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Abstract. The aim of this paper is to study two local moves V (n) and

V n on welded links for a positive integer n, which are generalizations of the
crossing virtualization. We show that the V (n)-move is an unknotting oper-
ation on welded knots for any n, and give a classification of welded links up

to V (n)-moves. On the other hand, we give a necessary condition for two
welded links to be equivalent up to V n-moves. This leads us to show that the
V n-move is not an unknotting operation on welded knots except for n = 1.
We also discuss relations among V n-moves, associated core groups and the

multiplexing of crossings.

1. Introduction.

A µ-component virtual link diagram is the image of an immersion of ordered and

oriented µ circles in the plane, whose transverse double points admit not only classical

crossings but also virtual crossings illustrated in Figure 1.1.1 We emphasize that a virtual

link diagram is always ordered and oriented unless otherwise specified.

classical crossing virtual crossing

Figure 1.1.

A virtual link is an equivalence class of virtual link diagrams under generalized Reide-

meister moves, which consist of Reidemeister moves R1–R3 and virtual moves VR1–VR4

illustrated in Figure 1.2 [11]. In the virtual context, there are two forbidden local moves

OC and UC (meaning over-crossings and under-crossings commute, respectively) illus-

trated in Figure 1.3. The extension of the generalized Reidemeister moves which also

allows the OC-move is called welded Reidemeister moves, and a sequence of welded Rei-

demeister moves is called a welded isotopy. A welded link is an equivalence class of virtual
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link diagrams under welded isotopy [5]. A 1-component (virtual or welded) link is also

called a (virtual or welded) knot.

R1 R1 R2 R3

VR1 VR2 VR3

VR4

Figure 1.2. Generalized Reidemeister moves.

OC UC

Figure 1.3. Forbidden moves OC and UC.

A virtual link diagram is classical if it has no virtual crossings, and a welded link

is classical if it has a classical link diagram. Goussarov, Polyak and Viro [7] essentially

proved that welded isotopic classical link diagrams can be related by Reidemeister moves

R1–R3. Therefore, welded links can be viewed as a natural extension of classical links.

We remark that any virtual knot diagram can be unknotted by UC-moves and welded

Reidemeister moves [7], [10], [21]. That is, the UC-move is an unknotting operation on

welded knots. This result is one reason why the UC-move is still forbidden in the welded

context.

In classical knot theory, local moves have played important roles and hence have been

widely studied; see for example [1], [8], [15], [17], [18], [23]. Recently, some “classical”

local moves, which exchange classical tangle diagrams, have been studied for welded

knots and links [2], [3], [19], [25]. In this paper, we will study “non-classical” local

moves for welded links. A typical non-classical local move is the crossing virtualization.

The crossing virtualization V is a local move on virtual link diagrams replacing a classical

crossing with a virtual one; see the left-hand side of Figure 1.4. We remark that any

virtual link diagram can be deformed into a diagram of the trivial link by applying the

crossing virtualization repeatedly. The crossing virtualization is equivalent to the local

move illustrated in the right-hand side of Figure 1.4. Here, two local moves are equivalent

if each move is realized by a sequence of the other moves and welded Reidemeister moves.
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V V

Figure 1.4. Crossing virtualization.

Let n be a positive integer. The aim of this paper is to study the two oriented local

moves V (n) and V n illustrated in the upper and lower sides of Figure 1.5, respectively.

Both are considered as generalizations of the crossing virtualization. In fact, both V (1)-

and V 1-moves are equivalent to the crossing virtualization. Note that if n is even, then a

V (n)-move may change the number of components. Two welded links are V (n)-equivalent

(resp. V n-equivalent) if their diagrams are related by V (n)-moves (resp. V n-moves) and

welded Reidemeister moves.

V (n)

1 2 n

V n

1 2 n

Figure 1.5. V (n)- and V n-moves.

We obtain that the V (n)-move is an unknotting operation on welded knots for any n

because a UC-move is realized by a sequence of V (n)-moves and welded Reidemeister

moves (Proposition 3.4). Moreover, we give a classification of welded links up to V (n)-

equivalence in the sense of Theorems 1.1 and 1.2.

