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GENERIC FUNDAMENTAL POLYGONS FOR
SURFACES OF GENUS THREE
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Abstract

In the study of extremal surfaces it is important to see the side-pairings of the
generic fundamental polygons. For the regular 30-gon in the hyperbolic plane it is
known that there are 1726 side-pairing patterns to make a compact surface of genus
three. If we consider the mirror images of these patterns, then there are essentially 927
patterns. In the present paper we give the 927 side-pairing patterns completely.

1. Introduction

Let S be a compact Riemann surface of genus g > 2. Let D(r) be a disk of
radius r isometrically embedded in S. A surface S is said to be extremal if it
admits an extremal disk D(R,), where R, is determined by ¢ as follows ([2]):

1
hR, = .
O = S sin(z/ (129 — 6))

As a fundamental polygon of an extremal surface of genus g, we can take the
regular and generic one, that is, the regular (12g — 6)-gon with angles 27/3 in the
hyperbolic plane ([2]). Then three vertices of the polygon are identified with a
point in S. A typical extremal disk embedded in an extremal surface is the pro-
jection of the inscribed disk in the regular (129 — 6)-gon ([2]). Then our con-
cerns are the numbers of extremal disks that extremal surfaces can admit and the
locations that extremal disks are embedded in. If g > 4, then extremal surfaces
admit a unique extremal disk ([3]). If g =2, then there are essentially 8 extremal
surfaces and the locations of the extremal disks are precisely found out ([4], [7]).
Thus our problem is to sudy the extremal surfaces of genus three. For each
extremal surface of g = 2 we have the regular 18-gon as a fundamental polygon.
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The side-pairing patterns of the regular 18-gon to make surfaces of genus two
play an important part in finding the locations of the extremal disks. For g = 3,
therefore, it is important to obtain the possible side-pairing patterns of the regular
30-gon to make surfaces of genus three. It is known that there are 1726 side-
pairing patterns for the regular 30-gon ([6], [1]) and that there are essentially 927
patterns if we consider mirror images. Hence, in the present paper we shall give
all of the 927 side-pairing patterns for the study of extremal surfaces of g = 3.
The methods we use here are similar to those of [5].

2. Trivalent graphs with 10 vertices and 15 edges

If we identify each pair of edges of the regular 30-gon to make a compact
surface S of genus three, then two edges of the polygon become one curve in S
and three vertices of the polygon become one point in S. Hence we have a
figure in S with 10 points connected by 15 curves such that each point is the end
point of the three curves. We consider it a trivalent graph with 10 vertices and
15 edges (see Figure 1).

- e -

FIGURE 1. An example of a graph embedded in the surface of genus three

PROPOSITION.  Let 4 be the set of connected trivalent graphs G with 10 ver-
tices and 15 edges such that G can be embedded in a compact surface of genus three
and that S\G is simply connected. Then % consists of the following 65 graphs (see
Figure 2).

Proof. In order to obtain the graphs, we shall number the vertices from 1
to 10 and connect the 10 vertices by 15 edges such that each vertex has three
edges. First, we have two cases such that (A) the vertex 1 is connected with
three different vertices 2, 3, and 4 or (B) the vertex 1 is connected with two
different vertices 2 and 3 (we may suppose that 1 and 2 are connected by two
different edges then) (see Figure 3).

Next, we have three cases from (A) to connect the vertex 2 with three
different vertices as follows: 2 is connected with 3 and 4, 2 is connected with 3
and 5, or 2 is connected with 5 and 6 (see Figure 4). In (A) it is sufficient to
consider the graphs of which distinct vertices are not directly connected by two
edges. In (B) we have two cases such that 2 is connected with either 3 or 4 (see
Figure 5).
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FIGure 3. (A) and (B)

1 1 1
2 2 2
Db O
5 5 6

FIGURE 4. Three cases from (A)
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FIGURE 5. Two cases from (B)

