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ANTI-MAGIC SQUARES OF EVEN ORDER

Sheng Jiang

Abstract

A systematic method for constructing anti-magic squares of every even order (> 2)

was found. This partially answered an open question asked by Gakuho Abe.

1. Introduction

An anti-magic square of order n is an n by n matrix with entries 1; 2; . . . ; n2

such that the set of all the sums of n numbers in each row, each column and each
main diagonal consists of consecutive numbers.

Gakuho Abe [1] collected several unsolved problems on magic squares, in
which the last one is the following

Problem 2.23. Find a method of constructing an anti-magic square of every
order.

The aim of this paper is to solve above problem for the case of even orders.
In section 2, we shall prove a classification theorem. It says that all anti-

magic squares can be divided into two classes, called type þ and type �, for each
class the consecutive sums are completely determined by order n.

Then in section 3, we consider the case n ¼ 4k ðk ¼ 1; 2; 3; . . .Þ, and give a
method of constructing anti-magic squares for these n.

Finally, section 4 deals with the same topic for n ¼ 4k þ 2 ðk ¼ 1; 2; 3; . . .Þ,
and obtain similar results. And hence Abe’s problem 2.23 is solved for all even
orders.

2. Classification

Let A ¼ ðaijÞ be an anti-magic square of order n. Denote by ri the sum of n
numbers in i-th row of A, cj the sum of j-th column, d1 and d2 the sums for each
of main diagonals ði; j ¼ 1; 2; . . . ; nÞ, respectively. Let S0 be the average of all
ri ði ¼ 1; 2; . . . ; nÞ, then it is also the average of all cj ð j ¼ 1; 2; . . . ; nÞ, and

S0 ¼
1

2
nðn2 þ 1Þ:
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Now we can prove the following

Theorem 1. Let A ¼ ðaijÞ be an anti-magic square of order n. Then in the
ð2nþ 2Þ sums d1; d2; ri and cj ði; j ¼ 1; 2; . . . ; nÞ, there is always a set of ð2nþ 1Þ
sums consists of fS0;S0 G 1; . . . ;S0 G ng, and the rest one is equal to either
S0 � ðnþ 1Þ or S0 þ ðnþ 1Þ.

Proof. Denote by

s ¼ 1

2nþ 2
d1 þ d2 þ

Xn
i¼1

ri þ
Xn
j¼1

cj

 !
;

then
d1 þ d2 ¼ 2ðnþ 1Þs� n2ðn2 þ 1Þ:

Let a and o be the smallest one and largest one of ð2nþ 2Þ sums d1; d2; ri
and cj ði; j ¼ 1; 2; . . . ; nÞ, respectively, then

2s ¼ aþ o ¼ 2aþ 2nþ 1:

Since
2aþ 1a d1 þ d2 a 2o� 1;

we have

1

2
nðn2 � 1Þ � 3

2
a aa

1

2
nðn2 � 1Þ þ 1

2
:

But a is an integer, hence only two values are possible:

a1 ¼
1

2
nðn2 � 1Þ � 1; a2 ¼

1

2
nðn2 � 1Þ:

If a ¼ a1, then the ð2nþ 2Þ sums are S0;S0 G 1; . . . ;S0 G n, and S0 � ðnþ 1Þ.
If a ¼ a2, then the ð2nþ 2Þ sums are S0;S0 G 1; . . . ;S0 G n, and S0 þ ðnþ 1Þ.

Remark. According to Theorem 1, all anti-magic squares can be divided
into two classes. For one class, each square has a sum S0 � ðnþ 1Þ, and will be
called of type �. And the other class will be called of type þ, in which every
square has a sum S0 þ ðnþ 1Þ.

The Theorem 1 is true for all possible orders. But in the following sections
we shall see that even orders maybe are more interesting, because one can get a
simple method to construct them.

3. Order n ¼ 4k

Obviously, any square of order 2 cannot be anti-magic. Hence, for an anti-
magic square of even order n, the smallest possible value of n is 4.

