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CYCLIC COVERS OF NORMAL GRADED RINGS

Masataka Tomari and Kei-ichi Watanabe

Abstract

We give a description of a graded cyclic cover of a normal graded ring in terms

of the Pinkham-Demazure description of normal graded rings R � R�X ;D�. With the

geometric description of Cl�R�, it is shown that our cyclic cover S possesses the

Pinkham-Demazure description S GR�Y ; ~D� [Theorem 1.3], by which we obtain a

description of an index one cover [Corollary 1.7] of R. In O2, as an application of this

description, we give criteria for the normal graded singularities to be Kawamata log

terminal or to be log canonical. Further, in O3 we study the relations between cyclic

covers of the Kummer type and cyclic covers obtained by using Veronese subrings.

Our results extend S. Mori's structure theorem regarding graded factorial domains.

Introduction

Cyclic covers of an algebraic variety have been found to be very important
and have been used in many works. However, it is not easy to determine the
properties of a cyclic cover explicitly in terms of given data. The aim of this
paper is to give a description of a cyclic cover of a normal graded ring in terms
of the Pinkham-Demazure description of normal graded rings, which uses a Weil
divisor with rational coe½cients. Here, our approach is to give a natural grading
to our cyclic cover and ®nd the Weil divisor with rational coe½cients describing
the new ring.

Let R �lkb0Rk be a normal graded ring that is a ®nitely generated algebra

over a ®eld k. As a geometric representation for such R, the following theorem,
due to H. Pinkham in the two-dimensional case and M. Demazure in general, is
fundamental.

Theorem (Pinkham and Demazure [1, 11]). Let the situation be as described
above. Let T be a homogeneous element of degree one of the quotient ®eld Q�R�
of R. Then X is normal projective and there exists an ample Q-Cartier divisor D
on X � Proj�R� which satis®es the relations Rn � H 0�X ;OX �nD��T n for n A Z.
Further this D is uniquely determined by the choice of T.

With D and X as above, we denote R as R � R�X ;D�. In [20, 21], one of
the present authors studied the divisor class group of R, conditions for R to be
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Cohen-Macaulay or Gorenstein and conditions for rational singularity in terms
of the description given by the above theorem. Our interest in this paper is in
the cyclic cover S of R de®ned by a Q-Cartier homogeneous divisor D�E� A
HDiv�R�nQ of order r. Using the geometric description of Cl�R�, it can be
shown that our cyclic cover S is a normal graded ring. The Pinkham and
Demazure theorem implies that we can ®nd a normal projective variety Y and
an ample Q-Cartier divisor ~D on Y which give the description S GR�Y ; ~D�.
Theorem 1.3 expresses Y and S in terms of X ;D, and E A Div�X�nQ. This
allows us to investigate S more e¨ectively.

In O1, we discuss relations involving canonical modules of S and R [Theorem
1.5], and class groups of S and R [Section 1.8]. In particular we obtain a
description of an index one cover [Corollary 1.7.1], or canonical cover, of R.
In [19], J. Wahl described index one covers of certain 2-dimensional singularities,
considering the exceptional locus of resolution of the singularity. An advantage
of our approach is that it allows us to obtain ring theoretic information that is
more precise than that given by the resolution of singularity.

In O2 we give criteria for the normal graded singularities to be Kawamata
log terminal or to be log canonical in terms of Pinkham-Demazure's construc-
tion using the calculation of a 0 introduced in 1.7. Since log terminal and log
canonical singularities are determined by the properties of the index one cover,
our theory plays an essential role.

In O3 we study relations between the cyclic covers of the Kummer type,
S � R�X �=�X m ÿ v�, and cyclic covers obtained from Veronese subrings. Our
results, Theorems 3.3, 3.4 and 3.6, extend S. Mori's structure theorem regarding
graded factorial domains.

The invariant a�R� of a graded ring R de®ned in [5] plays an important role
in conditions for rational and related singularities. In this paper the integers a 0,
which are related to a�R� with regard to their roles in various contexts, also play
an important role. Throughout this paper we assume that all rings and varieties
are de®ned over a ®eld. We also assume the normality of various rings and
cyclic covers of them. For careful treatments of normality we refer to our pre-
vious paper [18].

Acknowledgment. For the preparation of this paper we carried out cal-
culations for many examples with much helps from the software Ubasic 86
developed by Y. Kida, with which we could easily treat rational coe½cient divi-
sors. Our thanks are due to Prof. Y. Kida.

O1. Graded cyclic covers of normal graded rings in terms of the
construction of Pinkham and Demazure

1.1. Basic facts. To state our result we ®rst review the basic background
of the Demazure construction from [20, 21]. Let X be a normal irreducible
projective scheme of dim b 1 over a ®eld k, and k�X � the rational function
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®eld of X . We denote the groups of Weil divisors on X by Div�X �. For
E ADiv�X�nQ, we can attach the divisorial sheaf OX �E�. Now, let
D A Div�X �nQ be a Q-Cartier ample divisor described as in the introduction and
represented as D �PVA Irr1�X��pV=qV �V (with pV ; qV AZ, �pV ; qV � � 1, qV b1).

Here Irr1�X� denotes the set of prime divisors of X . We are particularly in-
terested in the denominators qV in this paper. We consider p : C�X ;D� �
SpecX �0nb0 OX �nD�T n� ! X and p 0 : U�X ;D� � SpecX �0n AZ OX �nD�T n� ! X .

Note that C�X ;D� and U�X ;D� are normal schemes. Then, we have the
following commutative diagram.

 ����
�

�����!

U�X ;D� ���!G VnV�R��
p 0

???y ???y
X  ���p

C�X ;D� ���!C
V � Spec�R�x??? x???

s�X ;D� ���! V�R��
Here, s�X ;D� is the section of the Gm-®ber space p : C�X ;D� ! X and is de®ned
by the ideal 0

nb1 OX �nD�T n of OC�X ;D�. In addition, C is the ®ltered blowing-

up of Spec�R� with respect to the ®ltration on R induced by the grading of R.

For the divisor class group of these normal schemes, we have

Cl�R�GHDiv�R�=HP�R�;
where HDiv�R� (resp. HP�R�) is the group of homogeneous (resp. homogeneous
principal) divisors of R (see [15]). We have the canonical isomorphism

HDiv�U�GHDiv�R�;
where HDiv�U� is the group of the divisors on U that are stable under the Gm-
action induced by the graded structure of U � U�X ;D�. For a prime divisor V
of X , we set FV � pÿ1�V�red. Then we have p��V� � qV FV A HDiv�U� ([1]).
Now, we de®ne the bijection

D : Div�X�nQ! HDiv�U�nQ GHDiv�R�nQ

by D�PVA Irr1�X � rV V� � PV A Irr1�X� qV rV FV . We de®ne Div�X ;D�HDiv�X �nQ

by Div�X ;D� � Dÿ1�HDiv�R��. Considering the relation

divU�T� � p 0��D� �
X

V A Irr1�X�
pV FV A HDiv�U�

(see Proposition 2.9 of [1]) and the isomorphism HP�R�GP�X �lZ div�T�,
we can see that Dÿ1�HP�R�� � P�X�lZD, where P�X� is the group of principal
divisors on X . Hence we obtain the following:

Cl�R�GDiv�X ;D�=�P�X�lZD�:
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Further, we obtain the relations for the fractional graded R-ideals

R�D�E�� � 0
k AZ

H0�X ;OX �E � kD��T k H k�X��T ;Tÿ1�

with E A Div�X�nQ. In particular, R�D�ÿ�1=qV �V��HR is the prime ideal
associated with V A Irr1�X �.

