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THE GRADIENT OF A POLYNOMIAL AT INFINITY
JACEK CHADZYNSKI AND TADEUSZ KRASINSKI

Abstract

We give a description of growth at infinity of the gradient of a polynomial in two
complex variables near any of its fiber.

1. Introduction

Let f: C" — C be a non-constant polynomial and let Vf/ : C" — C" be its
gradient. There exists a finite set B(f) = C such that f is a locally trivial C*-
bundle over C\B(f) ([Ph], Appendix Al, [V], Corollary 5.1). The set B(f) is
the union of the set of critical values C(f) of f and critical values A(f) cor-
responding to the singularities of f at infinity. The set A(f) is defined to be the
set of all 2 € C for which there are no neighbourhood U of 4 and a compact set
K = C" such that f: f~'(U)\K — U is a trivial C*-bundle. It turns out that
for 1 € C the property of being in A(f) depends on the behaviour of the gradient
Vf near the fiber /(7). }

Ha in [H2] defined the notion of the Lojasiewicz exponent £, , (f) of the
gradient Vf at infinity near a fibre f~!(Jy) in the following way

(1) D so(f) = lim L (V| £ (Dy)),

where Ds:={le C:|i—lo| <6} and Z,.(Vf|f1(Ds)) is the Lojasiewicz ex-
ponent at infinity of the mapping Vf on the set f~!(Ds) (see the definition in
Section 3) and gave, without proof, a characterization of A(f) for n =2 in terms
of L, ;,(f). Namely, e A(f) if and only if £, ;(f) <0 (or equivalently
Loi(f) < —1). A generalization of this result was given by Parusinski in
[P]. Moreover, Ha also gave a formula for %, ; (f) in terms of Puiseux
expansions of roots of the polynomial f — Ay at infinity for A9 € A(f) (this
formula is analogous to the formula for the local fLojasiewicz exponent of the
gradient Vf, given in [KL]).
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The aim of this paper is to give in the case n =2 a complete description of
the behaviour of the gradient Vf near any fibre f~!(1) for Ae C. To achieve
this we define a more convenient Lojasiewicz exponent at infinity of Vf near a
fibre f~'(1) (equivalent to the above one, see Section 5 for n =2 and [Sk] for
arbitrary n) as the infimum of the Lojasiewicz exponents at infinity of Vf on
meromorphic curves “approximating” f~!(1) at infinity. Precisely, for a non-
constant polynomial f: C" — C and A€ C we define %, ,(f) by

. .degVfo®d
(1.2) L a(f) = %f Tdeg @
where ® = (¢;,...,p,) is a meromorphic mapping at infinity (i.e. each ¢, is a

meromorphic function defined in a neighbourhood of oo in C) such that deg @ :=
max(deg ¢;,...,deg ¢,) >0 and deg(f — 1) o ® <0, where degg¢ for ¢ mero-
morphic at infinity is defined as follows: if ¢(f) = 3. % axt*, ax #0, is the
Laurent series of ¢ in a neighbourhood of oo then deg¢:=k; if ¢ =0 then
deg ¢ := —oo. We shall also call such mappings meromorphic curves.

The main results of the paper are effective formulas for %, ;(f) for each
A e C and properties of the function 1+ %, ;(f) for n=2. To describe them
we outline the contents of the sections.

Section 2 has an auxiliary character and contains technical results on re-
lations between roots of a polynomial and its derivatives.

In Section 3 we investigate %, ,(f) for 2 € A(f). In particular we obtain
the all results of Ha with complete proofs.

The main theorems are given in Section 4. They are Theorems 4.1, 4.5 and
4.6 which give effective formulas for %, ;(f) for each 1€ C in terms of the
resultant Res,(f(x, y) — 4, f(x, y) — u), where A,u are new variables, (x, y) is a
generic system of coordinates in C~ and f; is the partial derivative of f with
respect to y. As a consequence we obtain (Corollary 4.7) a basic property of
the function 4+ %, ;(f). Namely,

Lo i(f) =const. =0 for 2¢ A(f),
Lo i(f) €|—0,—1) for e A(f).

The key role in the proof of Theorems 4.5 and 4.6 plays Proposition 4.4 which
says that the function C\A(f)3 4+ Z,.(Vf|f~'(4)) is constant.
In Section 5 we shall give a short proof of the equality

(1.3) Lo ilf) =Ly i(f) for ieC

for n=2. Recently Skalski in [Sk] proved (1.3) in n-dimensional case. His
proof is based on an appropriate choice of a semi-algebraic set and the Curve
Selection Lemma.

_In Section 6 characterizations (in terms of the exponents %, i(f) and
ZL.3(f)) of sets for which the Malgrange and Fedorjuk conditions for f do not
hold in n-dimensional case is given.
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In the end of Introduction we explain some technical assumptions occured in
Sections 2-5. Since one can easily show that the exponent %, ;(f) does not
depend on linear change of coordinates in C” we shall assume in Sections 2-5
that the polynomial f e Cl[x, y| is monic with respect to y and deg f/ = deg, /.
Then we have a simple characterization of the set A(f), which will be used in the
paper. Namely, in [H1] and [K1] there was proved that
(1L.4) A(f)={Ae C: () =0},

where the polynomial ¢o(4)x" + -+ + cy(4), ¢o # 0, is the resultant of the poly-
nomials f(x,y) — 4, f/(x,y) with respect to the variable y.

2. Auxiliary results

Let f be a non-constant polynomial in two complex variables of the form
2.1) f(x,»)=y"+a(x)y" '+ +a,(x), dega;<i, i=1,...,n

It can be easily showed (see [CK1]).

