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QUASINORMALITY OF ORDER 1 FOR FAMILIES OF

MEROMORPHIC FUNCTIONS

Shahar Nevo1 and Xuecheng Pang2

Abstract

Let F be a family of functions meromorphic on the plane domain D, all of whose

zeros are multiple. Suppose that f ðkÞðzÞ0 1 for all f A F and z A D. Then if F is

quasinormal on D, it is quasinormal of order 1 there.

1. Introduction

This paper continues our study of the order of quasinormality of families
of meromorphic functions on plane domains, all of whose zeros are multiple,
initiated in [6].

Recall that a family F of functions meromorphic on a plane domain DHC
is said to be quasinormal on D [2] if from each sequence f fngHF one can
extract a subsequence f fnkg which converges locally uniformly with respect to the
spherical metric on DnE, where the set E (which may depend on f fnkgÞ has no
accumulation point in D. If E can always be chosen to satisfy jEja n, F is said
to quasinormal of order n on D. Thus a family is quasinormal of order 0 on D
if and only if it is normal on D. The family F is said to (quasi)normal at z0 A D
if it is (quasi)normal on some neighborhood of z0; thus F is quasinormal on D if
and only if it is quasinormal at each point z A D. On the other hand, F fails to
be quasinormal of order n on D precisely when there exist points z1; z2; . . . ; znþ1 in
D and a sequence f fngHF such that no subsequence of f fng is normal at zj ,
j ¼ 1; 2; . . . ; nþ 1.

In [6], we proved

Theorem A. Let F be a quasinormal family of meromorphic functions on D,
all of whose zeros are multiple. If for any f A F, f 0ðzÞ0 1 for z A D, then F is
quasinormal of order 1 on D.

Here we extend this result to derivatives of arbitrary order.
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Theorem. Let kb 1 be an integer. Let F be a quasinormal family of
meromorphic functions on D, all of whose zeros have multiplicity at least k þ 1. If
for any f A F, f ðkÞðzÞ0 1 for z A D, then F is quasinormal of order 1 on D.

Corollary. Let k and M be positive numbers. Let F be a family of
meromorphic functions on D, all of whose zeros have multiplicity at least k þ 1.
Suppose that each f A F has at most M zeros on D and that f ðkÞðzÞ0 1 on D.
Then F is quasinormal of order 1 on D.

Indeed, it follows easily from Lemma 2 below that F is quasinormal of
order no greater than M, so the hypotheses of our Theorem are satisfied. That
F need not be normal on D is shown by the following example.

Example 1. Let D ¼ fz : jzj < 1g and F ¼ f fag, where

faðzÞ ¼
ðz� a=ðk þ 1ÞÞkþ1

k!ðz� aÞ ¼ 1

k!
zk þ Pk�2ðzÞ þ

A

z� a
; a A Cnf0g;

where Pk�2 is a polynomial of degree k� 2 and A ¼ ð1=k!Þðk=ðkþ 1ÞÞkþ1
akþ100.

Then all zeros of fa have multiplicity at least k þ 1 and f
ðkÞ
a ðzÞ0 1. However,

fa takes on the values 0 and y in any fixed neighborhood of 0 if a is su‰ciently
small, so F fails to be normal at 0.
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2. Notation and preliminary results

Let us set some notation. Throughout, k is a positive integer. We denote
by D the open unit disc in C . For z0 A C and r > 0, Dðz0; rÞ ¼ fz : jz� z0j < rg
and D0ðz0; rÞ ¼ fz : 0 < jz� z0j < rg. We write fn )

w
f on D to indicate that

the sequence f fng converges to f in the spherical metric uniformly on compact
subsets of D and fn ) f on D if the convergence is in the Euclidean metric.

We require the following known results.

Lemma 1. Let F be a family of functions meromorphic on D, all of whose
zeros have multiplicity at least k, and suppose that there exists Ab 1 such that
j f ðkÞðzÞjaA whenever f ðzÞ ¼ 0. Then if F is not normal at z0, there exist, for
each 0a aa k,

a) points zn A D, zn ! z0;
b) functions fn A F; and
c) positive numbers rn ! 0
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such that r�a
n fnðzn þ rnzÞ ¼ gnðzÞ )

w
gðzÞ on C , where g is a nonconstant mer-

omorphic function on C , all of whose zeros have multiplicity at least k, such that
g#ðzÞa g#ð0Þ ¼ kAþ 1. In particular, g has order at most 2.