Theorem 1.1. Let n be an even integer. Any welded link is V (n)-equivalent to the

trivial knot.

Let D be a virtual link diagram. For any i, j (i ̸= j), let λij(D) denote the sum

of the signs of all classical crossings of D where the ith component passes over the jth

component. The integer λij(D) is a welded link invariant and is also preserved by UC-

moves. For a welded link L, the ordered linking number λij(L) is defined to be λij(D)

for a diagram D of L.

It is not hard to see that if n is odd, then the modulo-n reduction of λij(L)+λji(L)

is preserved by V (n)-moves. Using these invariants we have the following.

Theorem 1.2. Let n be an odd integer. Two µ-component welded links L and L′

are V (n)-equivalent if and only if λij(L) + λji(L) ≡ λij(L
′) + λji(L

′) (mod n) for any

i, j (1 ≤ i < j ≤ µ).

On the other hand, V n-moves preserve the modulo-n reduction of λij(L) for any

positive integer n. However, these invariants are not strong enough to classify welded
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links up to V n-equivalence because the V n-move is not an unknotting operation on

welded knots except for n = 1 (Proposition 5.2). Considering the UC-move, which is an

unknotting operation for welded knots, we have the following.

Theorem 1.3. Let n be a positive integer. Two µ-component welded links L and

L′ are (V n + UC)-equivalent if and only if λij(L) ≡ λij(L
′) (mod n) for any i, j (1 ≤

i ̸= j ≤ µ).

Here, two welded links are (V n + UC)-equivalent if their diagrams are related by

V n-moves, UC-moves and welded Reidemeister moves.

Remark 1.4. Theorem 1.3 easily follows from the classification of welded links up

to UC-moves given in [22, Theorem 8], see also [20, Theorem 4.7] and [3, Proposition 3.6].

In this paper, we will prove Theorem 1.3 without using the classification result. Our proof

of the theorem provides an alternative proof for this classification, which is similar to

that of [3, Proposition 3.6].

We also discuss the relations among unoriented V n-moves, associated core groups

and the multiplexing of crossings. The associated core group is known as an unoriented

classical link invariant [6], [9], [12], [26]. This group extends naturally to an unoriented

welded link invariant, and furthermore, it is preserved by unoriented V n-moves for any

even integer n (Proposition 6.2). In [16] the authors introduced the notion ofmultiplexing

of crossings for an unoriented µ-component welded link L, which yields a new unoriented

welded link L(m1, . . . ,mµ) associated with a µ-tuple (m1, . . . ,mµ) of integers. For any

µ-tuple (m1, . . . ,mµ) of even integers, L(m1, . . . ,mµ) is deformed into the µ-component

trivial link by unoriented V 2-moves (Proposition 6.3). As a consequence, we obtain

that there are infinitely many nontrivial welded knots whose associated core groups are

isomorphic to that of the trivial knot (Theorem 6.4).

Acknowledgements. The authors would like to thank Jean-Baptiste Meilhan

for useful comments that significantly improved the exposition. Thanks are also due to

the referee for thoughtful and detailed comments.

2. Arrow calculus.

To show Theorems 1.1, 1.2 and 1.3, we will use the arrow calculus introduced by

Meilhan and the third author in [14]. In this section, we will briefly recall the basic

definitions of arrow calculus from [14]. We only need the notion of w-arrow, and refer

the reader to [14] for more details of arrow calculus.

Definition 2.1. Let D be a virtual link diagram. A w-arrow γ for D is an oriented

arc immersed in the plane of the diagram such that

(1) the endpoints of γ are contained in D \ {crossings of D},

(2) all singularities of γ are virtual crossings,

(3) all singularities between D and γ are virtual crossings, and
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(4) γ has a number (possibly zero) of decorations • on the interior of γ, called twists,

which are disjoint from all crossings.

The initial and terminal points of γ are called the tail and the head, respectively.

For a union of w-arrows for D, all crossings among w-arrows are assumed to be virtual.

Hereafter, diagrams are drawn with bold lines while w-arrows are drawn with thin

lines.