Lemma 2.1. If n > 1, then for every Ay € C there exist D € N and functions
BiseosBps Vise-yVno1, meromorphic at infinity, such that
(a) deg f; < D, degy; < D,

(b) £(2, ) — 20 = [111 (y = Bi(0)),
(©) £/, y) =nII}= (v — (1) O

We shall now give a lemma which directly follows from the property B.3 in
[GP]. Local version of this lemma was proved in [KL].

LemMMA 2.2.  Under notation and assumptions of Lemma 2.1 for every i,j e
{1,...,n}, i # j, there exists ke {l,...,n— 1} such that

(2.2) deg(B; — ﬁ]) = deg(f; — i)
and conversely for every ie{l,...,n} and ke{l,....n—1} there exists je
{1,...,n} such that (2.2) holds. O

Now we prove a proposition useful in the sequel. A local version of it is
given in [P1] and [R1]. We put ¥,(¢) := (¢?,y,(1)), 1 e{l,...,n—1}.

ProposITION 2.3.  Under notations and assumptions of Lemma 2.1 we have

n n n n—1
(2.3) min< Z deg(f; — ﬁ;) +j:rrlin ; deg(pB; — ﬂ;)) = r}lziln(deg(f —Jo) o ¥).

=1 . 1,
' J=lj# s

Proof (after [R1]). There exists iy € {1,...,n} such that the left hand side
in (2.3) is equal to
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n

S deg(B, —f) + min deg(B, — )

. =1, ] #
J=Lj#i SR

and jo € {l,...,n} such that
(24) jmin_deg(f;, — f;) = deg(B;, — f,).

By Lemma 2.2 there exists ko € {l,...,n— 1} such that

(2.5) deg(ﬁz}) - ﬂjo) = deg(ﬁio - Vlco)'

We shall lead the further part of the proof in four steps.
A. We first show that for each je {l,...,n} we have

(2.6) deg(VkO _ﬂj) = deg(ﬂio - ﬂj0)~
Take any je{l,...,n} and consider two cases:
(a) deg(ﬁio - ﬂ.fo) = min::l,s#j deg(ﬁs - ﬂj)a

(b) deg(p;, — ﬂjo) > min:l:l_,s;ej deg(f; — B;)-
In case (a) by Lemma 2.2 there exists p e {1,...,n} such that

deg(yy, — #)) = deg(f, — ) = min_deg(f, — f)) = dee($ — )

which gives (2.6).
In case (b) by definition of i, and (2.4) we have

n

Z deg(f; — ﬁio) + deg(ﬂjo - ﬂio)

s=1,5#10

n

< > deg(f,— )+ min_deg(f, — ).

s=1,5#j
Hence and from (b) we get

n n

> dealh )< Y dealhi— )

s=1,s#ip s=1,5#]
Then there exists s # iy, s # j such that
deg(f, — B;,) < deg(f; — f;).
Hence and from (2.5) we get
deg(ﬂj - ﬂio) = deg(ﬁj — B+ B — ﬂiq) > deg(f; — ﬂi(,)
> deg(f;, — Bi,) = deg(yx, — Bi,)-

In consequence
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deg(y, — B;) = deg(yx, — Bi, + B, — B;) > deg(yi, — Bi,) = deg(B;, — Bi,)-
This gives (2.6) in case (b).
B. We shall now show that for each je{l,...,n}, j# iy, we have
(2.7) deg(yko - ﬁ,) = deg(ﬂio - ﬁ,)
Take je{l,...,n}, j+#ip, and consider two cases:
(a) deg(yy, — B;) > deg(yx, — Biy)s
(b) deg(yx, — £;) = deg(yx, — Biy)-
By (2.5) and (2.6) there are no more cases. In case (a) we have
deg(ﬁil) - ﬁj) = deg(ﬁi‘, —Vko T Vho — ﬁ/) = deg(yk[) - ﬁj)>
which gives (2.7).
In case (b) by (2.4) and (2.5) we have
deg(B;, — B;) = deg(B;, — vi, + i — B;) < deg(Bi, — vx,)
= deg(B;, — B ) < deg(B;, — ﬁj)a

which gives (2.7) in case (b).
C. We notice that by Lemma 2.1 and equalities (2.4), (2.5) and (2.7) we
have

deg(f — Zo) o Wi, = Y _deg(yy, — )
Jj=1

> deg(yy, — B) + deg(y, — By,)

J=Lj#io
n n
= Z deg(p;, —p;) + min deg(f;, —p;).
. ~ j=1,j#iy
J=1j#io

Thus we have shown
n n n n—1
(2.8) min (j_lzj#deg(ﬂ,- —fy) + min_deg(f; —ﬁ;)) > min(deg(f — o) o '¥1).

D. We shall now show the inequality opposite to (2.8). There exist [y €
{1,...,n—1} and joe{l,...,n} such that

n—1

(29) min(deg(f — %) 0 ¥i) = deg(f — io) o ¥y,

(2.10) min deg(y;, - £;) = deg(y, = £;,)-

Observe first that for any je {l,...,n}, j # jo, we have by (2.10)
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(2.11) deg(ﬂj - ﬁjq) = deg(ﬁj VitV ﬁjo) =< deg(ﬁj — i)

By Lemma 2.2 there exists koe{l,...,n—1} such that deg(y, —f;,) =
deg(fy, — B;,)- Hence using Lemma 2.1 and (2.11) we get

deg(f — 40) o ¥, = Zdeg T — Z deg(, — B;) + deg(y, — B;)
J=1j#jo
= Z deg(ﬁjo _ﬂj) +j:11rlji'1;j0 deg(ﬂj_ﬂjo)a
J=1Lj#jo ’

which gives the inequality opposite to (2.8).
This ends the proof. O

3. Ciritical values at infinity

Let F: C" — C", n>2, be a polynomial mapping and let S = C" be an
unbounded set. We define