Here, as usual, g#ðzÞ ¼ jg 0ðzÞj=ð1 þ jgðzÞj2Þ is the spherical derivative.
This is the local version of [7, Lemma 2] (cf. [4, Lemma 1], [10, pp. 216–

217]). The proof consists of a simple change of variable in the result cited from
[7]; cf. [5, pp. 299–300].

Lemma 2. Let F be a family of functions meromorphic on D and let kb 1
be an integer. If for each f A F and z A D, f ðzÞ0 0 and f ðkÞðzÞ0 1, then F is
normal on D.

This is a well-known result of Gu [3].

Lemma 3. Let F be a family of functions meromorphic on D, all of whose
zeros have multiplicity at least k þ 1 and all of whose poles are multiple. If for

each f A F, f ðkÞðzÞ0 1, z A D, then F is normal on D.

This is Theorem 5 in [9].

Lemma 4. Let f be a nonconstant meromorphic function of finite order on C ,
all of whose zeros have multiplicity at least k þ 1. If f ðkÞðzÞ0 1 on C , then

f ðzÞ ¼ 1

k!

ðz� aÞkþ1

z� b

for some a and b ð0 aÞ in C .

This follows from Lemmas 6 and 8 of [9].

3. Auxiliary lemmas

The proof of the theorem proceeds by a number of intermediate results.

Lemma 5. Let fajg be a sequence in D which has no accumulation points in
D. Let f fng be a sequence of functions meromorphic on D, all of whose zeros have
multiplicity at least k þ 1, such that f

ðkÞ
n ðzÞ0 1 for all n and all z A D. Suppose

that
(a) no subsequence of f fng is normal at a1;
(b) there exists d > 0 such that each fn has a single (multiple) zero on Dða1; dÞ;

and
(c) fn )

w
f on Dnfajgyj¼1.

Then
(d) there exists h0 > 0 such that for each 0 < h < h0, fn has a single simple

pole on Dða1; hÞ for all su‰ciently large n; and

(e) f ðzÞ ¼ ðz� a1Þk=k!.
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Proof. It su‰ces to prove that each subsequence of f fng has a subsequence
which satisfies (d) and (e). So suppose we have a subsequence of f fng, which (to
avoid complication in notation) we again call f fng.

Since f fng is not normal at a1, it follows from Lemma 1 that we can extract
a subsequence (which, renumbering, we continue to call f fngÞ, points zn ! a1,
and positive numbers rn ! 0 such that

gnðzÞ ¼
fnðzn þ rnzÞ

rk
n

)
w
gðzÞ on C ;ð1Þ

where g is a nonconstant meromorphic function of finite order on C , all of
whose zeros have multiplicity at least k þ 1. Since g

ðkÞ
n ðzÞ ¼ f

ðkÞ
n ðzn þ rnzÞ0 1

and g
ðkÞ
n ) gðkÞ on the complement of the poles of g, either gðkÞ 0 1 or gðkÞ 1 1,

by Hurwitz’ Theorem. In the latter case, g is a polynomial of degree k and
therefore does not have zeros of multiplicity at least k þ 1. Thus gðkÞðzÞ0 1 on
C ; so by Lemma 4,

gðzÞ ¼ 1

k!

ðz� aÞkþ1

z� b
ð2Þ

for distinct complex numbers a and b. It now follows from the argument prin-
ciple that there exist sequences xn ! a and hn ! b such that, for su‰ciently large
n, gnðxnÞ ¼ 0 and gnðhnÞ ¼ y. Thus, writing zn;0 ¼ zn þ rnxn, zn;1 ¼ zn þ rnhn,
we have zn; j ! a1 ð j ¼ 0; 1Þ, fnðzn;0Þ ¼ 0 and fnðzn;1Þ ¼ y.

