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QUASINORMALITY OF ORDER 1 FOR FAMILIES OF
MEROMORPHIC FUNCTIONS

SHAHAR NEVO! AND XUECHENG PANG?

Abstract

Let # be a family of functions meromorphic on the plane domain D, all of whose
zeros are multiple. Suppose that f®)(z) # 1 for all f €% and ze D. Then if 7 is
quasinormal on D, it is quasinormal of order 1 there.

1. Introduction

This paper continues our study of the order of quasinormality of families
of meromorphic functions on plane domains, all of whose zeros are multiple,
initiated in [6].

Recall that a family % of functions meromorphic on a plane domain D < C
is said to be quasinormal on D [2] if from each sequence {f,} = % one can
extract a subsequence {f,, } which converges locally uniformly with respect to the
spherical metric on D\E, where the set E (which may depend on {f,, }) has no
accumulation point in D. If E can always be chosen to satisfy |E| < v, Z is said
to quasinormal of order v on D. Thus a family is quasinormal of order 0 on D
if and only if it is normal on D. The family % is said to (quasi)normal at zop € D
if it is (quasi)normal on some neighborhood of zj; thus % is quasinormal on D if
and only if it is quasinormal at each point z € D. On the other hand, & fails to
be quasinormal of order v on D precisely when there exist points zj,zs, ..., 2z, in
D and a sequence {f,} = .# such that no subsequence of {f,} is normal at z,
j=12... v+ 1

In [6], we proved

THEOREM A. Let F be a quasinormal family of meromorphic functions on D,
all of whose zeros are multiple. If for any f € Z, f'(z) # | for z€ D, then F is
quasinormal of order 1 on D.

Here we extend this result to derivatives of arbitrary order.
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THEOREM. Let k> 1 be an integer. Let & be a quasinormal family of
meromorphic functions on D, all of whose zeros have multiplicity at least k+ 1. If
for any feZ, fR(z)#1 for ze D, then F is quasinormal of order 1 on D.

COROLLARY. Let k and M be positive numbers. Let F be a family of
meromorphic functions on D, all of whose zeros have multiplicity at least k + 1.
Suppose that each f € F has at most M zeros on D and that f*)(z) #1 on D.
Then & is quasinormal of order 1 on D.

Indeed, it follows easily from Lemma 2 below that & is quasinormal of
order no greater than M, so the hypotheses of our Theorem are satisfied. That
& need not be normal on D is shown by the following example.

Example 1. Let D={z:|z| <1} and & = {f,}, where

(o1
Su(2) = kl(z—a) T k!

where Py_, is a polynomial of degree k —2 and 4 = (1/k")(k/(k + 1)) k1 0.
Then all zeros of f, have multiplicity at least k£ + 1 and f;@(z) # 1. However,
f. takes on the values 0 and oo in any fixed neighborhood of 0 if o is sufficiently
small, so # fails to be normal at 0.

A
Zk+Pk_2(Z)+m, O(GC\{O},
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2. Notation and preliminary results

Let us set some notation. Throughout, k is a positive integer. We denote
by A the open unit disc in C. For zype C and r > 0, A(zp,r) = {z: |z — zo| <1}
and A'(zo,r) ={z:0<|z—zo| <r}. We write f, % f on D to indicate that
the sequence {f,} converges to f in the spherical metric uniformly on compact
subsets of D and f, = f on D if the convergence is in the Euclidean metric.

We require the following known results.

Lemma 1. Let F be a family of functions meromorphic on A, all of whose
zeros have multiplicity at least k, and suppose that there exists A > 1 such that
|f®)(2)| < A whenever f(z) =0. Then if F is not normal at zo, there exist, for
each 0 <o <k,

a) points z, € A, z, — zp;

b) functions f, € F; and

¢) positive numbers p, — 0
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such that p,* fu(zn + p,0) = gn(0) % g({) on C, where g is a nonconstant mer-
omorphic function on C, all of whose zeros have multiplicity at least k, such that
g# () < g*(0) = kA + 1. In particular, g has order at most 2.