FIGURE 6. An empty circle and a shaded circle

If we repeat this process for the other vertices 3,4,...,10, then we have
connected trivalent graphs with 10 vertices and with 15 edges. In order to
examine whether each of these graphs G is embeddable in S, with connected
complement, we shall consider whether there exist closed walks on G on con-
dition that we walk on each edge of G exactly once in either direction and that
we do not go back immediately on the same edge to which we just came ([5]
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p. 452). For this purpose we shall assign each vertex an empty or a shaded
circle called rotation ([5] p. 453 or [8] p. 16). That is, if we walk on the edge a
toward the vertex i, then we have two different ways b or ¢ (see Figure 6). If the
empty (or shaded) circle is assigned to i, then we walk on the edge b (or c).
Once a rotation is assigned to a vertex, then the ways through that vertex are
determined (For example, suppose that an empty circle is assigned to the vertex
i. After we walk to i along the edge b (or ¢), we walk on the edge ¢ (or a)
from i).

Assigning the rotations to the 10 vertices of each graph by computer, we
see that the graphs from which our required closed walks arise are those in
Figure 2. O

Remark. For example, our required closed walk does not arise from the
following trivalent graphs (see Figure 7).

-0 D= a

FIGURE 7. Examples of the graphs which are not in ¥

3. Side-pairing patterns for the regular 30-gon

For each G € 4, we obtain the side-pairing patterns of the regular 30-gon by
the closed walks on G.

To depict the side-pairing patterns simply, we shall use a dot (e) in place of
an edge of the regular 30-gon (see Figure 8).

FIGURE 8. Dots denote edges.

THEOREM. The 927 side-pairing patterns of the regular 30-gon up to mirror
images are the following:
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We shall show a table with respect to the side-pairing patterns arising from
G € %. In the table below P(G) denotes the set of all side-pairing patterns arising
from G, P*(G) denotes the subset of P(G) up to mirror images. The numbers
in the column of P*(G) show the ones labeled in the figures of the side-pairing
patterns in our theorem. Note that X5.4#P(G) = 1726 and Zs.4#PT(G) = 927.

G | #PT(G) | #P(G) | PT(G) | G | #PT(G) | #P(G) | P*(G)

A-1 14 24 1-14 A-6 36 68 123-158
A-2 6 8 15-20 A-7 24 48 159-182
A-3 24 48 21-44 A-8 20 40 183-202
A-4 68 128 45-112 A-9 6 12 203-208

A-5 10 16 113-122 | A-10 32 64 209-240
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A-11 72 144 | 241-312 || B-21 4 6 568-571
A-12 6 8 313-318 || B-22 14 26 572-585
A-13 44 88 319-362 | B-23 6 12 586-591
A-14 18 36 363-380 || B-24 6 8 592-597
A-15 16 24 381-396 || B-25 16 32 598-613
A-16 14 20 397-410 || B-26 4 4 614-617
A-17 25 42 411-435 | B-27 10 16 618-627
A-18 2 4 436-437 | B-28 24 48 628-651
B-1 2 3 438-439 | B-29 16 32 652-667
B-2 4 8 440-443 | B-30 7 10 668—-674
B-3 4 8 444-447 | B-31 48 96 675-722
B-4 2 2 448-449 | B-32 14 24 723-736
B-5 4 8 450-453 | B-33 6 8 737742
B-6 4 8 454-457 | B-34 6 10 743-748
B-7 3 4 458-460 | B-35 8 16 749-756
B-8 8 16 461-468 | B-36 4 4 757-760
B-9 12 24 469-480 | B-37 24 48 761-784
B-10 1 1 481 B-38 28 52 785-812
B-11 2 2 482-483 | B-39 8 16 813-820
B-12 7 12 484-490 | B-40 12 18 821-832
B-13 3 6 491-493 | B-41 7 10 833-839
B-14 7 10 494-500 | B-42 14 26 840-853
B-15 8 16 501-508 || B-43 8 16 854-861
B-16 6 10 509-514 || B-44 14 26 862-875
B-17 8 16 515-522 || B-45 14 24 876-889
B-18 5 8 523-527 || B-46 32 64 890-921
B-19 16 32 528-543 || B-47 6 10 922-927
B-20 24 48 544-567 || Total 927 1726
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