Let A be a union of w-arrows for D. We define surgery along A on D, which yields

a new virtual link diagram denoted by DA, as follows. Suppose that there is a disk in

the plane which intersects D ∪ A as illustrated in Figure 2.1. Then the figure indicates

the result of surgery along a w-arrow of A on D. We emphasize that the surgery move

depends on the orientation of the strand of D containing the tail of the w-arrow.

D ∪A DA D ∪A DA

Figure 2.1. Surgery along a w-arrow of A on D.

If a w-arrow of A intersects a (possibly the same) w-arrow (resp. D), then the

result of surgery is essentially the same as above but each intersection introduces virtual

crossings as illustrated on the left-hand side (resp. center) of Figure 2.2. Furthermore,

if a w-arrow of A has some twists, then each twist is converted to a half-twist whose

crossing is virtual; see the right-hand side of Figure 2.2.

A

A DA

A

D DA A DA

Figure 2.2.

An arrow presentation for a virtual link diagram D is a pair (T,A) of a virtual link

diagram T without classical crossings and a union A of w-arrows for T such that TA is

welded isotopic to D. Every virtual link diagram has an arrow presentation because any

classical crossing can be replaced by a virtual one with a w-arrow; see Figure 2.3.

VR2

Figure 2.3.

Two arrow presentations (T,A) and (T ′, A′) are equivalent if TA and T ′
A′ are welded

isotopic. Arrow moves consist of virtual moves VR1–VR3 involving w-arrows and/or
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strands of D and the local moves AR1–AR10 on arrow presentations illustrated in Fig-

ure 2.4. Here, each vertical strand in AR1–AR3 is either a strand of D or a w-arrow, and

the symbol ◦ on a w-arrow in AR8 and AR10 means that the w-arrow may or may not

contain a twist. Two arrow presentations are equivalent if and only if they are related

by arrow moves [14, Theorem 4.5].

AR1 AR2 AR3

AR4 AR5 AR6

AR7 AR8 AR9

AR10 AR10

Figure 2.4. Arrow moves AR1–AR10.

Remark 2.2. One may wonder if we need the additional moves obtained from

AR9 and AR10, respectively, by reflecting each arrow presentation along a vertical line.

The reflected AR9 and AR10 are realized by sequences of arrow moves. See for example

Figures 2.5 and 2.6, where
AR∼ in the figures denotes a sequence of arrow moves. In the

following, we will call the reflected AR9 and AR10 also AR9 and AR10, respectively.

In the rest of this section, we will introduce several local moves on arrow presenta-

tions. We first consider two allowable moves AR11 and AR12 illustrated in Figures 2.7

and 2.8, respectively.2 Each of the moves is realized by a sequence of arrow moves. Fig-

ure 2.9 shows that the left-hand side moves in Figures 2.7 and 2.8 are realized by arrow

moves. The other cases are shown similarly.

The heads exchange move3 is a local move on arrow presentations exchanging the

positions of two consecutive heads of w-arrows; see Figure 2.10. While there are several

kinds of heads exchange moves depending on the orientation of the strand containing the

tail and existence or nonexistence of a twist for a w-arrow, we have the following.

2The moves AR11 and AR12 are close to Gauss diagram versions of R3, see [7, Fig. 6].
3Note that our definition slightly differs from the one given in [14, Lemma 5.14].
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AR AR9 AR7

AR10

VR2 AR9 AR

Figure 2.5.

AR AR10 AR

Figure 2.6.

AR11 AR11

Figure 2.7. Allowable move AR11.

AR12 AR12

Figure 2.8. Allowable move AR12.

Sublemma 2.3. A heads exchange move is realized by a sequence of H-moves and

arrow moves, where the H-move is a local move on arrow presentations illustrated in

Figure 2.11.

Proof. We prove the result for two types of heads exchange moves. The upper

side of Figure 2.12 indicates the proof when the orientation of the strand containing the

tail of a single w-arrow is opposite to that of the H-move. The lower side of Figure 2.12

indicates the proof for the case where one of the w-arrows has a twist. It is not hard to

show the other cases. □
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AR11 :

AR12 :

AR AR10 AR AR

AR AR10 AR AR

Figure 2.9.