Here, as usual, g%({) = |¢/(0)|/(1 + |g(¢)|?) is the spherical derivative.

This is the local version of [7, Lemma 2] (cf. [4, Lemma 1], [10, pp. 216—
217]). The proof consists of a simple change of variable in the result cited from
[7]; cf. [5, pp. 299-300].

LEMMA 2. Let & be a famzly of functions meromorphic on D and let k > 1
be an integer. If for each f € F and ze D, f(z) #0 and f*(z) # 1, then F
normal on D.

This is a well-known result of Gu [3].

LEMMA 3. Let F be a family of functions meromorphic on D, all of whose
zeros have multiplicity at least k + 1 and all of whose poles are multiple. If for
each fe 7 fX(z)#1, zeD, then F is normal on D.

This is Theorem 5 in [9].

LeEMMA 4. Let f be a nonconstant meromorphic function of finite order on C,
all of whose zeros have multiplicity at least k+ 1. If f%(z) #1 on C, then

_ )k
/@) :% (ZZ —)b

for some a and b (#a) in C.

This follows from Lemmas 6 and 8 of [9].

3. Auxiliary lemmas

The proof of the theorem proceeds by a number of intermediate results.

Lemma 5. Let {a;} be a sequence in A which has no accumulation points in
A.  Let {f,} be a sequence of funcnons meromorphic on A, all of whose zeros have
multiplicity at least k + 1, such that f,, )( )# 1 for all n and all ze A.  Suppose
that
(@) no subsequence of {f,} is normal at ay;
(b) there exists 0 > 0 such that each f, has a single (multiple) zero on A(ay,0);
and
( ) fl’l jf on A\{aj}j 1
Then
(d) there exists ny > 0 such that for each 0 <n <y, fu has a single simple
pole on A(ay,n) for all sufficiently large n; and

©) f(2) = (z - an)" /AL
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Proof. 1t suffices to prove that each subsequence of {f,} has a subsequence
which satisfies (d) and (e). So suppose we have a subsequence of { f,}, which (to
avoid complication in notation) we again call {f,}.

Since {f,} is not normal at g, it follows from Lemma 1 that we can extract
a subsequence (which, renumbering, we continue to call {f,}), points z, — a,
and positive numbers p, — 0 such that

(1) 0a(0) —% L 40) onC,

where g is a nonconstant meromorphic function of ﬁnlte order on C, all of
whose zeros have multiplicity at least kK + 1. Since gﬁ, ) = fn (Zn +/)n§) # 1
and ¢ = ¢® on the complement of the poles of g, either g% # 1 or g = 1,
by Hurwitz’ Theorem. In the latter case, g is a polynomial of degree k and
therefore does not have zeros of multiplicity at least k + 1. Thus g ({) # 1 on
C; so by Lemma 4,

1 (¢- a)k+l

e 00 =5
for distinct complex numbers ¢ and b. It now follows from the argument prin-
ciple that there exist sequences &, — a and 7, — b such that, for sufficiently large
n, gn(fn) =0 and gn(”/n) = 0. Thus, writing Zn,0 = Zn + PuCns Zn1 = Zn T+ Pullns
we have z,; — a1 (j=0,1), fu(zs0) =0 and f,(z,1) = 0.

Let us now assume that (d) has been shown to hold. It follows from
Lemma 3 that the pole of f, at z,; is simple. The limit function f from (c) is
either meromorphic on A\{g;};”; or identically infinite there. Suppose first that
it is meromorphic on A\{a,} . Then there exists dp > 0 such that J/ has
no poles on I' ={z: |z — a] *bo} and fn converges uniformly to f*) on T.
We claim that f%) = 1 on A'(ay,dp). Indeed, otherwise by Hurwitz” Theorem,
S #1. Now 1/ ( W — 1) 1s analytlc on A(ahéo) and converges uniformly on
[ to1/(f% —1). By the maximum principle, 1/( f,, — 1) converges uniformly
on A(ay,dp), so {f,, } is normal at a;. However, since fn( )(z,, 0) =0 and
f,fk (zn1) =00 and z,; — a1 (j=0,1), {f,,( >} is not equicontinuous at a;, a
contradiction.