Let us now assume that (d) has been shown to hold. It follows from
Lemma 3 that the pole of fn at zn;1 is simple. The limit function f from (c) is
either meromorphic on Dnfajgyj¼1 or identically infinite there. Suppose first that

it is meromorphic on Dnfajgyj¼1. Then there exists d0 > 0 such that f has
no poles on G ¼ fz : jz� a1j ¼ d0g and f

ðkÞ
n converges uniformly to f ðkÞ on G.

We claim that f ðkÞ 1 1 on D0ða1; d0Þ. Indeed, otherwise by Hurwitz’ Theorem,
f ðkÞ 0 1. Now 1=ð f ðkÞn � 1Þ is analytic on Dða1; d0Þ and converges uniformly on
G to 1=ð f ðkÞ � 1Þ. By the maximum principle, 1=ð f ðkÞn � 1Þ converges uniformly

on Dða1; d0Þ, so f f ðkÞn g is normal at a1. However, since f
ðkÞ
n ðzn;0Þ ¼ 0 and

f
ðkÞ
n ðzn;1Þ ¼ y and zn; j ! a1 ð j ¼ 0; 1Þ, f f ðkÞn g is not equicontinuous at a1, a

contradiction.
Thus f has no poles on D0ða1; d0Þ and f

ðkÞ
n ) 1 on D0ða1; d0Þ. We claim

now that for every 0a ia k

f ðk�iÞ
n ðzÞ ) ðz� a1Þ i

i!
on D0ða1; d0Þ:ð3Þ

We have already proved this for i ¼ 0.
We continue by induction. Suppose that (3) holds for i ¼ j and let

i ¼ j þ 1. For z; z0 A D0ða1; d0Þ, we have

f ðk�ð jþ1ÞÞ
n ðzÞ � f ðk�ð jþ1ÞÞ

n ðz0Þ ¼
ð z

z0

f ðk�jÞ
n ðzÞ dz:
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By the induction assumption, the last term tends to ðz� a1Þ jþ1=ð j þ 1Þ!�
ðz0 � a1Þ jþ1=ð j þ 1Þ!; thus

f ðk�ð jþ1ÞÞ
n ðzÞ ) ðz� a1Þ jþ1

ð j þ 1Þ! þ bðz0Þ;

where bðz0Þ ¼ limn!y½ f ðk�ð jþ1ÞÞ
n ðz0Þ � ðz0 � a1Þ jþ1=ð j þ 1Þ!�.

We now show that bðz0Þ ¼ 0. If not, take r such that 0 < r <
minfjð j þ 1Þ!bðz0Þj1=ð jþ1Þ; d0g. For large enough n, we have

1

2pi

ð
jz�a1j¼r

f
ðk�jÞ
n ðzÞ

f
ðk�ð jþ1ÞÞ
n ðzÞ

dz ¼ 1

2pi

ð
jz�a1j¼r

ðz� a1Þ j= j!
ðz� a1Þ jþ1=ð j þ 1Þ!þ bðz0Þ

dz:ð4Þ

Now the right hand term is zero, since the zeros of ðz� a1Þ jþ1=ð j þ 1Þ!þ bðz0Þ
are outside Dða1; rÞ. By condition (d), the number of poles in Dða1; d0Þ of
f
ðk�ð jþ1ÞÞ
n in (4) is k � ð j þ 1Þ þ 1 ¼ k � j, counting multiplicities.

As for the number of zeros, without loss of generality, we may assume b ¼ 0
in (2). Then a0 0, and we have

gðzÞ ¼ 1

k!

1

z
zkþ1 � ðk þ 1Þazk þ � � � þ ð�1Þk k þ 1

k

� �
zkzþ ð�1Þkþ1

akþ1

� �

¼ 1

k!
zk � ðk þ 1Þazk�1 þ � � � þ ð�1Þkþ1

akþ1

z

" #
:

Hence, for each 0a ia k, gðiÞðzÞ has exactly k þ 1 zeros in C , counting

multiplicities. Thus by (1), for large enough n, f
ðiÞ
n ðzÞ has at least k þ 1 zeros in

Dða1; d0Þ. We then get by the argument principle that the left hand term in (4) is
at least k þ 1 � ðk � jÞ ¼ j þ 1, and we have a contradiction. Thus bðz0Þ ¼ 0,
and (3) is proved. Take i ¼ k in (3) to get assertion (e).