1.2. Construction of a graded cyclic cover. Let D�E� be a Q-Cartier
homogeneous Q-divisor of R with E A Div�X�nQ, and let r > 0 be the minimal
integer such that rD�E� � D�rE� A HP�R�. Then there exist a 0 A Z and j A k�X�
such that rE ÿ a 0D � divX �j�. We can easily see that jT a 0R�rD�E�� � R, and
hence divR�jT a 0 � � rD�E�. Next, associated with the triple �R;D�E�; jT a 0 �, we
introduce the cyclic r-cover S as follows (see [18]):

S � S�R;D�E�; jT a 0 � �0
rÿ1

i�0

R�iD�E��ui; with ur � jT a 0 :

We call such an S a graded cyclic r-cover of R. If D�E� is an integral divisor of
R (that is, if E A Div�X ;D�), we say that S is an integral graded cyclic r-cover of
R. Throughout this paper we assume that either (i) char�R� � 0 or (ii) char�R� �
p> 0, �r; p� � 1 and every coe½cient of rD�E� is an integer relatively prime with p.
Then S is a normal domain (Proposition 1.12 of [18]). If we set the degrees of u
and T as deg�u� � a 0=s and deg�T� � r=s, S has a Z-graded structure, where
s � �r; a 0�. Now, let a; b A Z satisfy aa 0 � br � s, and de®ne ~T � T bua 0 . Then
~T is a homogeneous element of Q�S� of degree 1. Now the Pinkham-Demazure
description of S is given by the following.

Theorem 1.3. Let S � S�R;D�E�; jT a 0 � be the normal graded cyclic r-cover
of R � R�X ;D� described above. Then, the Pinkham-Demazure description of S
with respect to ~T � T bua with aa 0 � br � s �� �r; a 0�� is given by S � R�Y ; ~D� as
follows:

(1) Y is the cyclic cover of X given by r : Y � SpecX �0 sÿ1

l�0 OX �l��r=s�E ÿ
�a 0=s�D��� ! X .

(2) ~D � r��aE � bD�.
(3) We have the relations r��E�ÿ�a 0=s� ~D AP�Y � and r��D�ÿ�r=s� ~D AP�Y �.

Proof. (1) Since
����������
R�S
p � S�, it follows that Proj�S� is covered by the

schemes of the form Spec��Sfd
�0�, with fd ARd �d > 0�. Here we have the relation

fSfd
� 0

rÿ1

i�0

0
k AZ

OX �iE � kD�T k

 !
ui

 !�����
Spec��Rfd

�0�
on Spec��Rfd

�0�HX :

Since T kui has degree 0 i¨ k � i�a 0=r� � 0, there are exactly s possibilities for
such pairs �k; i�, given by �ÿ�la 0=s�; �lr=s�� for l � 0; . . . ; sÿ 1. Thus we have
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Y � Proj�S�G SpecX 0
sÿ1

l�0

OX l
r

s
E ÿ a 0

s
D

� �� �
Tÿ�la

0=s�ulr=s

 !
:

(2) Considering the part of fSfd
of degree n, we have

OY �n ~D��T bua�n G 0
sÿ1

l�0

OX l
r

s
E ÿ a 0

s
D

� �
� n�aE � bD�

� �
Tÿ�la

0=s�ulr=s�T bua�n:

This implies the relation ~D � r��aE � bD�.
(3) This follows from the relations r��E� ÿ �a 0=s�r��aE � bD� � br���r=s�Eÿ

�a 0=s�D� and r��D� ÿ �r=s�r��aE � bD� � ar���r=s�E ÿ �a 0=s�D�. Q.E.D.

Remark 1.4. (1) In Theorem 1.3, if we choose one couple �a; b�, another
possible choice, �a 0; b 0�, is �a 0; b 0���aÿr=s; b�a 0=r�. Then a 0E�b 0D��aE�bD�ÿ
��r=s�E ÿ �a 0=s�D� on X . Thus certainly r��a 0E � b 0D� and r��aE � bD� are
linearly equivalent on Y .

(2) Here, by the de®nition of the grading on S, R is the rth Veronese subring
of S if and only if s � 1.

To facilitate discussion of the canonical module, we introduce the following
notation: For any Q-divisor G �P�pW=qW �W (with pW ; qW A Z, �pW ; qW � � 1,
qW b 1), we de®ne G 0 by G 0 �P��qW ÿ 1�=qW �W . As shown in [20], the ca-
nonical module KR of R � R�X ;D� is given by KR � R�D�KX �D 0��. Now,
KX �D 0 and KY � � ~D�0 are related by the following.

Theorem 1.5. Let S�R�X ;D�;D�E�; jT a 0 � �R�Y ; ~D� be as in Theorem 1.3.
Then we have

r��KX �D 0 �Dÿ1�D�E�0�� ÿ �KY � � ~D�0� A P�Y �:

Proof. By Theorem 3.2 of [18], we have

KS �0
rÿ1

i�0

KR�D�E�0 � kD�E��ui �0
rÿ1

i�0

R�D�KX �D 0� �D�E�0 � kD�E��ui:

By arguments similar to those in the proof of Theorem 1.3, we can show the
relation

0
n AZ

OY �Dÿ1
S �KS� � n ~D�G 0

n AZ

OY �r��KX �D 0 �Dÿ1�D�E�0�� � n ~D�:

Here the bijection DS : Div�Y�nQ! HDiv�S� is de®ned in the same way as D
of R. Studying the rami®cations of x : Div�R� ! HDiv�S� (cf. [18; Lemma 1.10,
(2.4)]), it can be shown that �xnQ��D�E�0� A HDiv�S�. Then, comparing the
rami®cations X ! R! S and X ! Y ! S, we can see that r��Dÿ1�D�E�0�� A
Div�Y ; ~D�. We can also see r��KX �D 0� A Div�Y ; ~D�, and hence r��KX �D 0 �
Dÿ1�D�E�0�� A Div�Y ; ~D�. Thus the assertion follows from the bijectivity of
DS : Div�Y ; ~D� ! Div�U�Y ; ~D��. Q.E.D.

masataka tomari and kei-ichi watanabe440



Remark 1.6. (1) If we represent E as E �PV A Irr1�X ��pE;V=qE;V �V , with
pE;V ; qE;V A Z, �pE;V ; qE;V � � 1, and qE;V b 1, then we can easily see that

Dÿ1�D�E�0� �
X

V A Irr1�X�

LCM�qV ; qE;V �=qV ÿ 1

LCM�qV ; qE;V � V ;

and hence

D 0 �Dÿ1�D�E�0� �
X

V A Irr1�X �

LCM�qV ; qE;V � ÿ 1

LCM�qV ; qE;V � V :

In O2, we discuss the klt conditions of KX �D 0 �Dÿ1�D�E�0�.
(2) Let ~V be the prime divisor of Y that lies over a prime divisor V of X .

Then, by Theorem 1.5, we can see that the denominator of the fractional part
of ~D is given by LCM�qV ; qE;V �=e ~V=V , where e ~V=V is the rami®cation index of
r : Y ! X along ~V .

1.7. Index one cover. Now, suppose that KR �D�E� is a Q-Cartier divisor
of index r. There are a 0 A Z and j A k�X� such that r�KX �D 0 � E� ÿ a 0D �
divX �j�. In the case D�E� � 0, the integral graded r-cyclic cover S �
S�R;D�KX �D 0�; jT a 0 � is called an index one cover of R which is very important
in the theory of singularities. There are already several works on singularities
appearing in the index one covers of singularities [12, 13, 19].