N(F|S):={veR:34,B>0 Vze S,(|z| > B=|F(z)| = A|z|")},

where |-| is the polycylindric norm. If S = C" we put N(F) := N(F|C").
By the Lojasiewicz exponent at infinity of F|S we shall mean %, (F|S) :=
sup N(F|S) when N(F|S)#0, and —oo when N(F|S)=0. Analogously
L (F) :=sup N(F) when N(F) #0, and —oo when N(F) = 0.
We give now a lemma needed in the sequel, which gives known formulas for
the Lojasiewicz exponent at infinity of a polynomial on the zero set of another
one. Let g, be polynomials in two complex variables (x,y) and

0 <degh=deg,h

Let e C and R(x,7) := Res,(g(x, y) — 7, h(x, y)) be the resultant of g(x,y) —t
and /(x, y) with respect to y. We put

R(x,7) = Ro(1)xX + -+ + Rg(1), Ry #0,
T :=h~1(0).

Lemma 3.1 ([P2], Proposition 2.4). Under above notation and assumptions
there is:

(i) Lo(g|T) >0 if and only if Ry = const.,

(i) L.(g|T) =0 if and only if Ry # const. and Ry(0) # 0,

(ili) —oo < L (g|T) < 0 if and only if there exists r such that Ry(0) = --- =

R.(0) =0 and R,,1(0) #0,

(iv) Z,(g|T) = —o0 if and only if Ry(0) =---= Rg(0) =0.

Moreover, in case (i)

k deg R;|
1 i

L, (g|T) = [max
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and in case (iii)

r ordg R; ]1
— O

Lo (g|T) = — |mi -
(9IT) |:I‘In_1(l)’1 r+1—i

Let f be a polynomial in two complex variables of the form (2.1) and
deg f > 1. Fix Jye C, denote z:= (x, y) and define

Siy ={z€ C*: f(2) = Ao},
Y:={zeC*: f/(z) = 0}.

In notation of Lemma 2.1 we put ®;(¢) := (t?,B,(¢)) for i e {1,...,n} and as
previously W;(z) := (t”,y,(r)) for je{l,...,n—1}.

Under these notation we give, without proof, a simple lemma which follows
easily from Lemma 2.1.

LEmMA 3.2. We have

(i) deg®; =D, i=1,...,n,deg¥;=D, j=1,...,n—1,

(ii) foo(fy’|S,10) = (1/D) min;", deg1 fy’ o ®;,

(i) Lo (f = 20|Y) = (1/D) min}Z, deg(f — 4) o \¥;. O

Now, we give a theorem important in the sequel.

TueoreM 3.3. If Lo (f — o, f)) <0, then
() Zolf — 0. f)) = Lo(f — 0| V),
(i) 4o € A(S).
Moreover, if additionally %, (f — 2o, f)) # —o0 then

(3.1) Lo (f = 201Y) < Lo (£)1S5)-

Proof. Let us start from (i). In the case Z,(f — 4o, f)) = —o0 we get
easily (cf. [CK3], Theorem 3.1(iv)) that %, (f — 40| Y) = —co, which gives (i) in
this case.

Let us assume now that %, (f — Ao, fy’ ) # —oo. In this case by the Main
Theorem in [CK1], (cf. [CK4], Theorem 1) we have

(3.2) Lo (f =0, 1)) =min( L. (f = 20| Y), Lo (f1S4))-

Hence to prove (i) in this case it suffices to show (3.1).

Assume to the contrary that (3.1) does not hold. Then by (3.2) and the
assumption of the theorem we have %, (f/|S;,) <0. On the other hand, by
Lemma 3.2(ii) there exists i€ {l,...,n} such that

(3.3) deg fy’ 0o ®; = Dgoo(f},’\S,zo).

By the above we get deg f;,’ o®; < 0. Hence we have
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deg f o®; = Y deg(B; - B))
=L #i
n n
> Z deg(B; — B;) + .f{li.n _deg(B; — B;).
J=L i J=hi#
In consequence we get

/ . n - —_ . ’z — .
deg f, o ®; > gll{l( deg(fy — ;) + min deg(f ﬁ,)>~

j=1.j#k
Hence by Proposition 2.3, Lemma 3.2(iii) and (3.3)
cg)O"(f_ 0 | Y) < Dg}’ﬁ(f;qs/uo)’

which gives a contradiction. Then (3.1) holds.

Assertion (i) is a simple consequence of the facts £, (f —2¢|Y) <O,
Lemma 3.1 and (1.4).

This ends the proof. ]

Let us fix the same notation as in Theorem 3.3.

Tueorem 3.4. If Z.(f — o, /) <0, then
(3-4) Looio[) = Lo (f = 20, 1)) = 1.

Proof. It Z,(f — 40, f,) = —c0, then by Theorem 3.3(i) L (f — 4 |Y) =
—oo. Hence by Lemma 3.2(iii) there exists j € {1,...,n — 1} such that (f — 4¢) o
W; =0. This implies f’o‘I’ f’o‘P =0. Hence deg Vf o¥; = —c0 and in
consequence %, ;,(f) = —co, which glves (3.4) in this case.

If —o0 < Z,(f — 40, /,) <0 then again by Theorem 3.3(i) it suffices to show

that

(3.5) L) =ZLo(f =4 |Y) -1
We shall first show the inequality

(3.6) Lrsaf) = Lolf =0 ¥) — 1.