Suppose now that f 1y on Dnfajgyj¼1. Let

FnðzÞ ¼ fnðzÞ
z� zn;1

ðz� zn;0Þkþ1
:

By (b), FnðzÞ0 0 on Dða1; dÞ. Applying the maximum principle to the sequence
f1=Fng of analytic functions, we see that Fn ) y on Dða1; dÞ. We have

fnðzn þ rnzÞ
rk
n

¼ Fnðzn þ rnzÞ
rk
n

ðrnzþ zn � zn;0Þkþ1

ðrnzþ zn � zn;1Þ
ð5Þ

¼ Fnðzn þ rnzÞ
ðz� xnÞkþ1

z� hn
:

It follows from (1), (2), and (5) that Fnðzn þ rnzÞ ! 1, which contradicts Fn ) y
near a1. Thus the posssibility f 1y may be ruled out.

We have shown that when (d) obtains, (e) does as well. Now let us show
that (d) must hold. Suppose not. Then, taking a subsequence and renum-
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bering, we may assume that on any neighborhood of a1, fn has at least two poles
for su‰ciently large n. Keeping the notation established above, let zn;2 0 zn;1 be
such that fnðzn;2Þ ¼ y and fn has no poles in D0ðzn;1; jzn;1 � zn;2jÞ. Write zn;2 ¼
zn þ rnh

�
n . Then zn;2 ! a1 but h�

n ! y since the right hand side of (2) has but a
single simple pole. Set

GnðzÞ ¼
fnðzn;1 þ ðzn;2 � zn;1ÞzÞ

ðzn;2 � zn;1Þk
:

Since zn;2 � zn;1 ! 0, GnðzÞ is defined for any z A C if n is su‰ciently large; and
G

ðkÞ
n ðzÞ0 1. Note that Gnð1Þ ¼ y. Also,

Gnð0Þ ¼ y Gn

zn;0 � zn;1

zn;2 � zn;1

� �
¼ 0

and

zn;0 � zn;1

zn;2 � zn;1
¼ xn � hn

h�
n � hn

! 0;

so fGng is not normal at 0. On the other hand, for n su‰ciently large, Gn has
only a single zero (which tends to 0 as n ! y) on any compact subset of C .
Since G 0

nðzÞ0 1, it follows from Lemma 2 that fGng is normal on Cnf0g.

Taking a subsequence and renumbering, we may assume that Gn )
w
G on Cnf0g.

Since Gn has only a single pole on D, conditions (a), (b), (c), and (d) hold for the
sequence fGng (defined, say, on Dð0; 2ÞÞ with a1 ¼ 0 and d ¼ 1. Thus, by the
first part of the proof, GðzÞ ¼ zk=k!. But this contradicts Gð1Þ ¼ y. This com-
pletes the proof of Lemma 5.

Definition. Let z1; z2 A C and put ~zz ¼ ðz1 þ z2Þ=2. We say that ðz1; z2Þ is
a k-nontrivial pair of zeros of f if

(i) f ðz1Þ ¼ f ðz2Þ ¼ 0 and
(ii) there exists z3 such that jz3 � ~zzj < jz1 � z2j and j f 0ðz3Þj=jz1 � z2jk�1 > 1.

Note that (ii) is equivalent to
(ii 0) there exists z� such that jz�j < 1 and jh 0ðz�Þj > 1, where

hðzÞ ¼ f ð~zzþ ðz1 � z2ÞzÞ
ðz1 � z2Þk

:

Since jh 0ðzÞjb h#ðzÞ, it su‰ces to have h#ðz�Þ > 1 in (ii 0).

Our next result deals with the situation in which the functions fn have more
than a single zero in each neighborhood of a point of non-normality.