Corollary 1.7.1. Let S � S�R;KR �D�E�; jT a 0 � be the normal graded
cyclic r-cover of R � R�X ;D� as described above. Then the Pinkham-Demazure
construction S with respect to ~T � T bua with aa 0 � br � s �� �r; a 0�� is given by
S � R�Y ; ~D� as follows:

(1) Y is the cyclic cover of X given by

r : Y � SpecX 0
sÿ1

l�0

OX l
r

s
�KX �D 0 � E� ÿ a 0

s
D

� �� � !
! X :

(2) ~D � r�fa�KX �D 0 � E� � bDg.
(3) If ~E � r��E ÿDÿ1�D�E�0��, then ~E A Div�Y ; ~D�, and we obtain the rela-

tion KS�DS� ~E�� � S�a 0=s�.

Proof of (3). We have r��KX �D 0 � E� ÿ �a 0=s� ~D A P�Y� by the asser-
tion (3) of Theorem 1.3. Then, since D�KX �D 0 � E�0 � D�E�0, we have
r��KX �D 0 �Dÿ1�D�E�0�� ÿ �KY � ~D 0� A P�Y� by Theorem 1.5. Hence KY �
~D 0 � r��E ÿDÿ1�D�E�0�� ÿ �a 0=s� ~D A P�Y�. Q.E.D.

1.8. Class groups. Let S � S�R;D�E�; jT a 0 � as in 1.2. To investigate the
relations between Cl�R� and Cl�S�, we need the homogeneous class group
HCl�S� with respect to the Zr-grading of S from O2 of [18]. This is given by
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HCl�S� � fcl�m��F �� A Cl�S� jF A Div�R�nQ; m��F � A Div�S�g;

where m� : Div�R�nQ! Div�S�nQ is the natural map. Then we have the
exact sequence (see [18: 2.6])

0! Z cl�LD�E�� ! Cl�R� ! HCl�S� ! Coker b ! 0;

where L and b are de®ned as L � minfl A Z j l > 0; lD�E� A Div�R�g and b :
Z !0 Z=QVZ with b�1� � �PV�, where we represent D�E� as D�E� �P�PV=QV�V A Div�R�nQ with PV;QV A Z, �PV;QV� � 1, and QV b 1.
Here V represents prime divisors of R, and the sum is over all such prime
divisors. The following result plays an important role in the arguments given
in O3.

Proposition 1.9. Let S � S�R;D�E�; jT a 0 �GR�Y ; ~D� be as in Theorem
1.3. Then, if �r; a 0� � 1, we have HCl�S� � Cl�S�.

Proof. The relation Y � X follows from Theorem 1.3. Also, we have the
relations Div�X �nQ IDiv�X ; ~D�IDiv�X ;D�. Hence m��HDiv�R�nQ�I
HDiv�S�. The assertion follows from the isomorphism Cl�S�GHDiv�S�=
HP�S�.

Example 1.10. Let S � R�x; y; z�=x2 � y2 � z2. We know that S is a UFD
(see p. 34 of [15]) and it can be written S� S�R�x; y�; �1=2� div�x2�y2�;ÿ�x2�y2��.
We have the relation 0�Cl�R�x; y�� �HCl�S� �Cl�S�. However, r� a 0 � s� 2.
Hence the converse of Proposition 1.9 does not hold in general.

O2. A characterization of the klt-conditions of normal graded rings

2.1. The purpose of this section is to give criterion for the normal graded
singularities to be log terminal or log canonical in terms of the Pinkham-
Demazure construction. The rationality is characterized in [3, 20, 21], under
the assumption that Spec�R� ÿ V�R�� has only rational singularities. Here we
discuss the rationality of Spec�R� ÿ V�R�� in terms of the Pinkham-Demazure
construction. Theorems 2.6 and 2.9 in this paper are natural continuation of
studies in [20], [21] and the main result in O4 of [18]. In this section, the formula
for Goto-Watanabe's a�R� invariant related to the index one cover given in 1.7 is
the key to reduce the situation considered here to index 1. Now, we begin by
considering ®nite cyclic covers. Throughout this section, all local rings are
de®ned over an algebraically closed ®eld of characteristic zero. Let us recall the
de®nitions of log terminal singularity and log canonical singularity, which we
need. We refer to the articles [8], [12] and [9] for more general facts about log
terminal singularity and log canonical singularity.

masataka tomari and kei-ichi watanabe442



2.2. De®nitions of klt and log canonical. Let V � Spec�R� be a normal
local singularity of dimension d with an e¨ective rational divisor D A Div�R�nQ.
We wish to consider the situation in which the following holds.

(2.2.1) There is an integer r such that r�KV � D� is an integral Cartier divisor
on V .

With this condition, let f : ~V ! V be a resolution of singularities with
normal crossing exceptional divisor E � fÿ1�Sing�V�� such that the total trans-

form of D is a normal crossing divisor. Also, let ~D be the proper transform of D
by f. De®ne the divisor F on ~V by

r�K ~V � ~D� E� � f��r�KV � D�� � F :

(klt) V is Kawamata log terminal (klt for short) with respect to KV � D if �D�a 0
(that is, all coe½cients are less than 1), if the condition (2.2.1) is satis®ed and if

(2.2.2) there is a resolution f such that F is an e¨ective divisor whose
support coincides with E.
(lc) V is log canonical with respect to KV � D, if the condition (2.2.1) is satis®ed
and if

(2.2.3) there is a resolution f such that F is an e¨ective divisor.

If (2.2.1) is satis®ed, the smallest such positive number r is called the
�KV � D�-index.

To study the log terminal property and the log canonical property of sin-
gularities of Gm-®ber spaces, we consider a particular ®nite cover that we now
de®ne. Let R be a normal domain of dimension d and de®ne S � S�R;D; f � as
in [18], where D is a fractional divisor of R, and f AK �Q�R�, with divR� f � � r �D.
Moreover, we assume that

r � minfi A Z j i > 0 and i �D is a principal divisorg:
As demonstrated in our previous paper [18], the cyclic cover S is also a normal
d-dimensional domain. Here we represent D as D �PV A Irr1�R��pV=qV �V , with
pV ; qV A Z, qV b 1 and �pV ; qV � � 1. For r : Spec�S� ! Spec�R� we have the
following.

Lemma 2.3. Let D A Div�R�nQ. (1) Then r��KR � D� is a Q-Cartier divisor
on S if and only if KR � D is a Q-Cartier divisor on R. (2) S is klt (resp. log
canonical ) with respect to r��KR � D� if and only if R is klt (resp. log canonical )
with respect to KR � D.

Proof. (1) By O2 of [18], we have the exact sequence

0! Z cl�LD� ! Cl�R� !r
�

Cl�S�;
where L is de®ned as L�minfl AZ j lD ADiv�R�g and r��b� �0rÿ1

i�0 R�b� iD�ui

A Div�S� for b A Div�R�. Let m be a positive integer such that m�KR � D� A
Div�R�. From the above exact sequence, we can see that r��m�KR � D�� is a

cyclic covers of normal graded rings 443



Q-Cartier divisor of S if and only if there is an integer t 0 > 0 such that
cl�t 0m�KR � D�� A Z cl�LD�. Since D is Q-Cartier, we obtain the assertion.

For (2), the proof can now be carried out in a standard manner using
Iitaka's log rami®cation formula [6, Theorem 11.5]. We omit the proof of this
lemma (see [8, 9]).

The rationality of U�X ;D� is studied already in our previous works; Lemma
(3.1) and Example (3.5) of [20], O3 and O4 of [22], O5 of [17], and Proposition (1.5)
of [16]. The following result uni®es various statements in [20, 21]. Our argu-
ments follow almost the same line of reasoning as the proof of Theorem 3.12
of [18]. Before discussing the klt conditions, we make the following remark.