Thus f has no poles on A'(a;,80) and £\ =1 on A'(a1,6)). We claim
now that for every 0 <i <k

®) 70 = E2 on e d0)

We have already proved this for i = 0.
We continue by induction. Suppose that (3) holds for i=; and let
i=j+1. For z,zg € Al(a;,dp), we have

fn(ki(jﬂ))(z) _fn(k*(]#l))(zo) _ JZ fn(kfj)(é’) dcg.

20



156 SHAHAR NEVO AND XUECHENG PANG

By the 1nduct10n assumption, the last term tends to (z— )J+1 J(+ D! =
(zo —a1))”™ J(j + 1)1; thus
j+1
(=) 5y o EZ O
where f(z0) = lim, ., [ (z0) — (20 — @)/ + 1)1].
We now show that f(zo) =0. If not, take r such that 0<r<
min{|(j 4 1)!8(z0)|/*V 60}.  For large enough n, we have

k-
IJ Q) d::ij (€ —a)'/ !
2w = ) T 23 )= (C— @)™+ D! 4 B(0)
Now the right hand term is zero, since the zeros of ({ —a;)’"'/ ( J+ DU+ B(z0)
are outside A(al, r). By condition (d), the number of poles in A(ay,d9) of
fn(k AR @4)is k—(j+1)+1=k—j, counting multiplicities.
As for the number of zeros, without loss of generality, we may assume b = 0
in (2). Then a # 0, and we have

Q(C):%%{gkﬂ—(k+1)aé'k+---+(—1)k<k:l) ke 4 + (=1 )k-s-l k+1

(_l)lc+lak+1

¢

Hence, for each 0 <i <k, g(i)(C) has exactly K+ 1 zeros in C, counting
multiplicities. Thus by (1), for large enough n, f,,(l)(z) has at least k + 1 zeros in
A(ay,00). We then get by the argument principle that the left hand term in (4) is
at least k+1—(k—j)=j+ 1, and we have a contradiction. Thus f(zy) =0,
and (3) is proved. Take i =k in (3) to get assertion (e).

Suppose now that f = oo on A\{g;},. Let

_]i!lék—(k+l)aékl+-~+

Z— Ipl

(Z o Zn,O)kJrl :

Fu(2) = ful2)

By (b), F.(z) # 0 on A(a;,0). Applying the maximum principle to the sequence
{1/F,} of analytic functions, we see that F, = oo on A(a;,0). We have

(5) Jn(2Zn +p,0) _ Fo(zn +p8) (pul 420 — Zn.,O)kJrl
pr]z( pr]z( (Pl + 20 — Zn, 1)

(C-&)* !
C — My .
It follows from (1), (2), and (5) that F,(z, + p,{) — 1, which contradicts F, = oo
near ;. Thus the posssibility f = co may be ruled out.
We have shown that when (d) obtains, (e) does as well. Now let us show
that (d) must hold. Suppose not. Then, taking a subsequence and renum-

= Fu(zn + py{)
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bering, we may assume that on any neighborhood of «;, f, has at least two poles
for sufficiently large n. Keeping the notation established above, let z, » # z, | be
such that f,(z,2) = oo and f, has no poles in A'(z 1, |zp1 — zn2|). Write z, 2 =
Zn +p,;. Then z,» — a; but 7 — oo since the right hand side of (2) has but a
single simple pole. Set

fn(zn.l + (Zn‘2 - Zn.l)é) .