Lemma 6. Let f fng be a sequence of functions meromorphic on D, all of
whose zeros have multiplicity at least k þ 1, such that f

ðkÞ
n ðzÞ0 1 for all n and all

z A D. Suppose that
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(a) no subsequence of f fng is normal at z0, and
(b) for each d > 0, fn has at least two distinct zeros on Dðz0; dÞ for su‰ciently

large n.
Then for each d > 0, fn has a k-nontrivial pair ðan; cnÞ of zeros on Dðz0; dÞ for
su‰ciently large n, and

fnðdn þ ðan � cnÞzÞ
ðan � cnÞk

( )

is not normal on D. Here dn ¼ ðan þ cnÞ=2.

Proof. As in the proof of the previous lemma, it follows from (a) and
Lemmas 1 and 4 that for each subsequence of f fng there exists a (sub)sub-
sequence (which, renumbering, we continue to denote by f fngÞ, points zn ! z0,
numbers rn ! 0þ, and distinct a; b A C such that

gnðzÞ ¼
fnðzn þ rnzÞ

rk
n

)
w
gðzÞ ¼ 1

k!

ðz� aÞkþ1

z� b
on C :ð6Þ

Thus there exist xn ! a, hn ! b so that an ¼ zn þ rnxn ! z0, bn ¼ zn þ rnhn ! z0

and gnðxnÞ ¼ fnðanÞ ¼ 0, gnðhnÞ ¼ fnðbnÞ ¼ y for n su‰ciently large.
By assumption, there also exists cn 0 an, cn ! z0, such that fnðcnÞ ¼ 0.

Thus cn ¼ zn þ rnx
�
n and x�

n ! y by (6). Setting dn ¼ ðan þ cnÞ=2, we see that
the function

hnðzÞ ¼
fnðdn þ ðan � cnÞzÞ

ðan � cnÞk

is defined for any z A C if n is su‰ciently large. We claim that fhng is not
normal at z ¼ 1=2. Indeed, we have

an � dn

an � cn
! 1

2
;

bn � dn

an � cn
! 1

2
;

hn
an � dn

an � cn

� �
¼ fnðanÞ ¼ 0; hn

bn � dn

an � cn

� �
¼ fnðbnÞ ¼ y;

so fhng fails to be equicontinuous in a neighborhood of 1=2. It follows from
Marty’s Theorem that

lim
n!y

sup
jz�1=2ja1=4

h#
n ðzÞ ¼ y:

Thus ðan; cnÞ is a k-nontrivial pair of zeros of fn for n su‰ciently large.

Lemma 7. Let f fng be a sequence of functions meromorphic on D, all of
whose zeros have multiplicity at least k þ 1, such that f

ðkÞ
n ðzÞ0 1 for all n and all

z A D. Suppose that
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(a) there exist d A D, an ! d, cn ! d, and z0 A C such that for every d > 0,

hnðzÞ ¼
fnðdn þ ðan � cnÞzÞ

ðan � cnÞk

has at least two distinct zeros on Dðz0; dÞ for su‰ciently large n, where
dn ¼ ðan þ cnÞ=2; and

(b) no subsequence of fhng is normal at z0.
Then for n su‰ciently large, fn has a k-nontrivial pair of zeros ðz�n;1; z�n;2Þ such that
z�n; j ! d ð j ¼ 1; 2Þ and jz�n;1 � z�n;2j < jan � cnj.

Proof. As before, it follows from Lemmas 1 and 4 that to each subsequence
of fhng there corresponds a subsequence (which we continue to write as fhngÞ,
zn ! z0, and rn ! 0þ such that

gnðzÞ ¼
hnðzn þ rnzÞ

rk
n

)
w 1

k!