According to definition (1.2) of %, ; (f) it suffices to show that for any mer-
omorphic curve ®(7) = (p,(¢), p,(¢)) satistying

(3.7) deg @ > 0,

(3.8) deg(f — Ap) o @ < 0,

we have

(3.9) deg Vo o o (f—ae|¥)—1.

deg®



THE GRADIENT OF A POLYNOMIAL AT INFINITY 325

From (3.7) and (3.8) it easily follows deg ¢, > 0. Superposing @, if necessary,
with a meromorphic function at co of degree 1, we may assume that ®(r) =
(t9%¢%1 (f)). Then by (3.8) we also get easily that deg ® = deg ¢;. On the
other hand, by Lemma 3.2(iii) it follows that there exists /. € {1,...,n — 1} such
that

deg(f — 4o) o ¥y,
deg ¥, '
Hence we get that inequality (3.9) can be replaced by the inequality
deg Vf o @ - deg(f — o) o W)
deg®d — deg ¥,

(3.10) Lof — 00 Y) =

(3.11) 1.

At the cost of superpositions of ® and ¥, , if necessary, with appropriate powers
of t* and t#, which does not change the value of fraction in (3.11), we may
assume that deg ® = deg ¥,. Moreover, increasing D in Lemma 2.1 we may
also assume that deg ® = D. Summing up, to show (3.6) it suffices to prove

(3.12) deg Vf o @ > deg(f — Ao) o ¥, — D.

Before the proof of this we notice that inequality (3.8) implies easily the
following

(3.13) deg(f — A0) o® < deg Vf o ® + D.

Consider now two cases:
(a) there exists Iy e {1,...,n— 1} such that

deg(p — ;) < min deg(p — f)),
(b) for each /e {l,...,n—1}

deg(p —7;) = min deg(p — ;).

In case (a) for each je{l,...,n} we have
deg(y;, — ;) = deg(y, — ¢ + ¢ — f)) = deg(p - ;).
Then
deg(f — 4o) o W), = deg(f — o) 0 D.

Hence, from (3.10) and Lemma 3.2(iii) we get
(3.14) deg(f — o) 0¥, < deg(f — Ag) o D.

By (3.13) and (3.14) we get (3.12) in case (a).
We shall now show (3.12) in case (b). Let min;, deg(p — f;) = deg(p — f;,)
for some iy e {l,...,n}. Then for each /e {l,...,n—1}

deg(f;, — 7;) = deg(B;, — o+ 9 — ;) < deg(p — 7))
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Hence
(3.15) deg f o @, < deg f, o @.
On the other hand, by Proposition 2.3, Lemma 3.2(iii), and (3.10)

deg fy/ o®j, = Z deg(B;, = B))
J=Lj#i

= > deg(f,— )+ min deg(p, —f)— min deg(f, —f)

=Ten Lj J=Li#i

> IIP’E?< > deg(ﬁk—ﬁ,>+jq§r;kdeg<ﬂk—ﬁ,>> -D

= \y=Lj#k
=D%.(f —X|Y)—D=deg(f — )oYV, —D.
Hence and by (3.15) we get
(3.16) deg f o ® > deg(f — 40) o ¥;, — D.

By (3.16) and the obvious inequality deg V/ o @ > deg /o ® we get inequality
(3.12) in case (b). Then we have proved (3.12) and in consequence (3.6).
To finish the proof we have to show

(3.17) L) < Lo(f —4|Y) - L.
By assumption, Theorem 3.3(i) and (3.10) we have
(3.18) deg(f — A9) o ¥, <O.
Hence
(3.19) deg(f — Ap) o W), =deg Vf o ¥, + D.
Hence and from (3.10) we get
S’w(f/loY)l%\;h%.
Hence taking into account (3.18) and (1.2) we obtain (3.17).
This ends the proof of the theorem. O

We shall now give three simple corollaries of Theorems 3.3 and 3.4.

COROLLARY 3.5. The following conditions are equivalent:
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Proof. (i) = (ii). Theorem 3.4.

(i) = (iii). Obvious.

(iif) = (i). By definition of %, ,,(f) there exists a meromorphic curve @,
deg ® >0, such that deg((f —40) o @, f) o ®) =1 2 <0. Hence L, (f — 1o, f)) <
o/deg ® < 0.

(i) = (iv). Theorem 3.3(ii).

(iv) = (i). [CK3], Theorem 3.1.
@i
(

) = (v). Theorem 3.3(i).

v) = (i). By Lemma 3.2 (iii) there exists a meromorphic curve ¥, deg ¥ > 0,
such that deg((f —4p) oW, f/o¥) =10 <0. Hence ZL.(f —4,/)) <a/deg¥
<0.

This ends the proof. O
CoROLLARY 3.6. If %, (Vf) < —1, then

(i) there exists Ay € C such that L. (Vf) = L 1, (f),

(i) £..(Vf) = 2.(V/| Y).

Proof. Let ®, deg ® > 0, be a meromorphic curve on which the Lojasiewicz
exponent %, (Vf) is attained. Then

deg Vf o @
3.20 L7 =
(3:20) ="
We shall show
(3.21) deg fo® <0.

Indeed, it suffices to consider the case deg f o ® # 0. Then
deg fo® - deg Vf o @
deg® = deg®
which gives (3.21).
Inequality (3.21) implies that there exists Ap € C such that
(3.22) deg(f — 29) o ® < 0.

Then by (3.20), (3.22) and (1.2) we get %, ,,(f) < % (Vf). The opposite in-
equality is obvious. This gives (i).

From (3.22), the assumption and (3.20) we get % (f — 4o, f,) <0. Hence
according to (i) and Theorems 3.4 and 3.3(i) we get

LoVf) = Lo(f = DoY)~ 1.

+1=2,(Vf)+1<0,

Hence and from the obvious inequality
Lo(f = 20|Y) =12 ZL,(Vf]Y)

we obtain
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Lo (Vf) = %, (V] Y).