In this section we consider the case n ¼ 4k ðk ¼ 1; 2; 3; . . .Þ.

Lemma 1. There exist anti-magic squares of order 4 both for type � and
type þ.
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Proof. Let P be a 4� 4 matrix with entries 1; 2; 3; . . . ; 16, such that

P ¼ A B

C D

� �
;

where A ¼ ðaabÞ, B ¼ ðbabÞ, C ¼ ðcabÞ and D ¼ ðdabÞ are 2� 2 submatrices
satisfying

aa1 þ aa2 ¼ d1b þ d2b ¼ bab þ cba ¼ 17 ða; b ¼ 1; 2Þ:
By computer search, we get many examples of anti-magic squares in this special
form, one is showed in Table 1. It is of type � and denoted by P�. The
numbers out of frame show the sums of rows, columns and main diagonals of
this square.

Further, in the matrix P�, changing rows of block A as well as columns of
block D, we get an anti-magic square of type þ as Table 2. Denote the new
square by Pþ.

Remark. Squares P� and Pþ have the same corresponding row sums ri and
column sums cj (for each i and each j), as well as one diagonal sum d1, but only
di¤erent in the other’s. Such a closely related pair will be called twin anti-magic
squares.

Theorem 2. For n ¼ 4k ðk ¼ 1; 2; 3; . . .Þ, there exist anti-magic squares of
order n both for type � and type þ.

Proof. When k ¼ 1, i.e. n ¼ 4, we have squares P� and Pþ by Lemma 1.
When k > 1, we shall construct by bordered block matrix. For convenience,

let us consider the case n ¼ 8 in detail. The procedure contains three steps.

Table 1. P�

4 13 12 1 30

11 6 2 14 33

5 15 10 8 38

16 3 7 9 35

34 36 37 31 32 29

Table 2. Pþ

11 6 12 1 30

4 13 2 14 33

5 15 8 10 38

16 3 9 7 35

34 36 37 31 32 39
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(1) Substituting ð1=2Þððn� 4Þ2 þ 1Þ ¼ 17=2 from every entries of P�, we
obtain a new square, denoted by P�

� , as Table 3.

(2) Now construct an 8� 8 block matrix M8 in the form

M8 ¼
A� E B�

F P�
� G

C � H D�

0
@

1
A;

where A� ¼ ða�
abÞ, B� ¼ ðb�

abÞ, C � ¼ ðc�abÞ and D� ¼ ðd �
abÞ are 2� 2 submatrices

satisfying

a�
a1 ¼ �a�

a2; d �
1b ¼ �d �

2b; b�
ab ¼ �c�ba ða; b ¼ 1; 2Þ;

E ¼ ðeaxÞ, H ¼ ðhaxÞ, tF ¼ ð faxÞ and tG ¼ ðgaxÞ (here ‘‘t’’ denotes the transpose
of matrix) are 2� 4 submatrices satisfying

e1x ¼ �e2x; f1x ¼ �f2x; g1x ¼ �g2x; h1x ¼ �h2x

ðx ¼ 1; 2; 3; 4Þ:

Note that the numbers in blocks E, F, G and H are in the range �31:5 to �8:5
and 8.5 to 31.5.

Now let us set

n2 � 1

2
¼ 31:5 ¼ c�21 ¼ c�12 þ 1 ¼ a�

12 þ 2

¼ a�
21 þ 3 ¼ d �

11 þ 4 ¼ d �
22 þ 5;

and

b�
11 ¼ c�21 � n ¼ 23:5;

b�
22 ¼ b�

11 þ 2 ¼ 25:5:

For the arragement of numbers in E, H and tF , the only requirement is that
every sum of 4 numbers in any row equals zero, but the sums for tG are G1.
Thus M8 is determined.

(3) Adding to each entries of M8 by ðn2 þ 1Þ=2 ¼ 32:5, we get an anti-magic
square of order 8 as Table 4, which is of type � and denoted by M�

8 .

