ANTI-MAGIC SQUARES OF EVEN ORDER

SHENG JIANG

Abstract

A systematic method for constructing anti-magic squares of every even order (>2) was found. This partially answered an open question asked by Gakuho Abe.

1. Introduction

An anti-magic square of order n is an n by n matrix with entries $1, 2, ..., n^2$ such that the set of all the sums of n numbers in each row, each column and each main diagonal consists of consecutive numbers.

Gakuho Abe [1] collected several unsolved problems on magic squares, in which the last one is the following

PROBLEM 2.23. Find a method of constructing an anti-magic square of every order.

The aim of this paper is to solve above problem for the case of even orders.

In section 2, we shall prove a classification theorem. It says that all antimagic squares can be divided into two classes, called type + and type -, for each class the consecutive sums are completely determined by order n.

Then in section 3, we consider the case n = 4k (k = 1, 2, 3, ...), and give a method of constructing anti-magic squares for these n.

Finally, section 4 deals with the same topic for n = 4k + 2 (k = 1, 2, 3, ...), and obtain similar results. And hence Abe's problem 2.23 is solved for all even orders.

2. Classification

Let $A = (a_{ij})$ be an anti-magic square of order *n*. Denote by r_i the sum of *n* numbers in *i*-th row of *A*, c_j the sum of *j*-th column, d_1 and d_2 the sums for each of main diagonals (i, j = 1, 2, ..., n), respectively. Let S_0 be the average of all r_i (i = 1, 2, ..., n), then it is also the average of all c_i (j = 1, 2, ..., n), and

$$S_0 = \frac{1}{2}n(n^2 + 1).$$

Received February 2, 2000; revised August 3, 2001.

Now we can prove the following

THEOREM 1. Let $A = (a_{ij})$ be an anti-magic square of order n. Then in the (2n + 2) sums d_1, d_2, r_i and c_j (i, j = 1, 2, ..., n), there is always a set of (2n + 1) sums consists of $\{S_0, S_0 \pm 1, ..., S_0 \pm n\}$, and the rest one is equal to either $S_0 - (n + 1)$ or $S_0 + (n + 1)$.

Proof. Denote by

$$s = \frac{1}{2n+2} \left(d_1 + d_2 + \sum_{i=1}^n r_i + \sum_{j=1}^n c_j \right),$$

then

$$d_1 + d_2 = 2(n+1)s - n^2(n^2 + 1).$$

Let α and ω be the smallest one and largest one of (2n+2) sums d_1, d_2, r_i and c_j (i, j = 1, 2, ..., n), respectively, then

$$2s = \alpha + \omega = 2\alpha + 2n + 1.$$

Since

$$2\alpha + 1 \le d_1 + d_2 \le 2\omega - 1,$$

we have

$$\frac{1}{2}n(n^2-1) - \frac{3}{2} \le \alpha \le \frac{1}{2}n(n^2-1) + \frac{1}{2}.$$

But α is an integer, hence only two values are possible:

$$\alpha_1 = \frac{1}{2}n(n^2 - 1) - 1, \quad \alpha_2 = \frac{1}{2}n(n^2 - 1).$$

If $\alpha = \alpha_1$, then the (2n + 2) sums are $S_0, S_0 \pm 1, \ldots, S_0 \pm n$, and $S_0 - (n + 1)$. If $\alpha = \alpha_2$, then the (2n + 2) sums are $S_0, S_0 \pm 1, \ldots, S_0 \pm n$, and $S_0 + (n + 1)$.

Remark. According to Theorem 1, all anti-magic squares can be divided into two classes. For one class, each square has a sum $S_0 - (n + 1)$, and will be called of type -. And the other class will be called of type +, in which every square has a sum $S_0 + (n + 1)$.

The Theorem 1 is true for all possible orders. But in the following sections we shall see that even orders maybe are more interesting, because one can get a simple method to construct them.

3. Order n = 4k

Obviously, any square of order 2 cannot be anti-magic. Hence, for an antimagic square of even order n, the smallest possible value of n is 4.

In this section we consider the case n = 4k (k = 1, 2, 3, ...).

LEMMA 1. There exist anti-magic squares of order 4 both for type - and type +.