The opposite inequality is obvious, which gives (ii).
This ends the proof. ]

CoroOLLARY 3.7. If %, (f — Ao, f]) <0 and functions p,,...,p,, meromorphic
at infinity, are as in Lemma 2.1 then

(323) L, u(f)+1=+ "m( 3 deg(ﬁi—ﬂ,-wjnﬁn,deg(/fl-—/f,a).

AT #i Sl

Proof. By Theorems 3.4 and 3.3 (i) we get
Lpi(f)+1=ZLo(f =4 |Y).

Hence, using Lemma 3.2 (iii) and Proposition 2.3 we obtain (3.23).
This ends the proof. U

At the end of this section we notice that from Corollary 3.5 it follows that
all results of this section concern critical values of f at infinity. Indeed, by
Corollary 3.5 one can always replace the assumption %, (f — Ao, 1 ) < 0 with the
assumption Ay € A(f).

We shall now discuss the relation of the above three corollaries with the
results by Ha [H2]. It shall be shown in Section 5 that the above Lojasiewicz
exponent %, ;(f), defined by (1.2), coincides with the Lojasiewicz exponent
L, ;(f), defined by (1.1), introduced by Ha in [H2]. Thus Corollary 3.5 is a
changed and extended version of Theorems 1.3.1 and 1.3.2 in [H2]. A proof of
Theorem 1.3.2 in [H2] was also given by Kuo and Parusinski ([KP], Theorem
3.1). In turn, Corollaries 3.6(i) and 3.7 correspond exactly to Theorems 1.4.3
and 1.4.1 in [H2], respectively.

4. Effective formulas for %, ,(f)

In this section f is a polynomial in two complex variables of the form
(2.1). Let (4,u) e C* and Q(x, A, u) := Res,(f — A ,Jy — u) be the resultant of the
polynomials f — 4 and f] "—u w1th respect to the varlable y. By the definition
of the resultant we get easﬂy that Q(0,4,0) = +n"1" '+ terms of lower degrees.
Hence Q #0. We put

(4.1) O(x, 2, u) = Qo(A,u)x™ + -+ On(A,u), Qo #0.

Let us pass now to the effective calculations of %, ,(f). We start with the
first main theorem concerning the case when /; is a critical value of f at infinity.

THEOREM 4.1. A point Ay € C is a critical value of f at infinity if and only if
00(20,0) = 0.  Moreover
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gl)) C'(fffu,io(f) = - lf and 0’11)’ lf QO(AO,O) == QN(A'Ovo) =0,
1
egoc./lo(f) =-1- l:r}{lgl Oi(:_;()l _lQl:|

if and only if there exists r€ {0,...,N — 1} such that Qy(29,0) =--- =
0r(%0,0) =0, Or41(%0,0) #0.

Proof. By Corollary 3.5 (iv) & (i) and Theorem 3.1 in [CK3] we get the
first assertion of the theorem. The second one follows from Theorems 3.1 and
3.3 in [CK3] and Theorem 3.4. O

The next considerations will be preceded by two lemmas. First we introduce
notations.

Let .#(t) be the field of germs of meromorphic functions at infinity i.e.
the field of all Laurent series of the form +_% «A-nt™", k€ Z, convergent in a
nelghbourhood of veC. Let.(t U A (t'/%) be the field of convergent
Puiseux series at infinity. Slmllarly as in the local case ./(t)* is an algebra-
ically closed field. If pe.#(t)* and ¢(t) = y(t'/%) for y € .4(t), then we define
deg ¢ := (1/k) deg .

Using simple properties of the function deg and the Vieta formulac we
obtain

LEmMMA 4.2. Let

P(x,1) = co(t)x™ + e (x4 en (1) = co(0)(x = 9y (1)) -+ (x = g (1)),
where ¢y, c1,...,cn € M(t), co #0, ¢1,...,05 €M (t)". Then

deg ¢, —d
i=

Let f be, as previously, a polynomial of the form (2.1). For every A€ C we
put, as before, S; := f~!(4). Directly, by Lemmas 2.1 and 3.2, we get for every
AeC

(4'2) Lo (Vf | Si.) =%y (fylls/l)'

LemMa 4.3. The function C\A(f) 32 A— L. (Vf|S,) is lower semicontin-
uous.

Proof. Take Ao e C\A(f). Theorem 2 in [K2]| gives that there exist a
neighbourhood K of 4y, a positive integer D, a vicinity U of infinity in C and
holomorphic functions K x U 3 (4,¢) — f;(4, t) i=1,...,n, such that for every
A€ K we have:

(a) functions U st~ f,(4,1), i=1,...,n, are meromorphic at infinity,
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()degt/)’,( ,t)<D i=1....n

Put d),-(l ) (tD ﬁ(A,t)). ( ), ( ), (c) and Lemma 3.2 we have for every

reK
(f [S1) 7l mrn deg,f D;(4,1).

Since for every ie{l,...,n} the holomorphic function K x U3 (4,7)+ f/ o

®;(2, ) has an expansion in U in a Laurent series in variable ¢ with coefficients
holomorphrc in K, then the function K 3 4+ min;_, deg, f o ®;(4,1) is constant
in a vicinity K = K of 4 and takes a value not greater than this constant at Ao.
In consequence C\A(f) 3 A+ Z,(f]|S;) is lower semicontinuous. Hence and
by (4.2) we get the assertion of the’ theorem. O

Now, we shall prove an important proposition, which was indicated to us by
A. Ploski. He obtained this result by studying the polar quotients. We shall
give another direct proof of it.

Let

-1
0= {mﬁx M}

(4.3) ax

By an elementary property of the resultant Q it follows J > 0.