Table 3. P�
�

�4.5 4.5 3.5 �7.5 �4

2.5 �2.5 �6.5 5.5 �1

�3.5 6.5 1.5 �0.5 4

7.5 �5.5 �1.5 0.5 1

0 2 3 �3 �2 �5
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Changing rows or columns in suitable blocks of M�
8 , we obtain an anti-

magic square of type þ, denoted by Mþ
8 , as Table 5.

In a similar manner, for any n ¼ 4k ðk ¼ 2; 3; . . .Þ, we can generate a pair of
twin anti-magic squares M�

n and Mþ
n from M�

n�4 or Mþ
n�4.

4. Order n ¼ 4k þ 2

The rest even orders we need consider are of form n ¼ 4k þ 2
ðk ¼ 1; 2; 3; . . .Þ.

Lemma 2. There exist anti-magic squares of order 6 both for type � and
type þ.

Proof. Using block matrix and by means of computer search, we get a pair
of twin anti-magic squares of order 6. They are denoted by Q� and Qþ, and
showed in Tables 6 and 7, respectively.

Table 4. M�
8

3 62 49 15 14 52 56 1 252

61 4 16 50 51 13 2 58 255

21 44 28 37 36 25 57 8 256

43 22 35 30 26 38 10 55 259

42 23 29 39 34 32 11 54 264

24 41 40 27 31 33 53 12 261

9 63 45 19 18 48 60 6 268

64 7 20 46 47 17 5 59 265

260 267 266 262 263 257 258 254 253 251

Table 5. Mþ
8

61 4 49 15 14 52 56 1 252

3 62 16 50 51 13 2 58 255

21 44 35 30 36 25 57 8 256

43 22 28 37 26 38 10 55 259

42 23 29 39 32 34 11 54 264

24 41 40 27 33 31 53 12 261

9 63 45 19 18 48 6 60 268

64 7 20 46 47 17 59 5 265

260 267 266 262 263 257 258 254 253 269
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Theorem 3. For n ¼ 4k þ 2 ðk ¼ 1; 2; 3; . . .Þ, there exist anti-magic squares
of order n both for type � and type þ.

Proof. Similar to the construction in previous section (with some small
modification), for every integer k > 1, one can generate a pair of twin anti-magic
squares M�

4kþ2 and Mþ
4kþ2 from M�

4k�2 or Mþ
4k�2. Especially, M�

10 and Mþ
10 can

be constructed from Q� or Qþ.

As an example, here we write out M�
10 in detail, see Table 8.

Table 6. Q�

5 32 23 14 30 1 105

31 6 16 21 2 33 109

11 26 17 18 34 9 115

25 12 19 20 3 28 107

7 36 22 13 27 8 113

35 4 15 24 10 29 117

111 114 116 112 110 106 108 104

Table 7. Qþ

31 6 23 14 30 1 105

5 32 16 21 2 33 109

11 26 17 18 34 9 115

25 12 19 20 3 28 107

7 36 22 13 8 27 113

35 4 15 24 29 10 117

111 114 116 112 110 106 108 118

Table 8. M�
10

3 98 87 13 12 91 8 94 90 1 497

97 4 14 88 89 10 93 7 2 92 496

86 15 37 64 55 46 62 33 69 32 499

16 85 63 38 48 53 34 65 31 70 503

17 84 43 58 49 50 66 41 30 71 509

83 18 57 44 51 52 35 60 72 29 501

82 19 39 68 54 45 59 40 73 28 507

20 81 67 36 47 56 42 61 27 74 511

11 99 21 79 78 24 25 75 96 6 514

100 9 80 22 23 77 76 26 5 95 513

505 515 512 508 510 506 504 500 502 495 498 494
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Combining Theorems 2 and 3, we obtain the answer for the question 2.23 of
Abe [1] in the case of all even orders.
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