Proof. Let P be a 4×4 matrix with entries $1, 2, 3, \ldots, 16$, such that

$$P = \begin{pmatrix} A & B \\ C & D \end{pmatrix},$$

where $A = (a_{\alpha\beta})$, $B = (b_{\alpha\beta})$, $C = (c_{\alpha\beta})$ and $D = (d_{\alpha\beta})$ are 2×2 submatrices satisfying

$$a_{\alpha 1} + a_{\alpha 2} = d_{1\beta} + d_{2\beta} = b_{\alpha \beta} + c_{\beta \alpha} = 17$$
 ($\alpha, \beta = 1, 2$).

By computer search, we get many examples of anti-magic squares in this special form, one is showed in Table 1. It is of type – and denoted by P^- . The numbers out of frame show the sums of rows, columns and main diagonals of this square.

Table 1. P^-									
	4	13	12	1	30				
	11	6	2	14	33				
	5	15	10	8	38				
	16	3	7	9	35				
34	36	37	31	32	29				

Further, in the matrix P^- , changing rows of block A as well as columns of block D, we get an anti-magic square of type + as Table 2. Denote the new square by P^+ .

Table 2. P^+									
	11	6	12	1	30				
	4	13	2	14	33				
	5	15	8	10	38				
	16	3	9	7	35				
34	36	37	31	32	39				

Remark. Squares P^- and P^+ have the same corresponding row sums r_i and column sums c_j (for each *i* and each *j*), as well as one diagonal sum d_1 , but only different in the other's. Such a closely related pair will be called *twin* anti-magic squares.

THEOREM 2. For n = 4k (k = 1, 2, 3, ...), there exist anti-magic squares of order n both for type - and type +.

Proof. When k = 1, i.e. n = 4, we have squares P^- and P^+ by Lemma 1. When k > 1, we shall construct by bordered block matrix. For convenience, let us consider the case n = 8 in detail. The procedure contains three steps.

(1) Substituting $(1/2)((n-4)^2+1) = 17/2$ from every entries of P^- , we obtain a new square, denoted by P_*^- , as Table 3.

	Table 3. P_*^-									
	-4.5	4.5	3.5	-7.5	-4					
	2.5	-2.5	-6.5	5.5	-1					
	-3.5	6.5	1.5	-0.5	4					
	7.5	-5.5	-1.5	0.5	1					
0	2	3	-3	-2	-5					

(2) Now construct an 8×8 block matrix M_8 in the form

$$M_8 = egin{pmatrix} A^* & E & B^* \ F & P_*^- & G \ C^* & H & D^* \end{pmatrix},$$

where $A^* = (a^*_{\alpha\beta})$, $B^* = (b^*_{\alpha\beta})$, $C^* = (c^*_{\alpha\beta})$ and $D^* = (d^*_{\alpha\beta})$ are 2×2 submatrices satisfying

$$a_{\alpha 1}^* = -a_{\alpha 2}^*, \quad d_{1\beta}^* = -d_{2\beta}^*, \quad b_{\alpha \beta}^* = -c_{\beta \alpha}^* \quad (\alpha, \beta = 1, 2);$$

 $E = (e_{\alpha x}), H = (h_{\alpha x}), {}^{t}F = (f_{\alpha x}) \text{ and } {}^{t}G = (g_{\alpha x})$ (here "t" denotes the transpose of matrix) are 2 × 4 submatrices satisfying

$$e_{1x} = -e_{2x}, \quad f_{1x} = -f_{2x}, \quad g_{1x} = -g_{2x}, \quad h_{1x} = -h_{2x}$$

 $(x = 1, 2, 3, 4).$

Note that the numbers in blocks E, F, G and H are in the range -31.5 to -8.5 and 8.5 to 31.5.

Now let us set

$$\frac{n^2 - 1}{2} = 31.5 = c_{21}^* = c_{12}^* + 1 = a_{12}^* + 2$$
$$= a_{21}^* + 3 = d_{11}^* + 4 = d_{22}^* + 5,$$

and

$$b_{11}^* = c_{21}^* - n = 23.5,$$

 $b_{22}^* = b_{11}^* + 2 = 25.5.$

For the arragement of numbers in E, H and ${}^{t}F$, the only requirement is that every sum of 4 numbers in any row equals zero, but the sums for ${}^{t}G$ are ± 1 . Thus M_8 is determined.