ProPOSITION 4.4. The function C\A(f)3 i+ ZL.(Vf|S,) is constant.
Moreover,

(i) if deg, Qo =0, then %, (Vf|S)) =0 for e C\A(f),

(i) if deg, Qo > 0, then L, (Vf|S,) =0 for ie C\A(f).

Proof.  According to (4.2) it suffices to show the function C\A(f)>3 1 —
%, (f!]S;) is constant.

Assume first deg, Qo = 0. By the first assertion of Theorem 4.1 we have
0Q0(20,0) # 0 for every Ao ¢ A(f). Then by Lemma 3.1

-1
(4.4) Lo (f)S5) = mfalx w

Hence and (4.3) it follows there exists a finite set Q;(f) = C\A(f) such that
Lo (fy18:) =0 for Z¢ (A(f)UQ(/))

and
,%O(fﬂ&) >0 for AeQ(f).

On the other hand, by Lemma 4.3, the function C\A(f) 34— Z,(f/]S;) is
lower semicontinuous. Hence Q(f) =@. This gives (i).
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Assume now deg, Qp > 0. Let Qu(f) = {4o € C\A(S) : deg, Qo(Lo,u) = 0}.
Clearly, Q,(f) is a finite set. Then by Lemma 3.1 we have

Lo ([3182) =0 for i ¢ (A(f)U(S))

and

Lo (£]181) >0 for LeQ(f).
By Lemma 4.3 the function C\A(f) 34+ Z.(f]|S;) is lower semicontinuous.
Hence Q,(f) =0. This gives (ii).
This ends the proof. U

Now, we shall prove the second main theorem of the paper.

THEOREM 4.5. If deg, Qy =0 then

(4.5) L, (f) =0 for e C\A(Y).
Proof. Let Ao ¢ A(f). We first show that
(4.6) 0 < Lo 1 (f)-

Take an arbitrary meromorphic curve ®(7) = (x(¢), y(¢)) such that deg ® > 0 and
deg(f — 49) o® < 0. To show (4.6) it suffices to prove

deg f}',’ o®d

deg @
Notice that the inequality deg(f —Z¢)o® <0 and (2.1) imply immediately
deg ® =degx. Put A(t):= fo®(1), u(t):=f/ o®(t). By a property of the
resultant we have
(4.8) O(x(2), A(2),u(t)) = 0.

By the first assertion of Theorem 4.1 and the assumption of the theorem we have
Q0(40,0) # 0 and Qp does not depend on u. Since deg(4(f) — A9) < O then

4.7

(4.9) deg Qo(A(1), u(1)) = 0.
By (4.9) and (4.8) taking into account deg x > 0 and deg A <0 we get easily
(4.10) degu > 0.

Consider the polynomial in variable x

O(x, A1), u(1)) = Qo(A(1), u(1))x" + - + Ow (A1), u(1))

with coefficients meromorphic at infinity. Identifying meromorphic functions at
infinity with their germs in .#(¢) and using (4.8), (4.9) and Lemma 4.2 we get

deg Q.(A(0).u(1))

deg x(1) < m]%ltlx l
=
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Hence and from the inequalities (4.10) and deg A(f) < 0 we obtain

deg, Qi(A,u) 1
- 5 deg u(r).

deg x(7) < deg u(z) miYalx

This gives (4.7) and then (4.6).
Now, we shall prove that
(4.11) Lo (f) <0.
By Proposition 4.4 and (4.2) Z,(/f)[S;) =0J. Hence and by Lemma 3.2 (ii)
there exists i € {1,...,n} such that
deg f;,’ o ®@;
deg ®;

On the other hand we have deg Vf o ®@; = deg y’ o ®;. Summing up, deg ®; >0
and

-, deg Vf o @;
— D =—-00, —L 1=
deg(f — 40) 0 0 deg ©; 0
Then by definition (1.2) of %, , (f) we get %, ,,(f) <.
This ends the proof. O

Now, we shall prove the third main theorem of the paper.

THEOREM 4.6. If deg, Qo > 0 then
(4.12) Lo i(f) =0 for e C\A(Y).

Proof.  Let Ao ¢ A(f).

If deg /' =1 then we check easily that &, ; (f) =0.

Assume that deg /> 1. Let us notice first that by 4y ¢ A(f) and Corollary
3.5 (iii) = (iv)
(4.13) Lo, (f) 2 0.

So, it suffices to show the inequality opposite to (4.13). By Proposition
4.4 and (4.2) Z.(/)|S)) =0. Hence and by Lemma 3.2 (ii) there exists i e
{1,...,n} such that deg f/ o ®; =0. On the other hand we have deg Vf o ®; =
deg fy/ o ®;. Summing up, deg ®; > 0 and

deg V/ o ®;

deg(f—/l())oq),‘:—OO7 W—O
Then by definition (1.2) of %, , (f) we get %, ,,(f) <O.
This ends the proof. O

From Theorems 4.1, 4.5, 4.6 we obtain
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CoRrOLLARY 4.7. The function C3A— %L, ,(f) takes values in [—o0,—1)
if and only if . € A(f). This function is constant and non-negative outside A(f).
]

Now, we compare the functions A— %, ;(f) and 1 — Z.(Vf|S)).

Put A, (f):={AeC: Qy(4,0)="--= QN{A,O) =0}. By the first assertion
of Theorem 4.1 we have A, (f) = A(f).

THEOREM 4.8. The functions C 34— %Ly ,(f) and C3 A — L, (Vf|S,) are
identical on the set (C\A(f))UAx(f). Namely,

(a) if deg, Qo =0, then L ;(f) = ZLu(Vf|S;) =0 for L ¢ A(f),

(b) if deg, Qo >0, then Ly, ;(f) = L. (Vf|S;) =0 for 2¢ A(f),

() Loo(f)=Lo(Vf|S;) =—o0 for Le A, (f).
For J.e A(f)\Ax(f) we have L. ;(f) < ZL.(Vf]S;)— 1.