ðz� aÞkþ1

z� b
on C :

Thus there exist xn;0 ! b, xn;1 ! a so that zn; j ¼ zn þ rnxn; j ! z0 ð j ¼ 0; 1Þ and
gnðxn;0Þ ¼ hnðzn;0Þ ¼ y, gnðxn;1Þ ¼ hnðzn;1Þ ¼ 0. By (a), there exist zn;2 ! z0,
zn;2 0 zn;1, such that hnðzn;2Þ ¼ 0. Setting zn;2 ¼ zn þ rnxn;2, we have xn;2 ! y.
Now put

z�n; j ¼ dn þ ðan � cnÞzn þ rnðan � cnÞxn; j j ¼ 0; 1; 2:

Clearly z�n; j ! d, j ¼ 0; 1; 2. Define

GnðzÞ ¼
fnððz�n;1 þ z�n;2Þ=2 þ ðz�n;1 � z�n;2ÞzÞ

ðz�n;1 � z�n;2Þ
k

:

Then fGng is not normal at z ¼ 1=2. Indeed,

Gn

2xn;0 � xn;1 � xn;2

2ðxn;1 � xn;2Þ

� �
¼ y; Gnð1=2Þ ¼ 0:

Since ð2xn;0 � xn;1 � xn;2Þ=2ðxn;1 � xn;2Þ ! 1=2, fGng is not equicontinuous at
z ¼ 1=2. As before, it follows from Marty’s Theorem that ðz�n;1; z�n;2Þ is a k-
nontrivial pair of zeros of fn. Now jz�n;1 � z�n;2j ¼ jan � cnj jzn;1 � zn;2j; therefore,

since zn; j ! z0 ð j ¼ 1; 2Þ, we have jz�n;1 � z�n;2j < jan � cnj for large enough n, as
required.

Lemma 8. Let f fng be a sequence of functions meromorphic on D, all of
whose zeros have multiplicity at least k þ 1, such that f

ðkÞ
n ðzÞ0 1 for all n and all

z A D. Suppose that
(a) f fng is normal on D0ð0; 1Þ, but no subsequence of f fng is normal at 0; and
(b) there exists d > 0 such that fn has a single (multiple) zero on Dð0; dÞ for all

su‰ciently large n.
Then there exists a subsequence of f fng (which we continue to call f fng) such that
for any a A C , fn � a has at most k þ 1 zeros (counting multiplicity) on Dð0; 1=2Þ.
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Proof. Taking a subsequence and renumbering, we may assume that
fn )

w
f on D0ð0; 1Þ. By Lemma 5, f ðzÞ ¼ zk=k!. Suppose that jaj < ð2=3Þk=k!.

Taking G to be the circle fjzj ¼ 3=4g traversed once in the positive direction, we
have

1

2pi

ð
G

f 0
n ðzÞ

fnðzÞ � a
dz ! 1

2pi

ð
G

zk�1=ðk � 1Þ!
zk=k!� a

dz ¼ k:

However, the left hand side is the number of a-points of fn minus the number of
poles of fn inside G, counting multiplicities. By Lemma 5, there exists 0 < d <
3=4 such that fn has a single simple pole on Dð0; dÞ for n su‰ciently large. Since
fn converges uniformly to zk=k! on fz : da jzja 3=4g, there exists N1 such that if
nbN1 fn has a single simple pole in Dð0; 3=4Þ. Hence for nbN1, fn takes on
the value a (counting multiplicities) exactly k þ 1 times on Dð0; 3=4Þ.

Suppose now that jaj > ð2=3Þk=k!. Let G 0 be the circle fjzj ¼ 5=9g traversed
in the positive direction. Then

1

2pi

ð
G 0

f 0
n ðzÞ

fnðzÞ � a
dz ! 1

2pi

ð
G 0

zk�1=ðk � 1Þ!
zk=k!� a

dz ¼ 0;

so the number of a-points minus the number of poles of fn (counting multiplicity)
inside G 0 is 0 for large n. It follows as before that there exists N2 such that fn
takes on the value a exactly once (counting multiplicities) on Dð0; 5=9Þ if nbN2.
Dropping the elements fn with n < maxðN1;N2Þ and renumbering, we obtain the
desired sequence.

Lemma 9. Let f be a meromorphic function on C , all of whose zeros have
multiplicity at least k þ 1, such that f ðkÞðzÞ0 1, z A C . Then either

(i) f is rational; or
(ii) there exist k-nontrivial pairs ðan; cnÞ of zeros of f such that jan � cnj ! 0

and a sequence of functions

hnðzÞ ¼
f ðdn þ ðan � cnÞzÞ

ðan � cnÞk

which is not normal on D; here dn ¼ ðan þ cnÞ=2.

