group T , we have the presentation of the group
F ¼ T0. We know that the group F is isomorphic to the dyadic piecewise linear
homeomorphisms of the interval ½0; 1�. By defining x2, x3, y1, y2, z2, z3 in term
of x0 and x1, we know that the relations in T0;1=2 or T0;1=4;1=2 are derived from
the two relations of the group F . Hence those relations in terms of x0, x1, x2,
x3, y1, y2, z2, z3 follow from those of the group F . By using ro�1 ¼ x0, the
relations in terms of x2, x3, y1, y2, z2, z3 and ro�1 are also derived from the
relations of the group F . Thus we have the following list of possibly nontrivial
relations.

x2 ¼ x�1
0 x1x0, x3 ¼ x�1

1 x2x1, x�1
0 x2x0 ¼ x3, x�1

0 x3x0 ¼ x�1
1 x3x1,

y1 ¼ x2
0x

�1
1 x�1

0 , y2 ¼ x0x
2
1x

�1
0 x�1

1 x0x
�1
1 x�1

0 ,
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Figure 3.6

Figure 3.7

Figure 3.8
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z2 ¼ x2
1x

�1
2 x�1

1 , z3 ¼ x1x
2
2x

�1
1 x�1

2 x1x
�1
2 x�1

1 ,
r2 ¼ 1, o3 ¼ 1, ro�1 ¼ x0, rx1r ¼ y1, rx2r ¼ y2,
y1 ¼ o�1x2o, y2 ¼ o�1x3o, z2 ¼ o�1y1o, z3 ¼ o�1y2o.

Now we show that the first 3 lines of the above relations together with
r2 ¼ 1, o3 ¼ 1, ro�1 ¼ x0, rx1r ¼ y1 and z2 ¼ o�1y1o imply y1 ¼ o�1x2o,
rx2r ¼ y2, y2 ¼ o�1x3o and z3 ¼ o�1y2o.

In fact, noticing r2 ¼ x0ox0o ¼ 1,

oy1 ¼ oðx0oÞx1ðx0oÞ ¼ x�1
0 x1ðx0oÞ ¼ x2o:

Using this,

rx2r ¼ x0ox2x0o ¼ x0ox2o
�1ox0o

¼ x0o
2 y1o

�2x�1
0 ¼ x0o

�1y1ox
�1
0

¼ x0z2x
�1
0 ¼ y2:

Then,

oy2 ¼ oðx0oÞx2ðx0oÞ ¼ x�1
0 x2ðx0oÞ ¼ x3o:

Since

ox1o
�1 ¼ x�1

0 rx1rx0 ¼ x�1
0 y1x0 ¼ x�1

0 x2
0x

�1
1 x�1

0 x0 ¼ x0x
�1
1 ;

we have

o�1y2o ¼ o�1x0z2x
�1
0 o ¼ o�1x0oo

�1z2oo
�1x�1

0 o

¼ ox�1
0 x2x0o

�1 ¼ ox�1
1 x2x1o

�1

¼ ox�1
1 o�1ox2o

�1ox1o
�1

¼ x1x
�1
0 z2x0x

�1
1 ¼ z3:

Thus we showed the following theorem.

Theorem 3.5 [4]. The Higman-Thompson group T is presented as follows.

Generators:
x0; x1; x2; x3; y1; z2;o; r.
Relations:
x2 ¼ x�1

0 x1x0, x3 ¼ x�1
1 x2x1, x�1

0 x2x0 ¼ x3, x�1
0 x3x0 ¼ x�1

1 x3x1,

y1 ¼ x2
0x

�1
1 x�1

0 , z2 ¼ x2
1x

�1
2 x�1

1 ,
r2 ¼ 1, o3 ¼ 1, ro�1 ¼ x0, rx1r ¼ y1, z2 ¼ o�1y1o.