Proof. Assertion (a) and (b) are simple consequences of Theorems 4.5, 4.6
and Proposition 4.4. We get assertion (c) from Theorem 4.1, Lemma 3.1 and
4.2).

If 2o e A(f)\Aw(f) then there exists r € {0,..., N — 1} such that Qy(49,0) =
o= 0(4,0) =0, Qr4+1(40,0) #0. Then by Theorem 4.1 —c0 < %, ,,(f) <O.
Hence and by Corollary 3.5, %, (f — 4o, f;) <0. Then by Theorems 3.4, 3.3
and the formula (4.2) we obtain

Lo i)+ 1=Lo(f =20, /)) = Lo(f — 20| Y) < Lo (f]1S3) = Lo (V| S3)-
This ends the proof. O

We illustrate the above corollary and theorem with two simple examples

Example 4.9. (a) For f(x,y) = y""' + xy" + y, n > 1, we have %, ;(f) =
LoVTIS) = 1/n for 4 #0 and L, o(f) = —1—1/(n—1), L, (Vf|Se) = 0.

(b) For f(x,y):=y> we have %, ;(f)= %.(Vf|S;) =0 for 2#0 and
Lo o(f) = Lo (Vf ] So) = —o0. O

At the end of this section we shall give a theorem that the exponent ., ;(f)
is attained on a meromorphic curve.
Under notation of Lemma 3.2 we have

THEOREM 4.10. If A9 € (C\A(f))UAL(f) then there exists ie{l,...,n}
such that

_ deg Vf o ®;
(414 Zenlh) =Hle
If Jo € A(f) then there exists je{l,...,n— 1} such that
deg Vf o ¥,
(4.15) G A A

deg ¥,
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Proof. Equality (4.14) is a simple consequence of Theorem 4.8 and Lemma
3.2.
For A9 € A(f) by Theorems 3.3 and 3.4 we obtain

(4.16) Loni(f) = L) = 40| Y) =~ L
By Lemma 3.2 there exists je {1,...,n— 1} such that

_deg(f—/lo)o‘}’j'

w(f—20|Y)=
Loo(f =20 Y) dog ¥,
From Corollary 3.5 deg(f — 49) o¥; < 0. Hence by a simple calculation we get
, deg Vf o ¥,
Lo (f — YV)-l="T—r_ 71
(f =20l Y) dog ¥,
Then, using (4.16) we obtain (4.15).
This ends the proof. O

5. Equivalence of the definitions of £, ;(f) and %, ;(f)

In the Introduction we have defined j’m ,(f) and %, ;(f) by formulas (1.1)
and (1.2), respectively. We notice that the limit in (1.1) always exists (it may
happen to be —oo) because by definition of %, (Vf | f~!(Ds)) the function &
%, (Vf| f~1(Ds)) is non-increasing.

We now prove (1.3) for n=2.

THEOREM 5.1. Let f: C?> — C be a non-constant polynomial and Jo € C.
Then

gao,).n(f) = gocyio(f)
holds.

Proof. Obviously
L3 ([) < Lo 3o (f)-

We shall now prove the opposite inequality. Since the set A(f) is finite then
there is a & > 0 such that (D;\{4}) NA(f) =0, where D; = {4 e C: |1 — A| <J}.
According to Corollary 4.7 we have

(51) goc,i(f) > goo,io(f) for 1€ D&-

Since the set f~'(Ds) is semi-algebraic and closed in C?, by the Curve Selection
Lemma the exponent %, (Vf | f~'(D;)) is attained on a meromorphic curve ®s,
deg @5 > 0, lying in this set (see [CK4], Proposition 1). It is easy to see that
there exists 4 € Dy such that deg(f — 1) o®s; < 0. By definition of ¥ ;(f) and
(5.1) we get L. (V| /"(Ds)) > £, ;(f) > L0sn(f). Hence |
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Jim Lo (V| £ (Ds)) = lim Lo (V1 f 7 (Ds)) = Lov i (f)-

This ends the proof. U

6. n-dimensional case

Let f:C"— C, n>2, be a non-constant polynomial. In Section 3 we
have described the set A(f) of critical values of f at infinity for » =2 in terms
of the exponent %, ;(f). In this section we shall characterize two another sets
also connected to behaviour of the gradient of f at infinity in terms of %, ;(f)
and %, ;(f).

Let’s start with definitions.

A polynomial f is said to satisfy the Malgrange condition for a value 4y € C
if
(6.1) 319,00, R0 >0 Vpe ", (|p| > Ronlf(p) = 4ol <o = |p|INf(p) > 11o)-

By K, (f) we denote the set of A € C for which the Malgrange condition does not
hold. It is easy to check that 1€ K., (f) if and only if there exists a sequence
{pr} = C" such that

(6.2)  lim |p|=co, lm f(pg)=24 and lm |p|[V/(ps)| = 0.

A polynomial f is said to satisfy the Fedorjuk condition for a value 4y € C
if
(6.3) 3}70,50,R0 >0 Vpe c”, (|p| > RoA |f(p) - )v0| < dy = |Vf(p)| > 770).

By K., (f) we denote the set of 4 € C for which the Fedorjuk condition does not
hold. 1t is easy to check that 1€ K, (f) if and only if there exists a sequence
{pr} = C" such that

(6.4) klim\ |pi| = o0, klim f(pr) =4, and klim IVf(pk)| = 0.

The known properties of the sets A(f), K. (f) and K. (f) are collected in
the following proposition.