(211,2 - Zn7 l)k

GII(C) =

Since z,2 — z,,1 — 0, G,({) is defined for any { € C if n is sufficiently large; and
G () #1. Note that G,(1) = 0. Also,

Gi(0) =0 G, <Z”=0 - Z’“) =0
Zn,2 — Zn,1
and

Zn,0 — Zn,l - é — Ny
Zn,2 — Zn,1 77n M

-0,

so {G,} is not normal at 0. On the other hand, for » sufficiently large, G, has
only a single zero (which tends to 0 as n — o0) on any compact subset of C.
Since G ({) # 1, it follows from Lemma 2 that {G,} is normal on C\{0}.
Taking a subsequence and renumbering, we may assume that G, L GonC \{0}.
Since G, has only a single pole on A, conditions (a), (b), (c), and (d) hold for the
sequence {G,} (defined, say, on A(O 2)) with @¢; =0 and 0 = 1. Thus, by the
first part of the proof, G(¢) = ¢¥/k!. But this contradicts G(1) = co. This com-
pletes the proof of Lemma 5.

DEFINITION.  Let zj,z; € C and put Z = (z; + z2)/2. We say that (z;,z3) is
a k-nontrivial pair of zeros of f if

() f(z)=f(z)=0 and

(i) there exists z3 such that |z3 — Z| < |z; — z5| and |f"(z3)| /|21 — 227" > 1.
Note that (ii) is equivalent to

(ii") there exists z* such that |z*| <1 and |A'(z*)| > 1, where

"= f(tl . Z:)?)z) |

Since |A'(z)| = h*(z), it suffices to have A¥#(z*) > 1 in (i").

Our next result deals with the situation in which the functions f, have more
than a single zero in each neighborhood of a point of non-normality.

LemMmA 6. Let {f,} be a sequence of functions meromorphlc on A, all of
whose zeros have multiplicity at least k + 1, such that fn ( ) # 1 for all n and all
zeA. Suppose that
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(a) no subsequence of {f,} is normal at zy, and
(b) for each 6 > 0, f, has at least two distinct zeros on A(zy,0) for sufficiently
large n.
Then for each 6 >0, f, has a k-nontrivial pair (a,,c,) of zeros on A(zy,0) for
sufficiently large n, and

Saldy + (an — ¢){)
(an - Cn)k

is not normal on A. Here d, = (a, + ¢,)/2.

Proof. As in the proof of the previous lemma, it follows from (a) and
Lemmas 1 and 4 that for each subsequence of {f,} there exists a (sub)sub-
sequence (which, renumbering, we continue to denote by {f,}), points z, — z,
numbers p, — 0%, and distinct a,b € C such that

(zn+ p,0) 7 1 (¢ — a)kH
©) (e = HEC L Ly £ L

Thus there exist &, — a, 1, — b so that a, = z, + p, &, — zo, by = zy + P11, — zo0
and g¢,(&,) = fulan) =0, gn(n,) = fu(by) = o for n sufficiently large.

By assumption, there also exists ¢, # a,, ¢, — zo, such that f,(c,) =0.
Thus ¢, =z, + p,&, and &, — o by (6). Setting d, = (a, + ¢,)/2, we see that
the function

Jn (dn + (an - Cn)C)

(an — Cn)k

ha(0) =

is defined for any (e C if n is sufficiently large. We claim that {4,} is not
normal at { = 1/2. Indeed, we have

ay — dn l bn - dn l
a,—c, 2’ a,—c, 2’
n - dn bn - dn .
hn (a ) = fn(an) = 07 hn( ) = fn(bn) = 0,
a, — C, ay — Cp

so {h,} fails to be equicontinuous in a neighborhood of 1/2. Tt follows from
Marty’s Theorem that

lim sup A*() = .
=0 e_1/2|<1/4

Thus (ay,c,) is a k-nontrivial pair of zeros of f, for n sufficiently large.
Lemma 7. Let {f,} be a sequence of functions meromorphic on A, all of

whose zeros have multiplicity at least k + 1, such that fn(k) (z) # 1 for all n and all
zeA. Suppose that
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(@) there exist de A, a, — d, ¢, — d, and zy € C such that for every 6 >0,
Juldy + (ay, — ¢)2)