Lemma 2.4. Let D�E� be a homogeneous Q-divisor of R�X ;D� with
E A Div�X�. Then �D�E��a 0 if and only if �D 0 � E �a 0.

Proof. For any number x, we see that qx < 1 if and only if x�
�qÿ 1�=q < 1. Q.E.D.

Proposition 2.5. Let R�X ;D� be a normal graded ring over a ®eld k with
char�k� � 0, and let D�E� be a homogeneous Q-divisor with E A Div�X�nQ.
Then U�X ;D�G Spec�R�X ;D�� ÿ V�R�� is klt (resp. log canonical ) with respect
to KR �D�E� if and only if �X ; x� is klt (resp. log canonical ) with respect to
KX ;x �D 0x � Ex at all points x A X .

Proof. Let x A X be a closed point of X . Then the ®ber U�X ;D�x of
U�X ;D� over Spec�OX ;x� can be written U�X ;D�x � SpecOX ; x

�B�, where

B � 0
k AZ

OX ;x�kDx�T k H k�X��T ;Tÿ1�

(cf. [22]). We choose fx and rx such that divOX ; x
� fx� � rxDx in Div�OX ;x� and rx

is the minimum at OX ;x. Then f ÿ1
x T rx A OX ;x�rxDx�T rx is a unit of B. We

obtain

B=� f ÿ1
x T rx ÿ 1�BGS�OX ;x;Dx; fx� � S G 0

rxÿ1

l�0

OX ;x�lDx�T l :

Following Flenner [3], we de®ne a : B!S�U ;Uÿ1� � S nk k�U ;Uÿ1� with a�g� �
fg mod� f ÿ1T rx ÿ 1�Bg �U m for g A OX ;x�mDx�T m. Here, we have the relation

B�KB �D�E�� � S�U ;Uÿ1� � S�r��KR �D 0 � E��nk k�U ;Uÿ1�:
Since the characteristic of the base ®eld is zero, a is eÂtale ([3, O2]). Hence S is klt
(resp. log canonical) with respect to r��KR�D 0 �E� if and only if U�OX ;x;Dx� is
klt (resp. log canonical) with respect to KB�D�E�. Hence the assertion follows
from Lemma 2.3. Q.E.D.

We can now show the main result of this section.
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Theorem 2.6. Let R � R�X ;D� be a normal graded ring over a ®eld k with
char�k� � 0, and let D�E� be a homogeneous Q-divisor with E A Div�X�nQ such
that �D�E��a0 (cf. Lemma 2.4). Also let rb1 be an integer. Then R�X ;D� is
klt with respect to KR �D�E� of index r if and only if the following two conditions
hold.

(1) There exists a 0 A Z satisfying a 0aÿ1 such that r�KX �D 0 � E� ÿ a 0D is
an integral principal divisor on X. Further r A N is the minimal integer such that
this holds.

(2) At each point x of X, �X ; x� is klt with respect to KX ;x �D 0x � Ex.

Proof. The proof is given in two steps. First, we show the assertions under
the assumption that KR �D�E� is a Cartier divisor on R. In the second step, we
demonstrate that the result of Step 1 proves the theorem by using the log index
one cover given in Corollary 1.7.1.

Step 1. Assume that KR �D�E� is a Cartier divisor of R. Then, we may
assume that U�X ;D� is klt with respect to KR �D�E� by Proposition 2.5. As
shown in O11 of [9], U�X ;D� has only rational singularities. From this point,
the proof can be carried out in almost the same way as in O3 of [21].

By assumption, there are a A Z and j A k�X� such that KX �D 0 � E ÿ aD �
divX �j�. Here ÿD�E� is an e¨ective integral divisor. Hence KS IKS�D�E�� �
�1=�jT a��S. We denote the rational form 1=�jT a� by o0. Let C : C�X ;D� !
Spec�R� be the graded blowing-up as in 1.1. Also, let D�E�1 HC�X ;D� be the
proper transform of D�E�. Then, by Proposition (1.6) of [21], we obtain the
following relations:

oC�D�E�1� � 0
kb1

OX �KX �D 0 � E � kD�T k � C��o0�OC�ÿ�a� 1�X�:

If R is klt with respect to KR �D�E�, then ÿa > 0 by de®nition. Hence the
condition (1) follows. Conversely, assume that a < 0. We have oC � C��o0� �
OC�ÿD�E� ÿ �a� 1�X�IC��o0�OC . Hence C��o0� is regular on C. Then,
since C has only rational singularities, �Ct���o0� is regular for any resolution
t : ~C ! C. We can now easily check the klt condition (2.2.2). This completes
Step 1 of the proof.

Step 2. Suppose KR �D�E� is a Q-Cartier divisor of index r. Let S �
S�R;KR �D 0 � E; fT a 0 � � R�Y ; ~D� be the associated graded cyclic r-cover as
described in 1.7. Let h : Spec�S� ! Spec�R� and r : Y ! X be the associated
cyclic covers.

By Corollary 1.7.1, h��KR �D�E�� � KX �DS� ~E� with ~E � r��E ÿ
Dÿ1�D�E�0� ADiv�Y ; ~D�. The condition DS� ~E�a0 holds, since we have as-
sumed �D�E��a0 (cf. Lemma 2.4). Hence R is klt with respect to KR�D�E� if
and only if S is klt with respect to KS �DS� ~E�, by Lemma 2.3.

With the conditions for S corresponding to (1) and (2) in the statement of
the theorem, we have the relations
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KY � ~D 0 � ~E ÿ a 0

s
~D � KY � ~D 0 � ~E ÿ r��KX �D 0 � E� A P�Y�:

Obviously a 0 < 0 if and only if a 0=s < 0. Further, X is klt with respect to
KX �D 0 � E if and only if Y is klt with respect to KY � ~D 0 � ~E, by Lemma 2.3.
Hence (1) and (2) hold for R if and only if (1) and (2) hold for S. This
completes the proof of Theorem 2.6.

Next we consider the necessary condition for R to have a log canonical
singularity.

Proposition 2.7. Let R � R�X ;D� be a normal graded ring over a ®eld k
with char�k� � 0, and let D�E� be a homogeneous Q-divisor with E A Div�X�nQ.
If R is log canonical with respect to KR �D�E� of index r, represented by the
Pinkham-Demazure construction, then the following two conditions hold.

(1) There exists a 0 A Z with a 0a 0 such that r�KX �D 0 � E� ÿ a 0D is an in-
tegral principal divisor on X, and r A N is the minimal integer such that this holds.

(2) At each point x of X, �X ; x� has a log canonical singularity with respect to
KX ;x �D 0x � Ex.

Proof. First, (2) follows from Proposition 2.5. Now assume KR �D�E� is
a Q-Cartier divisor of index r. Let S � S�R;KR �D 0 � E; fT a 0 � � R�Y ; ~D�
be the associated graded cyclic r-cover as described in 1.7. Let h : Spec�S� !
Spec�R� and r : Y ! X be the associated cyclic covers.

By Corollary 1.7.1, h��KR �D�E�� � KX �DS� ~E�, with ~E � r��Eÿ
Dÿ1�D�E�0� A Div�Y ; ~D�. Since R is log canonical with respect to KR �D�E�,
S is log canonical with respect to KS �DS� ~E�, by Lemma 2.3. We have
the relation KY � ~D 0 � ~E ÿ �a 0=s� ~D A P�Y�. Let C : C�Y ; ~D� ! Spec�S� be the

graded blowing-up as in 1.1. Let DS� ~E�1 HC�Y ; ~D� be the proper transform
of DS� ~E�. Then, as in Step 1 of the proof of Theorem 2.6, we obtain the

relation oC�DS� ~E�1�GOC�ÿ�a 0=s� 1�Y�. Thus a 0=s a 0 follows from the

de®nition of the log canonical condition of KS �DS� ~E�.
This completes the proof.