Proof. Suppose f is not rational. Then by Lemma 4, f has infinite order,
so there exist zn ! y and en ! 0 such that

SðDðzn; enÞ; f Þ ¼
1

p

ðð
jz�znjaen

½ f #ðzÞ�2 dxdy ! y:ð7Þ

Indeed, otherwise there would exist e > 0 and M > 0 such that SðDðz; eÞ; f ÞaM
for all z A C . From this follows

SðrÞ ¼ 1

p

ðð
jzj<r

½ f #ðzÞ�2 dxdy ¼ Oðr2Þ;
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so that (cf. [10, p. 217]) f would have order at most 2, a contradiction.
In particular, there exist z�n A Dðzn; enÞ such that f #ðz�n Þ ! y. Let fnðzÞ ¼
f ðzþ z�n Þ. Then no subsequence of f fng is normal at 0.

Suppose there exists d > 0 such that fn has only a single (multiple) zero xn on
Dð0; dÞ. Since no subsequence of f fng is normal at 0, xn ! 0 by Lemma 2.
Thus, again by Lemma 2, f fng is normal on D0ð0; dÞ. It follows from Lemma 8
that there exist n1 < n2 < � � � such that for any a A C , fnj � a has at most k þ 1
zeros (counting multiplicity) on Dð0; d=2Þ. Thus, for large enough j,

SðDðznj ; enj Þ; f ÞaSðDð0; d=2Þ; fnj Þa k þ 1

which contradicts (7).
Thus, for each d > 0, fn has at least two distinct zeros on Dð0; dÞ for suf-

ficiently large n. The result now follows immediately from Lemma 6.

4. Proof of the Theorem

Suppose the Theorem is false. Then there exists a sequence fa�
j gHD with

no accumulation point in D and such that a�
1 0 a�

2 and a sequence f fngHF such

that fn )
w

f on Dnfa�
j g but no subsequence of f fng is normal at a�

1 or a�
2 .

We may assume that a�
1 ¼ 0 and D ¼ D. The argument given in the proof of

Lemma 5 shows that f
ðkÞ
n ) 1 on Dnfa�

j g or f ¼ y, so f D 0.
If there exists d > 0 such that fn has only a single (multiple) zero on each

Dða�
j ; dÞ ð j ¼ 1; 2Þ for large enough n, it follows from Lemma 5 that f ðzÞ ¼

ðz� a�
j Þ

k=k! ð j ¼ 1; 2Þ on Dnfa�
j g. Thus a�

1 ¼ a�
2 , a contradiction.

Therefore, one may suppose that for any d > 0, fn has at least two distinct
zeros on Dð0; dÞ for su‰ciently large n. By Lemma 6, fn has a k-nontrivial pair
of zeros in Dð0; dÞ for n large enough. Therefore, some subsequence of f fng
(which, as usual, we continue to call f fngÞ has a k-nontrivial pair of zeros ðzn;wnÞ
such that jznj < 1=n, jwnj < 1=n. There exist d0 > 0 and 1 < s < 2 such that

fn )
w

f on D0ð0; 2d0Þ and f does not vanish for d0 a jzja sd0. For 1=n < d0, let
ðan; cnÞ be a k-nontrivial pair of zeros of fn in Dð0; d0Þ whose distance is minimal.
Clearly, an � cn ! 0. Set dn ¼ ðan þ cnÞ=2. Then dn A Dð0; d0Þ; and, passing to
a subsequence, we may assume that dn ! a, so jaja d0. Since f and fn have no
zeros on fz : d0 a jzja sd0g if n is large enough, ðan; cnÞ is a k-nontrivial pair of
zeros of fn on Dð0; sd0Þ whose distance is minimal.