(an — Cn)k
has at least two distinct zeros on A(z,0) for sufficiently large n, where
dy = (ay + ¢y)/2; and
(b) no subsequence of {h,} is normal at z.
Then for n sufficiently large, f, has a k-nontrivial pair of zeros (z, |,z, ,) such that

zp ;= d (j=1,2) and |z, | — z; 5| < |ay, — c.

hy(z) =

Proof. As before, it follows from Lemmas 1 and 4 that to each subsequence
of {h,} there corresponds a subsequence (which we continue to write as {/,}),
z, — 2o, and p, — 07 such that

bz +p) 2 1 (C—a)
= — C.
Thus there exist &, g — b, &, | — a so that z, ; =z, 4+ p,&, ; — 20 (j=0,1) and
gn(én,o) = hn(zn.O) = gn(én,l) = hn(zn‘,l) =0. By (a), there exist Zn,2 = 20,
Zn,2 # Zn,1, Such that f,(z,2) = 0. Setting z,, = z, + p,&, 2, we have &, , — 0.
Now put

z:.’j =dy + (ay — cn)zn + pylan — ci)éy; j=0,1,2.

Clearly Zy ;= d, j=0,1,2. Define
Jn((zp 1 +2,2)/2+ (251 —2,,)0)

* * k :

(Zn,l - Zn,2)
Then {G,} is not normal at { =1/2. Indeed,
25}10_én 1 _£n2>
G, = ’ 2) = o, G,(1/2) =0.
( 2(én,l _611.,2) ( / )

Since (2&,.0 — &1 —En2)/2(En1 — Enn) — 172, {G,} is not equicontinuous at
{=1/2. As before, it follows from Marty’s Theorem that (z,,,z,,) is a k-

n,12%n,2
nontrivial pair of zeros of f,. Now |z, —z; 5| = |an — ¢l |201 — 2z, »|; therefore,
since z,; — zo (j =1,2), we have |z, | —z;,| < |a, — ¢,| for large enough n, as
required.

Gn({) =

n1

Lemma 8. Let {f,} be a sequence of functions meromorphzc on A, all of
whose zeros have multiplicity at least k + 1, such that f, k)( ) # 1 for all n and all
zeA. Suppose that

(@) {fn} is normal on A'(0,1), but no subsequence of {f,} is normal at 0; and

(b) there exists 6 > 0 such that f, has a single (multiple) zero on A(0,0) for all

sufficiently large n.
Then there exists a subsequence of {f,} (Which we continue to call {f,}) such that
for any ae C, f, —a has at most k + 1 zeros (counting multiplicity) on A(0,1/2).
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XProof. Taking a subsequence and renumbering, we may assume that
fu= fon A'(0,1). By Lemma 5, f(z) = zF/k!. Suppose that |a| < (2/3)" /k!.
Taking T" to be the circle {|z| = 3/4} traversed once in the positive direction, we
have

L[ ) L[ ke—1y
2_er ,,(z)—adz_)2_7ziJl— Fk—a FTF

However, the left hand side is the number of a-points of f, minus the number of
poles of f, inside I', counting multiplicities. By Lemma 5, there exists 0 < J <
3/4 such that f, has a single simple pole on A(0,0) for n sufficiently large. Since
f» converges uniformly to z€/k! on {z : § < |z| < 3/4}, there exists N; such that if
n > N, f, has a single simple pole in A(0,3/4). Hence for n > N;, f, takes on
the value a (counting multiplicities) exactly k& + 1 times on A(0,3/4).