Although we have not been able to obtain a necessary and su½cient
condition for R�X ;D� to be a log canonical singularity as in 2.6, we do have a
su½cient condition.

Theorem 2.8. Let R � R�X ;D� be a normal graded ring over a ®eld k with
char�k� � 0, and let D�E� be a homogeneous Q-divisor with E A Div�X�nQ such
that D�E� � D�E�0. Let r > 0 be an integer. Suppose the following conditions
hold.

(1) There exists a 0 A Z with a 0a 0 such that r�KX �D 0 �E�ÿa 0D is an integral
principal divisor on X. Further r A N is the minimal integer such this holds.

(2) At each point x of X, �X ; x� is klt with respect to KX ;x �D 0x � Ex.
Then R�X;D� is a log canonical singularity of index r with respect to KR�D�E�.
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Proof (cf. [7, 16]). If a 0 < 0, then, as we have already seen, R is a klt
singularity of index r with respect to KR �D�E� by Theorem 2.6. Hence we
assume a 0 � 0 in the following. As for the proof of Theorem 2.6, we prove the
assertion in the case r � 1.

Assume that KR �D�E� is a Cartier divisor of R. Since D�E�0 � D�E�, we
have D�E� � 0 (and hence E � 0). We employ the notation used in Step 1 of
the proof of Theorem 2.6. By assumption, j A k�X� with KX �D 0 � divX �j�.
Let C : C�X ;D� ! Spec�R� be the graded blowing-up as described in 1.1. By
setting o0 � 1=j, we have KS � o0S, and we can show the relation

oC � 0
kb1

OX �KX �D 0 � kD�T k � C��o0�OC�ÿX�:

Let t : ~C ! C be a resolution of singularities of C, where tÿ1�X � Sing�C��
is a simple normal crossing divisor. We denote the proper transform of X as
~X H ~C. Let us represent the canonical divisor div ~C��Ct���o0�� as K ~C � ÿGJ �

GI , where GJ and GI are e¨ective divisors on ~C whose supports have no common
irreducible components. Further, since Spec�R� ÿ V�R�� has only rational sin-
gularities, the support of GJ is contained in tÿ1�X�. It is then clear that GJ b ~X .

We show the relation GJ � ~X by contradiction. Assume GJ 0 ~X . Then
GJÿ ~X is a non-zero e¨ective divisor. Hence 00OGJÿ ~X HOGJÿ ~X �GI �. We have
the natural inclusion relations

H 0�O ~C�GI �� ���!x H 0�OGJÿ ~X �GI ��x??? x???
H 0�O ~C� ���!w H 0�OGJÿ ~X �:

Since w�1�0 0, x is not the zero-map. We have the commutative diagram of
exact sequences

0 0???y ???y
o ~C � o ~C???y ???y

0 ���! o ~C� ~X� ���! o ~C�GJ�GO ~C�GI � ���! OGJÿ ~X �GI � ���! 0???y ???y ???y�
0 ���! o ~X ���! oGJ ���! oGJ

=o ~X ���! 0???y ???y
0 0
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and we have

0 ���! H 0�o ~C� ~X �� ���! H 0�O ~C�GI �� ���!x H 0�OEJÿ ~X �GI ��???y ???y ???y�
0 ���! H 0�o ~X � ���!a H 0�oGJ

� ���!b H 0�oGJ
=o ~X �:

Hence b is not the zero-map, and a is not an isomorphism.
In the resolution of singularities tj ~X : ~X ! X , X has only rational singu-

larities. Hence we have the relation H 0�o ~X �GH 0�oX �. By the Grauert-
Riemenshneider vanishing theorem we have H 1� ~C;o ~C� � 0, and therefore we
obtain the exact sequence

0! H 0� ~C;o ~C� ! H 0� ~C;o ~C�GJ�� ! H 0�oGJ
� ! 0:

Since the support of GJ is contained in jÿ1�X�, the relation H 0� ~C;o ~C�EJ��H
H 0� ~C ÿ jÿ1�X�;o ~C� follows. Then, since C has only rational singularities, we
obtain

H 0� ~C;o ~C�GH 0�C;oC� and H 0� ~C ÿ jÿ1�X�;o ~C�GH 0�C ÿ X ;oC�:
Therefore

H 0�oGJ
�H H 0�C ÿ X ;oC�

H 0�C;oC� G 0
ka0

H 0�OX �KX �D 0 � kD��T k � H 0�oX �;

since KX �D 0 � div�j�. However, this contradicts the fact that a is not an
isomorphism.

The arguments for the case of general r are the same as those in the proof of
Theorem 2.6.

Now, from Theorems 2.7 and 2.8 we obtain the following.

Corollary 2.9. Let R � R�X ;D� be a normal graded ring over a ®eld k
with char�k� � 0, and let D�E� be a homogeneous Q-divisor with E A Div�X �nQ
such that D�E� � D�E�0. Suppose the following condition holds.

(*) At each point x of X, �X ; x� is klt with respect to KX ;x �D 0x � Ex.

Then R�X ;D� is a log canonical singularity with respect to KR �D�E� of index r if
and only if there exists a 0 A Z with a 0a 0 such that r�KX �D 0 � E� ÿ a 0D is an
integral principal divisor on X and r A N is the minimal integer such that this holds.

O3. Cyclic covers of the Kummer type and Veronese subrings

3.1. Let S � R�X;D� be a normal graded domain with D �P
VA Irr1�X ��pV=qV �V , as in 1.1. For a positive integer m, we have the
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natural isomorphism of the mth Veronese subring S�m�GR�X ;mD�. We can
reconstruct S as a graded cyclic cover of S�m� as follows: R�X;D�G
S�R�X;mD�;DR�X;mD��D�;T m�. This is a very natural construction of a cyclic
cover. Another familiar method to construct a cyclic cover is that for a cyclic
cover of the Kummer type, S � R�X �=�X m ÿ v� with v A R. Our interest in this
section is with the relations between these two types of cyclic covers. Our results
in the followings extend S. Mori's structure theorems [Theorems 3.9 and 3.11]
regarding graded factorial domains. First, we show the following as a general
result concerning of normal Kummer extensions for not necessarily graded cases.

Theorem 3.2. Let R be a normal domain. For non-units v1; . . . vn A R and
integers m1; . . . ;mn A Z with mi b 2, we de®ne the ring S as S � R�X1; . . . ;Xn�=
�X m1

1 ÿ v1; . . . ;X mn
n ÿ vn�. Then the following hold:

(i) S is a normal domain if and only if all viR are reduced and no pair viR and
vjR with i0 j has a common prime component.

(ii) S is a cyclic cover of R if and only if �mi;mj� � 1 for any i0 j.

Proof. (i) Suppose that S is a normal domain. Then, for any i, R�Xi�=
�X mi

i ÿ vi� is a direct summand of S, hence is normal by the purerity. In
particular, we obtain the isomorphism S�R; �1=mi� div�vi�; vi� � R�Xi�=�X mi

i ÿ vi�.
Thus we conclude that vi is reduced. For any pair i; j with i 0 j, R�Xi;Xj�=
�X mi

i ÿvi;X
mj

j ÿvj� is normal by the same reason as above. At this point, we can

conclude that vj�R�Xi�=�X mi

i ÿvi�� de®nes a reduced ideal of R�Xi�=�X mi

i ÿvi� by
the normality of �R�Xi�=�X mi

i ÿvi���Xj�=�X mj

j ÿvj�. Therefore RHR�Xi��X mi

i ÿvi�
has no rami®cation at any prime component of vjR. In particular, viR and vjR
have no common prime component.