Set

hnðzÞ ¼
fnðdn þ ðan � cnÞzÞ

ðan � cnÞk
:

Then for each z A C , hnðzÞ is defined if n is su‰ciently large. Clearly, all zeros
of hn have multiplicity at least k þ 1 and h

ðkÞ
n ðzÞ0 1. We claim that no sub-

sequence of fhng is normal on C . Otherwise, taking a subsequence and re-

numbering, we would have hn )
w
h on C . Since ðan; cnÞ is a k-nontrivial pair of

zeros of fn, hnðG1=2Þ ¼ h 0
nðG1=2Þ ¼ � � � ¼ h

ðkÞ
n ðG1=2Þ ¼ 0, and supDjh

ðkÞ
n ðzÞj > 1.
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It follows easily that hðkÞðzÞ0 1 on C and that h is nonconstant. Since all zeros
of h have multiplicity at least k þ 1, Lemma 4 shows that h must be tran-
scendental. It then follows from Lemma 9 that there exist infinitely many k-
nontrivial pairs ðxj; hjÞ of zeros of h such that xj ! y and xj � hj ! 0, and z�j
with jz�j � ðxj þ hjÞ=2j < jxj � hjj and h#ðz�j Þ ! y.

Fix j such that h#ðz�j Þb 2 and jxj � hj j < 1. Then there exist xn; j ! xj
and hn; j ! hj such that for n su‰ciently large, hnðxn; jÞ ¼ hnðhn; jÞ ¼ 0 and

jz�j � ðxn; j þ hn; jÞ=2j < jxn; j � hn; jj. Put

x�
n; j ¼ dn þ ðan � cnÞxn; j h�

n; j ¼ dn þ ðan � cnÞhn; j z�n; j ¼ dn þ ðan � cnÞz�j :

Then

z�n; j �
x�
n; j þ h�

n; j

2

����
���� ¼ jan � cnj z�j �

xn; j þ hn; j

2

����
���� < jan � cnj jxn; j � hn; jj ¼ jx�

n; j � h�
n; jj;

where x�
n; j ! a, h�

n; j ! a and jaj < sd0; also, for n su‰ciently large,

j f 0
n ðz�n; jÞ=ðan � cnÞk�1j ¼ jh 0

nðz�j Þjb h#
n ðz�j Þ > 1. We conclude that ðx�

n; j; h
�
n; jÞ is a

k-nontrivial pair of zeros of fn on Dð0; sd0Þ. However,

jx�
n; j � h�

n; jj ¼ jan � cnj jxn; j � hn; jj < jan � cnj

if n is su‰ciently large. This contradicts the fact that ðan; cnÞ is a k-nontrivial
pair of zeros of fn in Dð0; sd0Þ whose distance is minimal.

Thus no subsequence of fhng is normal on C . Let E be the set on which
fhng is not normal. Suppose that for each z A E, there is a neighborhood on
which hn has only a single (multiple) zero for su‰ciently large n. Then by
Lemma 2, fhng is quasinormal at each point of E and hence on all of C . Let
z0 A E. Taking a subsequence, we may assume that no subsequence of fhng is
normal at z0 and that fhng converges locally spherically uniformly on CnE0,

where E0 HE is a discrete set containing z0. By Lemma 5, hn )
w
ðz� z0Þk=k! on

CnE0. Taking additional subsequences and diagonalizing, we may assume that
no subsequence of fhng is normal at any point of E0. We claim that E0 ¼ fz0g.
Indeed, otherwise there exists z1 A E0, z1 0 z0; then, as before, it follows from

Lemma 5 that hnðzÞ )
w
ðz� z1Þk=k! on CnE0, so that z1 ¼ z0, E0 ¼ fz0g, and

hnðzÞ )
w
ðz� z0Þk=k! on Cnfz0g. But this contradicts hnðG1=2Þ ¼ 0. Hence

there exists z0 A E such that for each d > 0, there is a subsequence of fhng (which
we continue to call fhng) such that each hn has at least two distinct zeros in
Dðz0; dÞ for su‰ciently large n. Then by Lemma 7, for n su‰ciently large, fn
has a nontrivial pair of zeros ðw�

n;1;w
�
n;2Þ such that w�

n; j ! a ð j ¼ 1; 2Þ and
jw�

n;1 � w�
n;2j < jan � cnj. This contradicts the fact that ðan; cnÞ is a nontrivial

pair of zeros of fn in Dð0; sd0Þ whose distance is minimal.
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