Suppose now that |a| > (2/3)*/k!. Let I be the circle {|z| = 5/9} traversed
in the positive direction. Then

RN C R S
ZHiJr’ n(z)—adz—>2nin zk/k! —a dz =0,

so the number of a-points minus the number of poles of f, (counting multiplicity)
inside "' is 0 for large n. It follows as before that there exists N, such that f,
takes on the value ¢ exactly once (counting multiplicities) on A(0,5/9) if n > N».
Dropping the elements f, with n < max(N;, N>) and renumbering, we obtain the
desired sequence.

LeMMA 9. Let f be a meromorphic function on C, all of whose zeros have
multiplicity at least k + 1, such that f%)(z) #1, ze C. Then either
(i) f is rational; or
(i) there exist k-nontrivial pairs (ay,c,) of zeros of f such that |a, — c,| — 0
and a sequence of functions

f(dn + (an - Cn)C)
(an — Cn)k

which is not normal on A; here d, = (a, + ¢;)/2.

ha(0) =

Proof. Suppose f is not rational. Then by Lemma 4, f has infinite order,
so there exist z, — oo and ¢, — 0 such that

1
) S@lema )= || UHER ddy = e,
|z—zu| <én
Indeed, otherwise there would exist ¢ > 0 and M > 0 such that S(A({,¢),f) < M
for all {e C. From this follows

_! #(2))? dxdy = O(r*
S(r) = ”m[f () dxdy = 0(r2),

e
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so that (cf. [10, p. 217]) f would have order at most 2, a contradiction.
In particular, there exist z* e A(z,,&,) such that f#(z¥) — co. Let f,(2) =
f(z+2z}). Then no subsequence of {f,} is normal at 0.

Suppose there exists 0 > 0 such that f, has only a single (multiple) zero &, on
A(0,6). Since no subsequence of {f,} is normal at 0, £, — 0 by Lemma 2.
Thus, again by Lemma 2, {f,} is normal on A’(0,5). It follows from Lemma 8
that there exist n; < ny <--- such that for any a e C, f, —a has at most k + 1
zeros (counting multiplicity) on A(0,6/2). Thus, for large enough j,

S(A(zw ), f) < S(A0,6/2), fr,) <k + 1

which contradicts (7).
Thus, for each 0 > 0, f, has at least two distinct zeros on A(0,9) for suf-
ficiently large n. The result now follows immediately from Lemma 6.

4. Proof of the Theorem

Suppose the Theorem is false. Then there exists a sequence {a } = D with
no accumulanon point in D and such that a # a5 and a sequence { f,,} < Z such
that f, :>f on D\{a/} but no subsequence of {f,} is normal at aj or a;.
We may assume that ¢f =0 and D =A. The argument given in the proof of
Lemma 5 shows that £*) = 1 on A\{a;} or f =0, so f#0.

If there exists 0 > 0 such that f, has only a single (multiple) zero on each
A(a;,0) (] =1,2) for large enough n, it follows from Lemma 5 that f(z) =
(z—af ) /K (] =1,2) on A\{q}}. Thus aj = aj, a contradiction.

Therefore one may suppose that for any 6 > 0, f, has at least two distinct
Zeros on A(O,é) for sufficiently large n. By Lemma 6, f, has a k-nontrivial pair
of zeros in A(0,0) for n large enough. Therefore, some subsequence of {f,}
(which, as usual, we continue to call {f,}) has a k-nontrivial pair of zeros (z,, w,)
such that |z,| < 1/n, |w,| < 1/n. There exist do >0 and 1 <s <2 such that
n £ f on A'(0,26) and f does not vanish for dy < |z| < s6p. For 1/n < dy, let
(an,cy) be a k-nontrivial pair of zeros of f, in A(0,dy) whose distance is minimal.
Clearly, a, — ¢, — 0. Set d, = (a, + ¢,)/2. Then d, € A(0,0y); and, passing to
a subsequence, we may assume that d, — a, so |a| <Jy. Since f and f, have no
zeros on {z:9¢ < |z| < sdp} if n is large enough, (a,,c,) is a k-nontrivial pair of
zeros of f, on A(0,sdy) whose distance is minimal.