Conversely, suppose that all viR are reduced and that each pair viR and
vjR have no common prime component for any i 0 j. Then we have the rela-
tion S�R; �1=m1� div�v1�; v1� � R�X1�=�X m1

1 ÿ v1�, and this is normal (cf. [18]
for precise arguments about the normality of such covers). Let for j b 2.
Since RHR�X1��X m1

1 ÿ v1� has no rami®cation at any prime component of vjR,
vjR�X1��X m1

1 ÿ v1� is reduced. Further, we can easily see that vjR�X1��X m1

1 ÿ v1�
and vkR�X1��X m1

1 ÿ v1� have no common component for j 0 k. Hence the nor-
mality of S follows by induction on n.

The equivalence assertion (ii) is known. Q.E.D.

Theorem 3.3. Let R � R�X ;D� be a normal domain as described in 1.1,
let v1; . . . vn A R be homogeneous reduced non-units, and let m1; . . . ;mn A Z with
mi b 2. Here we assume that no pair viR and vjR has a common prime com-
ponent and that �mi;mj� � 1 for any i0 j. We de®ne the cyclic m1 � � �mn-cover S
of R by S � R�X1; . . . ;Xn�=�X m1

1 ÿ v1; . . . ;X mn
n ÿ vn�. Then the following hold:

(i) S�m1���mn�GR if and only if �mi; degR�vi�� � 1 for 1 a i a n.

(ii) Under the conditions stated in of (i), representing viR � R�ÿD�Ei�� by
Ei �

Pri

k�1�1=qVi; k
�Vi;k A Div�X ;D�; 1 a i a n, and with S � R�X ; ~D� as given in

Theorem 1.3, ~D can be written
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~D �
Xn

i�1

Xri

k�1

~pVi; k

miqVi; k

Vi;k �
X

V0Vi; j

~pV

qV
V ;

where �~pVi; k
;miqVi; k

� � 1, and �~pV ; qV � � 1 for V 0Vi;k.

Proof. Let Q�R� (resp. Q�S�) be the quotient ®eld of R (resp. S). Also, let
li �

Q
j0i mj for 1 a j a n. Then, since �1; . . . ; 1� generates Z=m1Z l � � �

lZ=mnZ, de®ning ~X A Q�S� as ~X � Qn
i�1 Xi, we have the relation Q�S� �

Q�R�� ~X �=� ~X m1���mn ÿQn
i�1 vli

i �. As shown in [18], we can represent the cyclic
m1 � � �mn-cover S of R as follows:

S � S R;
1

m1 � � �mn
divR

Yn

i�1

vli
i

 !
;
Yn

i�1

vli
i

 !
:

Further, we have the relations

1

m1 � � �mn
divR

Yn

i�1

vli
i

 !
� D

1

m1 � � �mn

Xn

i�1

liEi

 !
and

�m1 � � �mn� 1

m1 � � �mn

Xn

i�1

liEi

 !
ÿ

Xn

i�1

li degR�vi�
 !

D A P�X �:

We can easily see that ��m1 � � �mn�;
Pn

i�1 li degR�vi�� �
Qn

i�1�mi; degR�vi��.
Therefore the assertion (i) follows from assertion (2) of Remark 1.4.

(ii) We have

1

m1 � � �mn

Xn

i�1

liEi �
Xn

i�1

1

mi
Ei �

Xn

i�1

Xri

k�1

1

miqVi; k

Vi;k:

Therefore, by Theorem 1.5 and Remark 1.6, the rami®cation of ~D at Vi;k is
miqVi; k

and at V 0Vi;k is qV . Q.E.D.

The following is the converse of Theorem 3.3.

Theorem 3.4. Let S � R�X ;D� be a normal domain as described in 1.1, and
let m > 1 be an integer. We consider the following conditions.

(a) If �m; qV �0 �m; qV 0 � then ��m; qV �; �m; qV 0 �� � 1. Further, if m1; . . . ;mn

are the possible di¨erent values of each �m; qV � with mi b 2, then m �Qn
i�1 mi

holds.
(b) For each mi, let Vi;1; . . . ;Vi; ri

be the components such that �mi; qVi; j
�b 2.

Then Ei �
Pri

k�1�1=qVi; k
�Vi;k de®nes a principal divisor S�ÿDS�Ei�� � tiS. Fur-

ther, for any i 0 j, we have fVi;1; . . . ;Vi; ri
gV fVj;1; . . . ;Vj; rj

g � j.
Assume conditions (a) and (b) hold. Then (i) tmi

i is a reduced element of S�m�
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with �mi; degS�m� �tmi

i �� � 1 for 1 a i a n, (ii) no pair tmi

i S�m� and t
mj

j S�m� has a
common prime component for i0 j, and (iii) we have the isomorphism

S GS�m��X1; . . . ;Xn�=�X m1

1 ÿ tmi

1 ; . . . ;X mn
n ÿ tmn

n �:

Proof. By assumption there exist a 0i A Z and ji A k�X� such that

Ei ÿ a 0i D � divX �ji�; i:e:; ti � jiT
a 0i for 1 a i a n:

Hence a 0i pVi; k
1 1 mod qVi; k

and qV ja 0i for V B fVi;1; . . . ;Vi; ri
g. We thus obtain

the relations �a 0i ; qVi; k
� � 1 and a 0i=�

Q
j0i mj� A Z. Hence

miEi ÿ a 0iQ
j0i mj

�mD� � divX �jmi

i � for 1 a i a n:

It can then be shown that tmi

i A �S�m��a 0
i
=�
Q

j0i
mj� and �mi; a

0
i=�
Q

j0i mj�� � 1.
Further, we have

mD �
Xn

i�1

Xri

k�1

�Qj0i mj�pVi; k

qVi; k
=mi

Vi;k �
X

V0Vi; k

mpV

qV
V ;

with ��Qj0i mj�pVi; k
; qVi; k

=mi� � 1 and �mpV ; qV � � 1 for V0Vi;k. Hence miEi �Pri

k�1�1=�qVi; k
=mi��Vi;k de®nes a reduced divisor of S�m�GR�X ;mD�. Therefore

the assertions of (i) and (ii) follow.
Since (i) and (ii) hold, if we de®ne ~S by

~S � S�m��X1; . . . ;Xn�=�X m1

1 ÿ tm1

1 ; . . . ;X mn
n ÿ tmn

n �;
then, by the similar arguments in the proof of Theorem 3.3, we can show the
relation

~S � S R�X ;mD�;DR�X ;mD�
Xn

i�1

Ei

 !
; �t1 � � � tn�m

! !
:

Here we have m
Pn

i�1 Ei ÿ �
Pn

i a 0i ��mD� � m divX �
Qn

i�1 ji� and �m;Pn
i a 0i � � 1.

Now, let a; b A Z such that a�Pn
i a 0i � � bm � 1. Then de®ning ~D as ~D �

a�Pn
i�1 Ei� � b�mD�, we have ~S GR�X ; ~D�. Hence ~DÿD � a�Pn

i�1 Ei��
b�mD� ÿ �a�Pn

i a 0i � � bm�D �Pn
i�1 a�Ei ÿ a 0i D� �

Pn
i�1 div�ja

i �. Therefore SG
S�m��X1; . . . ;Xn�=�X m1

1 ÿ tm1

1 ; . . . ;X mn
n ÿ tmn

n �: Q.E.D.