Remark 3.6. A finite presentation of the group T is given in [4], where it
is obtained by solving a word problem. Our presentation is equivalent to that
in [4]. Fortunately, the generators A, B and C of [4] are ix0i, ix1i and ioi,
respectively, where i : ½0; 1�=f0; 1g ! ½0; 1�=f0; 1g is the orientation reversing
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homeomorphism iðxÞ ¼ 1� x. Hence the relations in [4] is translated to the
relations in x0, x1, o by just substituting A ¼ x0, B ¼ x1, C ¼ o. Then their
relations 1) and 2) are, as the relation of F , equivalent to x2 ¼ x�1

0 x1x0, x3 ¼
x�1
1 x2x1, x�1

0 x2x0 ¼ x3, x�1
0 x3x0 ¼ x�1

1 x3x1, which is also noted in [4]. Their
relation 3) is ox1o

�1 ¼ x0x
�1
1 , and it is derived from r ¼ x0o, rx1r ¼ y1 and

y1 ¼ x2
0x

�1
1 x�1

0 as we showed. Their relation 4) is x�1
0 ox1x

�1
0 x1x0 ¼ x1x

�2
0 ox2

1 ,
and this is exactly the same formula obtained from z2 ¼ o�1y1o by substitut-
ing y1 ¼ x2

0x
�1
1 x�1

0 , z2 ¼ x2
1x

�1
0 x�1

1 x0x
�1
1 , i.e., x2

1x
�1
0 x�1

1 x0x
�1
1 ¼ o�1x2

0x
�1
1 x�1

0 o.

Their relation 5) is ox0 ¼ x�1
0 ox1x

�1
0 ox1, and this is obtained by 1 ¼ r2 ¼

x0ox0o and relation 3). Their relation 6) is just o3 ¼ 1. Conversely, their
relations imply our relations. In fact, 1) and 2) are equivalent to our first line.
Their 3), 5) and 6) imply ox0 ¼ x�1

0 ox1x
�1
0 ox1 ¼ x�1

0 ox1x
�1
0 x0x

�1
1 o ¼ x�1

0 oo ¼
x�1
0 o�1. Hence by defining r ¼ x0o we have rr ¼ 1. Then by defining
y1 ¼ rx1r, we obtain y1 ¼ x0ox1x0o ¼ x0x0x

�1
1 ox0ox0x0x

�1
1 x�1

0 rr ¼ x0x0x
�1
1 x�1

0 .
Now their 4) is x�1

0 ox1x
�1
0 x1x0 ¼ x1x

�2
0 ox2

1 or o�1x0x0x
�1
1 x�1

0 o ¼ x2
1x

�1
0 x�1

1 x0x
�1
1 ,

and we obtain z2 ¼ o�1y1o ¼ o�1x0x0x
�1
1 x�1

0 o ¼ x2
1x

�1
0 x�1

1 x0x
�1
1 ¼ x2

1x
�1
2 x�1

1 .

Remark 3.7. A finite presentation of the group T with respect to o and h
is written down in [10] which is derived from the presentation given in [4]. See
also §4.

4. A finite presentation of the group generated by half transvections

It may be interesting to write down the presentation of the group G gen-
erated by half transvections for the generators x1, y1, u1, v1. The presentation
is obtained from Theorem 3.5 by defining u1 and v1 in terms of the generators of
the group T . We define h ¼ ox1x

�1
0 which is the quarter rotation to do this.

Then we have

Generators:
x0; x1; x2; x3; y1; z2;o; r; h; u1; v1.
Relations:
x2 ¼ x�1

0 x1x0, x3 ¼ x�1
1 x2x1, x�1

0 x2x0 ¼ x3, x�1
0 x3x0 ¼ x�1

1 x3x1,

y1 ¼ x2
0x

�1
1 x�1

0 , z2 ¼ x2
1x

�1
2 x�1

1 ,
r2 ¼ 1, o3 ¼ 1, ro�1 ¼ x0, rx1r ¼ y1, z2 ¼ o�1y1o,
h ¼ ox1x

�1
0 , u1 ¼ hx1h

�1, v1 ¼ hy1h
�1.