(3) Adding to each entries of M_8 by $(n^2 + 1)/2 = 32.5$, we get an anti-magic square of order 8 as Table 4, which is of type – and denoted by M_8^- .

				10010					_
	3	62	49	15	14	52	56	1	252
	61	4	16	50	51	13	2	58	255
	21	44	28	37	36	25	57	8	256
	43	22	35	30	26	38	10	55	259
	42	23	29	39	34	32	11	54	264
	24	41	40	27	31	33	53	12	261
	9	63	45	19	18	48	60	6	268
	64	7	20	46	47	17	5	59	265
260	267	266	262	263	257	258	254	253	251

Table 4. M_8^-

Table 5. M_8^+

									1
	61	4	49	15	14	52	56	1	252
	3	62	16	50	51	13	2	58	255
	21	44	35	30	36	25	57	8	256
	43	22	28	37	26	38	10	55	259
	42	23	29	39	32	34	11	54	264
	24	41	40	27	33	31	53	12	261
	9	63	45	19	18	48	6	60	268
	64	7	20	46	47	17	59	5	265
260	267	266	262	263	257	258	254	253	269

Changing rows or columns in suitable blocks of M_8^- , we obtain an antimagic square of type +, denoted by M_8^+ , as Table 5.

In a similar manner, for any n = 4k (k = 2, 3, ...), we can generate a pair of twin anti-magic squares M_n^- and M_n^+ from M_{n-4}^- or M_{n-4}^+ .

4. Order n = 4k + 2

The rest even orders we need consider are of form n = 4k + 2 (k = 1, 2, 3, ...).

LEMMA 2. There exist anti-magic squares of order 6 both for type - and type +.

Proof. Using block matrix and by means of computer search, we get a pair of twin anti-magic squares of order 6. They are denoted by Q^- and Q^+ , and showed in Tables 6 and 7, respectively.

			Table	6. Q^{-}			
	5	32	23	14	30	1	105
	31	6	16	21	2	33	109
	11	26	17	18	34	9	115
	25	12	19	20	3	28	107
	7	36	22	13	27	8	113
	35	4	15	24	10	29	117
111	114	116	112	110	106	108	104
	31	6	23	14	30	1	105
	5	32	16	21	2	33	109
	11	26	17	18	34	9	115
	25	12	19	20	3	28	107
	7	36	22	13	8	27	113
	35	4	15	24	29	10	117

Table 6. Q^-

THEOREM 3. For n = 4k + 2 (k = 1, 2, 3, ...), there exist anti-magic squares of order n both for type – and type +.

114 116 112 110 106 108

118

Proof. Similar to the construction in previous section (with some small modification), for every integer k > 1, one can generate a pair of twin anti-magic squares M_{4k+2}^- and M_{4k+2}^+ from M_{4k-2}^- or M_{4k-2}^+ . Especially, M_{10}^- and M_{10}^+ can be constructed from Q^- or Q^+ .

As an example, here we write out M_{10}^- in detail, see Table 8.

111

Table	8.	M_{10}^{-}
-------	----	--------------

						1.	,				
	3 97	98 4	87 14	13 88	12 89	91 10	8 93	94 7	90 2	1 92	497 496
	91	4	14	00	09	10	95	1	2	92	490
	86	15	37	64	55	46	62	33	69	32	499
	16	85	63	38	48	53	34	65	31	70	503
	17	84	43	58	49	50	66	41	30	71	509
	83	18	57	44	51	52	35	60	72	29	501
	82	19	39	68	54	45	59	40	73	28	507
	20	81	67	36	47	56	42	61	27	74	511
	11	99	21	79	78	24	25	75	96	6	514
	100	9	80	22	23	77	76	26	5	95	513
505	515	512	508	510	506	504	500	502	495	498	494

Combining Theorems 2 and 3, we obtain the answer for the question 2.23 of Abe [1] in the case of all even orders.

Acknowledgment. The author would like to thank the referee for valuable suggestions.

References

[1] G. ABE, Unsolved problems on magic squares, Discrete Math., 127 (1994), 3-13.

DEPARTMENT OF MATHEMATICS YANGZHOU UNIVERSITY YANGZHOU, JIANGSU 225002 P. R. CHINA