Example 3.5. (i) Let R be a normal graded ring and R � R0�x1; . . . ; xs� with
x1; . . . ; xs a minimal homogeneous generator of R� �lkb1 Rk. Also, with
ai � deg�xi� for i � 1; . . . ; s, we assume �a1; . . . ; as� � 1. Next we de®ne ci by
ci � �a1; . . . ; aiÿ1; ai�1; . . . ; ax� for i � 1; . . . ; s and write L � Q1aias ci. Then it

is wellknown that R0�x1; . . . ; xs��L� � R0�x 01; . . . ; x 0s�, where x 0i � xci

i for i � 1; . . . ; s.
Hence we obtain the relation

RGR�L��x1; . . . ; xs�=�xc1

1 ÿ x 01; . . . ; xcs
s ÿ x 0s�:

cyclic covers of normal graded rings 451



By this relation, we can obtain the following:
(3.5.1) If ci b 2 for some i, then xiR and x 0i R

�L� are reduced.
(3.5.2) If ci b 2 and cj b 2 for some pair i; j, with i0 j, then xiR and xjR

(resp. x 0i R
�L� and x 0j R

�L�) do not have a common prime component by Theorems
3.3 and 3.4. Hence ht�xi; xj�R b 2 (resp. ht�x 0i ; x 0j �R�L�b 2).

(3.5.3) Let R � R�X ;D� as in 1.1. Assume that ci b 2 for i � 1; . . . ; s.
Then, by the arguments above, we can see that qV � ci at the components
V HV�xiR� and LD is an integral divisor.

(ii) Let us next consider the case R � k�x1; x2; x3�=f , where f is a weighted
homogeneous polynomial of degree h and k is an algebraically closed ®eld with
char�k� � 0. In Assertion 1.6.4 of [14], K. Saito showed that Ljh. Hence

there exists g A k�x 01; x 02; x 03� with g�x�a2;a3�
1 ; x

�a1;a3�
2 ; x

�a1;a2�
3 � � f �x1; x2; x3� and R�L� �

k�x 01; x 02; x 03�=g. We can see that the denominators qV of the fractional parts of
D have at most 4 types, by arguments similar to those in (i).

In the rest of this section, we discuss the class groups. First, we show the
following.

Theorem 3.6. Let S � R�X ;D� as in 1.1 and let S�m�GR�X ;mD�. Then
the natural map a : Cl�S�m��!Cl�S� is an isomorphism if and only if m�Q�m; qV �
and ��m; qV �; �m; qV 0 �� � 1 for any V 0V 0.

Proof. By Proposition 1.9, we have the exact sequence

0! Z cl�LDR�X ;mD��D�� ! Cl�R�X ;mD�� ! Cl�R�X ;D�� ! Coker b ! 0;

where L and b are de®ned as in 1.8. Also, we have mD �PV A Irr1�X �
��mpV=�m; qV ��=�qV=�m; qV ���V , with �mpV=�m; qV �; qV=�m; qV �� � 1 for all V .
Then we have the representation DR�X ;mD��D� �

P
V A Irr1�X��pV=�m; qV ��V, where

V A Div�R�X ;mD�� is the prime divisor associated with V A Irr1�X�. Hence
L � LCMf�m; qV �g and b : Z !0

V A Irr1�X �Z=�m; qV �Z by b�1� � �pV �. Now
cl�LDR�X ;mD��D�� � 0 if and only if L � m. Further, it is easy to see that
Coker�b� � 0 if and only if L � Q�m; qV �: Q.E.D.

Combining Theorem 3.6 with Theorem 3.4, we obtain the following.

Corollary 3.7. Let S � R�X ;D� be as in 1.1 and let m > 0 be an integer.
Suppose that the natural map a : Cl�S�m�� ! Cl�S� is an isomorphism and that
S�ÿ�1=qV �V�HS is a principal prime ideal for any V A Irr1�X � with �m; qV �b2.
Then S is a graded cyclic cover of S�m� obtained by the Kummer extension with the
following conditions, in which V1; . . . ;Vn are the prime divisors with mV b 2.

(i) �m; qVi
� and �m; qVj

� are relatively prime for any i; j with i 0 j and the

equality m � Q�m; qV � holds. We set mi � �m; qVi
�.

(ii) There is a homogeneous prime element vi of S�m� such that
S�mi��ÿ�mi=qVi

�Vi� � viS
�mi�, �mi; degS�m� �vi�� � 1 for i � 1; . . . ; n, and
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S GS�m��X1; . . . ;Xn�=�X m1

1 ÿ v1; . . . ;X mn
n ÿ vn�:

We will apply this to a graded UFD. First, we recall the following.

Theorem 3.8 [20]. Let R � R�X ;D� as in 1.1. Then Cl�R� � 0 if and only
if �qV ; qV 0 � � 1 for any pair V 0V 0 and Z cl�LD� � Cl�X �, where L �
LCM�qV � �

Q
V A Irr1�X � qV .

As a corollary we can show the following.

Theorem 3.9 (S. Mori [10]). Let R � R�X ;D� be a UFD as described above.
Then

RGR�X ;LD��u1; . . . ; um�=�uqV1

1 ÿ vV1
; . . . ; uqVm

m ÿ vVm
�;

where vVi
A R�X ;LD�ei

is a prime element such that �qVi
; ei� � 1 for i � 1; . . . ;m.

Proof. By Theorem 3.8, we can see Cl�R�X ;LD�� � 0. Further, for any
V A Irr1�X�, �1=qV �V A Div�X ;D� � ZDlP�X �; i.e., there are a 0V A Z and
jV A k�X � such that �1=qV �V ÿ a 0V D � div�jV �. Hence we obtain the assertion
by Corollary 3.7. Here we can see ei � qVi

a 0i=L: Q.E.D.

Next we study the cyclic cover of the Kummer type. As a corollary of
Theorems 3.3 and 3.6, we obtain the following.

Theorem 3.10. Let R � R�X ;D� be as in 1.1, and let vi A R be homogeneous
prime elements for i � 1; . . . ; n. Also, let m1; . . . ;mn be positive integers such that
�mi; deg�vi�� � 1 for any i and �mi;mj� � 1 for i0 j. Then

S � R�X1; . . . ;Xn�=�X m1

1 ÿ v1; . . . ;X mn
n ÿ vn�

is a normal graded cyclic cover of R with R � S�m1���mn� and the natural map
Cl�R� ! Cl�S� is isomorphic.

Corollary 3.11 (cf. [10]). Let R�R�X ;D� be a graded UFD as in 1.1, and let
vi A R be homogeneous prime elements for i � 1; . . . ; n. Also, let m1; . . . ;mn be
positive integers such that �mi; deg�vi�� � 1 for any i and �mi;mj� � 1 for i0 j.
Then

S � R�X1; . . . ;Xn�=�X m1

1 ÿ v1; . . . ;X mn
n ÿ vn�

is a UFD with R � S�m1���mn�.

O4. A few remarks on integral cyclic covers

We now give some remarks on integral cyclic covers. By using Flenner's
result, in the characteristic zero case we can show the following, which basically
asserts that every integral cyclic cover of the completion of a graded ring is graded
cyclic cover.
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Proposition 4.1. Let R � R�X ;D� be as in 1.1, let r > 0 an integer, and let
R5 be the completion of R. We assume that R0 � k is an algebraically closed
®eld of characteristic zero. Let p : Z ! Spec�R5� be an integral r-cyclic cover.
Then there exits E A Div�X ;D� and rE ÿ a 0D � div�j� as in 1.2 such that p is
obtained from the graded integral r-cyclic cover RHS � S�R;D�E�; jT a 0 � by the
completion.