Using h ¼ ox1x
�1
0 , ro�1 ¼ x0, rx1r ¼ y1, r

2 ¼ 1, y1 ¼ x2
0x

�1
1 x�1

0 and o3 ¼ 1,
we have

h2 ¼ ox1x
�1
0 ox1x

�1
0 ¼ ox1x

�1
0 x�1

0 rx1x
�1
0

¼ ox1x
�1
0 x�1

0 y1rx
�1
0 ¼ ox�1

0 rx�1
0 ¼ oox�1

0

¼ o�1x�1
0 ¼ r�1 ¼ r:

Then we can replace the relation o3 ¼ 1 which is used only once in the
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computation by h2 ¼ r. We substitute x2 ¼ x�1
0 x1x0 and x3 ¼ x�1

1 x2x1 to
x�1
0 x2x0 ¼ x3 and obtain

x�1
0 x�1

0 x1x0x0 ¼ x�1
1 x�1

0 x1x0x1;

which reads

x1y1 ¼ y1x1

by using y1 ¼ x2
0x

�1
1 x�1

0 . We substitute x3 ¼ x�1
1 x2x1 to x�1

0 x3x0 ¼ x�1
1 x3x1 and

obtain

x�1
0 x�1

0 x2x0x0 ¼ x�1
1 x�1

0 x2x0x1;

which reads

x2 y1 ¼ y1x2:

By substituting x0 ¼ h�1ox1 to y1 ¼ x2
0x

�1
1 x�1

0 , we have

y1 ¼ h�1ox1h
�1ox1x

�1
1 x�1

1 o�1h ¼ h�1ox1h
�1ox�1

1 o�1h;

that is,

v1 ¼ hy1h
�1 ¼ ox1h

�1ox�1
1 o�1:

x2 is written as

x2 ¼ x�1
0 x1x0 ¼ x�1

1 o�1hx1h
�1ox1:

Then y1x2 ¼ x2 y1 is written as

x�1
1 o�1hx1h

�1ox1y1 ¼ y1x
�1
1 o�1hx1h

�1ox1;

which is

o�1u1oy1 ¼ y1o
�1u1o:

Then

o�1y1o ¼ z2 ¼ x2
1x

�1
2 x�1

1

¼ x2
1x

�1
1 o�1hx�1

1 h�1ox1x
�1
1

¼ x1o
�1u�1

1 o;
that is,

y1 ¼ ox1o
�1u�1

1 :

Thus we obtain the following presentation of the group T .

Generators:
x1; y1;o; r; h; u1; v1.
Relations:
x1y1 ¼ y1x1, o�1u1oy1 ¼ y1o

�1u1o,
v1 ¼ ox1h

�1ox�1
1 o�1,

r2 ¼ 1, r ¼ h2, o�1 ¼ hox1, rx1r ¼ y1,
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y1 ¼ ox1o
�1u�1

1 ,
u1 ¼ hx1h

�1, v1 ¼ hy1h
�1.

Since h�1o�1 ¼ ox1 ¼ y1u1o and o3 ¼ 1 is shown by the above relations,

o ¼ o�2 ¼ hy1u1:

This replaces y1 ¼ ox1o
�1u�1

1 . By substituting o ¼ hy1u1 and r ¼ h2, we obtain
the following presentation.

Generators:
x1; y1; h; u1; v1.
Relations:
x1y1 ¼ y1x1, u�1

1 y�1
1 h�1u1hy1u1 y1 ¼ y1u

�1
1 y�1

1 h�1u1hy1u1,

v1 ¼ hy1u1x1y1u1x
�1
1 u�1

1 y�1
1 h�1.

h4 ¼ 1, ru�1
1 y�1

1 h�1 ¼ y1u1x1, h2x1h
�2 ¼ y1,

u1 ¼ hx1h
�1, v1 ¼ hy1h

�1.

Now using u1 ¼ hx1h
�1, y1 ¼ hu1h

�1, v1 ¼ hy1h
�1, we move h or h�1 to the

end of the words, and we obtain the representation in the following theorem.

Theorem 4.1. The Higman-Thompson group T is presented as follows.

Generators:
x1; y1; u1; v1; h.
Relations:
x1y1 ¼ y1x1, u�1

1 x1u1 y1 ¼ y1u
�1
1 x1u1, y1u1x1 ¼ u1x1y1u1,

h ¼ x1v1 y1u1x1, h4 ¼ 1, u1 ¼ hx1h
�1, y1 ¼ hu1h

�1, v1 ¼ hy1h
�1.

Here x1, y1, u1, v1 are the half transvections such that x1y1 and u1v1 corresponds to

the actions of
1 1

0 1

� �
and

1 0

�1 1

� �
of SLð2;RÞ on the set of rays of R2, and h

corresponds to the quarter rotation.
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