ProrosiTION 6.1 (cf. [JK], [P], [S]). We have

(a) the set K., (f) is finite,

(b) the set K..(f) is elther finite or equal to C,

(c) ()CK»() (4)

(d) A(f) = Ko (f) = Ko (f) for n=2. O

We shall show (see Remark 6.5) that the inclusions in (c) can be proper for
n>2.
Let us pass to characterizations of the sets K, (f) and K, (f) in terms of

L) and L, 5(f).

||ﬂ
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ProOPOSITION 6.2.  For Ay € C the following conditions are equivalent:
(i) 4o €K (f),

(ii) L 5 (f) <=1,

(111) gooﬂio(f) < -1

Proof. (iii) = (ii) = (i). Take Ao ¢ K(f). Then by (6.1) we obtain
Lo (Vf | f~'(Ds,)) = —1. Hence by definition (I1.1) we get L, (f) = —1.
From the obvious inequality

(6.5) L, i(f) = 2o ,(f) for heC

we also get %, ;, (f) = —1. This gives the required sequence of implications.

We now show the implication (i) = (iii). Let 49 € Ko (f) and {pi} = C"
be a sequence satisfying (6.2). Since K, (f) is finite there exists a closed disc
Ds :={AeC:|A—Jy| <6} such that DsNK,(f) = {4}. Since f~'(D;) is a
semi-algebraic and closed set in C”, then by the Curve Selection Lemma the
exponent %, (Vf | f~'(Ds)) is attained on a meromorphic curve ®, deg @ > 0,
lying in this set (cf. [CK4], Proposition 1). Thus there exists a A € D; such that
deg( f- /1) o® < 0. On the other hand almost all elements of the sequence {p;}
lie in f~'(Ds). Then (6.2) 1mphes L, (Vf | f~YDs)) < —1. In consequence
deg V/ o ®/deg ® = Z,.(Vf | f~'(Ds)) < —1. Hence we get 1€ K..(f) and thus
A= /4p. Summing up, there exists a meromorphic curve ®, deg ® > 0, such that
deg(f — 4)o® < 0 and deg Vf o ®/deg ® < —1. Then by definition (1.2) we
have

goﬁ/lo(f) < -1

This gives the desired implication and ends the proof. O

ProrosITION 6.3. For 9 € C the following conditions are equivalent:
(ii) gmﬂo(f) <0,
(iii) L 2, (f) <0.

Proof. (iii) = (ii) = (i). This follows, analogously as in the previous prop-
osition, directly from (6.3). The implication (i) = (iii) is given in [R2]. O

Now, we show an example how with the help of %, ,(f) one can find the
sets K.(f) and K,.(f). We consider the Rabier’s polynomial (see [R], Remark
9.1).

PROPOSITION 6.4. Let fR:C? — C, fR(x,y,2) = (xy— 1)yz. Then
(a) Koo(f ) {0},

(b) L i(f®) =—1 for 2 #0 and %y, o(f*) = -0,

() Ks ( f=c.
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Proof. (a) We first show 0 e K, (fR®). Taking ®(z) := (1,1/1,0), we have
deg @ > 0, fR o (I)( ) =0 and deg V/ R o ® = —c0. Hence according to (1.2) we
get 33070( f®) =—co and thus 0e K, (fR). To prove the opposite inclusion
assume that there exists 4 # 0 such that A€ K, (f®). Then by Proposition 6.2

L. (f®) < —1. Then there exists a meromorphic curve ® = (¢, ¢,,p;) such
that deg @ > 0 and

(6.6) deg(fR—2)o® <0,

(6.7) deg Vf R o @ < —deg ®.

From (6.6)

(6.8) deg((9192 — )gap3) = 0,
whereas from (6.7) we get deg f o ® < —deg ® and thus
(6.9) deg((p102 — 1)p,) < —deg ®.

By (6.8) and (6.9) we get —deg ¢; < —deg @, which is impossible.

(b) For every Ae C and ®;(t) := (1,1/2t,—4t) we have fRo®; =/ and
deg V/Ro®, = —1. Hence
deg V/Ro @,

=—1.
deg @,

egjoc.i(fR) <

From (a), we have 4 ¢ K. (f®) if 2 #0. Hence by Proposition 6.2 %, ;(f*) >
—1. In consequence % ;(f®)=—1 for A #0.

The equality %, o(f®) = —co has been proved in (a).

(c) It follows from (b) and Proposition 6.3. O

Remark 6.5. By Propositon 6.4 we have

(6.10) Ko (/") < Ko (/7).

One can show that for the polynomial ff%(x,y,z):=x—3x°p? +2x7y* + yz
(see [PZ]) we have

0=A(f%) and K, (f%%) #0.

We shall show now a relation between %, (Vf) and %, ,(f) for n>2.
Analogously as Corollary 3.6 (i) we prove

PROPOSITION 6.6. Let f: C" — C, n > 2, be a non-constant polynomial. If
Yo (Vf) < —1, then there exists Ay € C such that

(6.11) Lo (V) = Lo s (f)- O

Directly from the above proposition we obtain
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COROLLARY 6.7. Let f:C" — C, n>2, be a non-constant polynomial.
The following conditions are equivalent:

() K.(f)#9,

(i) L. (Vf) < —1.

Proof. (i) = (ii). Take A9 € K (f). Then by Proposition 6.2 we have
P 2s(f) <—=1. Then Z,(Vf) < —1.

(i) = (i). By Proposition 6.6 there exists Ap € C such that %, (f) =
Y (Vf) < —1. Hence by Proposition 6.2 1y € K, (f).

This ends the proof. O

At the end we pose one question.

QuEsTION 6.8. For a non-constant polynomial f: C" — C, n> 2, does
there exist a number ¢; € [—1,+00) such that

Loilf)=ZLpi(f) =c¢s for any L ¢ K, (f)
(cf. Corollary 4.7 and Proposition 6.4)?
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