Proof. By assumption we can choose D A Div�R5� which de®nes a torsion
of Cl�R5� of order r and obtain the relation S�R5;D;F�GOZ, where F is an
element of the quotient ®eld of R5 with rD � div�F�. As demonstrated in O4 of
[4], the cokernel of the injection Cl�R� ! Cl�R5� is torsion free. Hence we can
choose E A Div�X ;D� such that cl�D�E�� � cl�D� in Cl�R5�. Therefore we obtain

an isomorphism S�R5;D�E�; jT a 0 �GS�R5;D;F�, since we can take the rth root
of units of R5 (see the remark following Example 1.6 of [18]). Q.E.D.

(4.2) As is seen in 1.2, our cyclic cover S � S�R;D�E�; jT a 0 � possesses a
natural bigraded structure corresponding to the divisor class. This fact is very
useful for obtaining an explicit representation of the Z=rZ-action on S. For a
standardgeneratorz A Z=rZ,wehavez��jT iu j� � z j�jT iu j�. SinceSn �0s

l�0 Sn; l

with Sn; l �H 0�X;OX �l��r=s�Eÿ�a 0=s�D��n�aE�bD��Tÿ�la 0=s��nbu�lr=s��na. Hence
we obtain the relation z��x� � z�lr=s��nax for x A Sn; l .

Cyclic covers of rational double points are wellknown and important in
studies of terminal singularities [13]. With Proposition 4.1, their study can be
reduced to that of class groups. Here we will give a simple example.

Example 4.3 �D2m�2 !D4m�2�. Let R�R�P1;D� be a rational double point
of type Dn with n � 4m� 2 and m A Z>0, where D � �1=2�P1 � �1=2�P2ÿ
��nÿ 3�=�nÿ 2��P3 and P1;P2;P3 are three distinct points of P1. We have
Cl�R� � f0; cl��1=2�P1�; cl��1=2�P2�; cl��1=2�P1 � �1=2�P2�gGZ=2Z lZ=2Z.
We study the Z=rZ-action on the cyclic cover S associated with D��1=2�P1�.
We have �1=2�P1 ÿ 2mD � �1=2�P1 ÿmP1 ÿmP2 � 2mP3 ÿ �1=2�P3 @ �1=2�P1ÿ
�1=2�P3. Hence r � 2; a 0 � 4m, and s � 2. Now, we can choose �a; b� � �0; 1�
and de®ne ~D � r��D� � P�1 � �1=2�fP�2;1 � P�2;2g ÿ ��4mÿ 1�=2m�P�3 , where r :

Y ! X with r�fP1g � fP�1g; r�fP2g � fP�2;1;P�2;2g, and r�fP3g � fP�3g. Hence
S � R�Y ; ~D� is a rational double point of type D2m�2. We take x1; x2, and x3

so as to satisfy kx1 � S2;0 � H 0�P1;OP1�P1 � P2 ÿ 2P3��T 2, kx2 � S2m;1 �
H 0�P1;OP1�u, and kx3 � S2m�1;1 � H 0�P1;OP1�P1 ÿ P3��Tu. Then, there is a
linear relation among x2m�1

1 ; x1x2
2 , and x2

3 in S4m�2;0 � H 0�P1;OP1��2m� 1�P1�
�2m� 1� ÿ �4m� 1�P3��T 4m�2 G k2. It is easily seen that S G k�x1; x2; x3�=
�x2

3 � x2m�1
1 � x1x2

2�. Thus, the action of Z=2Z is given by �x1; x2; x3� !
�x1;ÿx2;ÿx3�.

Index one covers (or canonical covers) of 2-dimensional rational singularities
have been studied from several points of view by many authors. However, in
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general, the resulting Gorenstein singularities have invariants that are much
di¨erent from those of Gorenstein rational singularities. We close this paper by
showing following.

Proposition 4.4. Let R be the rational triple point given by R � R�P1;D�
with D � �1=2a�P1 � �1=�2a� 1��P2 � �1=�2a�2a� 1���P3, where P1;P2, and P3

are distinct points of P1 and a b 1. Then the numerical invariants of the index
one cover S � R�Y ; ~D� of R are as follows: the index of R is 2�2a� 1�; a�S� �
aÿ 1, the genus of Y is a, pg�S� � �1=2�a�a� 1�, and embdim� ~R� ~R� b 2a� 4.

Proof. Set KP1 � ÿ2P1. Then, we have KP1 �D 0 ÿ �aÿ 1�D@ �1=2�P1 ÿ
�a=�2a� 1��P2 ÿ �1=�2�2a� 1���P3. Hence the index r of R is 2�2a� 1�.
We thus obtain a 0 � 2�2a� 1��aÿ 1�; s � �r; a 0� � 2�2a� 1�, and a� ~R� � a 0=s �
aÿ 1. Let us consider Y � SpecP1�0sÿ1

l�0 OP1��l=2�P1 ÿ �la=�2a� 1��P2ÿ
�l=�2�2a� 1���P3�� !r X � P1. Here r is a cyclic cover of degree s � 2�2a� 1�
with branching points P1;P2 and P3. Here we make the following de®nitions:

rÿ1�P1� � fP�1; i; i � 1; . . . ; 2a� 1g; rÿ1�P2� � fP�2;1;P�2;2g; and rÿ1�P3� � fP�3g:
By Hurwitz's formula, we have g�Y� � a. Further, we can choose �a; b� � �0; 1�.
Hence

~D � r��D� �
X2a�1

i�1

1

a
P�1; i � P�2;1 � P�2;2 �

1

a
P�3 @Qÿ

X2a�1

i�1

aÿ 1

a
P�1; i ÿ

aÿ 1

a
P�3 ;

where Q �P2a�1
i�1 P�1; i � P�2;1 � P�2;2 � P�3 , with deg�Q� � 2a� 4. We regard S

as a bigraded ring, as in (4.2): Sk; l � H 0�P1;OP1�Fl;k��ulT nÿl�aÿ1�, where

Fl;k � �l��KP1�D 0�ÿ�aÿ1�D��kD� � la�k

2a

� �
P1� kÿ la

2a�1

� �
P2� kÿ la

2a�2a�1�
� �

P3

for integers l and k. We study Sk with k a aÿ 1 � a�S�. For l � 2m, with
0 a m a 2a, we have

F2m;0 � 0 if m � 0;

mP1 ÿmP2 ÿ P3 if 0 < m a 2a

�

F2m;k �
0 if m � 0;

mP1 ÿmP2 ÿ P3 if 0 < m a 2aÿ k;

mP1 ÿ �mÿ 1�P2 ÿ P3 if 2aÿ k � 1 a m a 2a:

8><>:
For l � 2m� 1, with 0 a m a 2a, we have

F2m�1;k � mP1 ÿ �m� 1�P2 ÿ P3 if 0 a m a aÿ k ÿ 1;

mP1 ÿmP2 ÿ P3 if aÿ k a m a 2a:

�
Therefore pg�S� �

Pa�S�
k�0 dim Sk �

Paÿ1
k�0�k � 1� � a�a� 1�=2 (cf. Corollary 2.10

of [21]).
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We next show embdim� ~R� ~R� b 2a� 4. For k � a, we have

F2m;a �
0 if m � 0;

mP1 ÿmP2 ÿ P3 if 1 a m a a;

mP1 ÿ �mÿ 1�P2 ÿ P3 if a� 1 a m a 2a;

8><>:
F2m�1;a � P1 if m � 0;

�m� 1�P1 ÿmP2 ÿ P3 if 1 a m a 2a:

�
Here Sk;2m�1 � 0 for 0 a m a 2a. Hence 02a

m�0 Sa;2m�1 V �0kb1 Sk�2 � 0, since
s is even. Therefore we obtain the relations

embdim�S�S���b dim S1 �
X2a

m�0

dim Sa;2m�1 � 2� 2�
X2a

m�1

1 � 2a� 4:
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