Set

fn(dn + (an - CI’I)C)

(an — Cn)k
Then for each { e C, h,({) is defined if n is sufﬁc:lently large. Clearly, all zeros
of h, have mu1t1p11c1ty at least k+ 1 and A )(C) # 1. We claim that no sub-
sequence of {/,} is normal on C. Otherwise, taking a subsequence and re-

numbering, we would have /, Z hon C. Since (an,cy) 18 a k- nontr1V1al pair of
zeros of fy, hy(£1/2) = h'(£1/2) = --- = h{(+1/2) = 0, and sup,|h (z)] > 1.

hn(&:) =
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It follows easily that 2%)({) # 1 on C and that / is nonconstant. Since all zeros
of & have multiplicity at least kK + 1, Lemma 4 shows that & must be tran-
scendental. It then follows from Lemma 9 that there exist infinitely many k-
nontrivial pairs (¢;,7;) of zeros of & such that & — oo and & —7; — 0, and z;
with [z — (& +1,)/2| < |f] n;| and h*(z zf) — oo.

Fix J such that h#( /) =2 and [{; —n;| < 1. Then there exist &, ; — ¢;
and 7, ; —n; such that "for n sufficiently large, £%,(,,;) = hi(n, ;) =0 and

|Z (én J + ’7}1 /)/2| < |En/ 77)1,_j|‘ Put

f;,j =dy, + (a, — Cn)én,j ’7;]' = dy + (a, — Cn)"]n,_/ Zn g =dy + (an )Zj'
Then
. St o Snj Ty .
Zn,j 7% = ‘an - Cn' Zp — % < |an - Cn| |én] M, ]| | n,j ’7}17j|5

where & /Ha N, ; —a and |a\ < sdp; also, for n sufficiently large,
|fn’(z,j/)/( )k 1\ = |h, ( 9| > ( *) > 1. We conclude that (é:,i‘,-,’?,f,j) is a
k-nontrivial pair of zeros of fu on A(O sdp). However,

|§:,‘/ - ’7;,‘/" = lan — cul [&n; — ’7n,j| < lan — ¢

if n is sufficiently large. This contradicts the fact that (a,,c,) is a k-nontrivial
pair of zeros of f, in A(0,s0)) whose distance is minimal.

Thus no subsequence of {#,} is normal on C. Let E be the set on which
{h,} is not normal. Suppose that for each { € E, there is a neighborhood on
which /£, has only a single (multiple) zero for sufficiently large n. Then by
Lemma 2, {h,} is quasinormal at each point of E and hence on all of C. Let
{o € E. Taking a subsequence, we may assume that no subsequence of {/,} is
normal at {, and that {/,} converges locally spherically umformly on C\E,,
where Ey c E is a discrete set containing {,. By Lemma 5, A, % (€ = o)*/k! on
C\E,. Taking additional subsequences and d1agonahzmg, we may assume that
no subsequence of {/,} is normal at any point of Ey. We claim that Ey = {{,}.
Indeed, otherwise there exists {; € Ey, {; # {o; then, as before, it follows from
Lemma 5 that £,({) ES (C—Cl)k/k! on C\Ey, so that {; =, Ey={{y}, and
hn(C)é(C—Co)k/k! on C\{{y}. But this contradicts #,(+1/2) =0. Hence
there exists {, € E such that for each J > 0, there is a subsequence of {/,} (which
we continue to call {A,}) such that each /i, has at least two distinct zeros in
A(¢y,0) for sufficiently large n. Then by Lemma 7, for n sufficiently large, f,
has a nontrivial pair of zeros (w,,w,,) such that w’ n;—a (j=1,2) and
lwy | —wrs| <|ay, —cu|. This contradicts the fact that (an,cn) is a nontrivial
pair of zeros of f, in A(0,s5,) whose distance is minimal.
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