Figure 2.10. Heads exchange move.

H

Figure 2.11. H-move.

AR H AR

AR H AR

Figure 2.12.

The head-tail exchange move4 is a local move on arrow presentations exchanging the

positions of a pair of consecutive head and tail of w-arrows; see Figure 2.13.

Sublemma 2.4. A head-tail exchange move is realized by a sequence of heads ex-

change moves and arrow moves.

Proof. See Figure 2.14. □

The ends exchange moves are of the following three kinds of moves: AR7, heads

exchange and head-tail exchange moves. From Sublemmas 2.3 and 2.4 we have the

following.

4Note that our definition slightly differs from the one given in [14, Lemma 5.16].
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Figure 2.13. Head-tail exchange move.

AR AR10 heads

exchange

AR

Figure 2.14.

Lemma 2.5. An ends exchange move is realized by a sequence of H-moves and

arrow moves.

3. V (n)-moves and UC-moves.

In this section, we will show that the V (n)-move is an unknotting operation on

welded knots. We start with the following lemma concerning the UC-move.

Lemma 3.1. An arrow presentation for a UC-move is realized by a sequence of

heads exchange moves and arrow moves. Conversely, surgery along a heads exchange

move is realized by a sequence of UC-moves and welded Reidemeister moves.

Proof. Figure 3.1 shows that an arrow presentation for a UC-move is realized

by a sequence of heads exchange moves and arrow moves. In the figure, we choose

certain orientations of the two strands at the virtual crossing. The other cases are shown

similarly.

AR AR

AR

heads

exchange

AR

Figure 3.1.

Conversely, Figure 3.2 shows that surgery along an H-move is realized by a sequence

of UC-moves and welded Reidemeister moves, where
w∼ in the figure denotes a welded

isotopy. This and Sublemma 2.3 complete the proof. □

We define the A(n)-move as a local move on arrow presentations depending on the

parity of n. The A(n)-move is illustrated in Figure 3.3 (resp. Figure 3.4) when n is odd

(resp. even).
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w w

w w

UC

Figure 3.2.

A(n)

1
2

n

A(n)

1
2

n

Figure 3.3. A(n)-move when n is odd.

A(n)

1
2

n

A(n)

1
2

n

Figure 3.4. A(n)-move when n is even.

Lemma 3.2. Let n be a positive integer. An ends exchange move is realized by a

sequence of A(n)-moves and arrow moves.

Proof. By Lemma 2.5, it suffices to show that an H-move is realized by a sequence

of A(n)-moves and arrow moves for any n. Figure 3.5 (resp. 3.6) indicates the proof for

the case n = 3 (resp. n = 2); the case where n is odd (resp. even) is strictly similar. □

Lemma 3.3. An arrow presentation for a V (n)-move is realized by a sequence of

A(n)-moves and arrow moves. Conversely, surgery along an A(n)-move is realized by a

sequence of V (n)-moves and welded Reidemeister moves.

Proof. It is not hard to see that the right-hand side move in Figure 3.3 (resp.

Figure 3.4) is realized by a sequence of the left-hand side moves in Figure 3.3 (resp.

Figure 3.4) and arrow moves. See, for example, Figure 3.7 in the case where n is odd.
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A(n) AR11,12 A(n)

Figure 3.5. The case where n is odd.

A(n) AR

AR11,12

AR
A(n)AR

Figure 3.6. The case where n is even.

Furthermore, an arrow presentation for a V (n)-move is realized by a sequence of the

left-hand side moves in Figure 3.3 (resp. Figure 3.4) and arrow moves when n is odd

(resp. even). Conversely, it is obvious that surgery along the left-hand side move in Fig-

ure 3.3 (resp. Figure 3.4) is realized by a sequence of V (n)-moves and welded Reidemeister

moves when n is odd (resp. even). Therefore, we have the conclusion. □

AR A(n) AR

1
2

n

1
2

n

Figure 3.7.

As a consequence of Lemmas 3.1, 3.2 and 3.3, we have the following.

Proposition 3.4. Let n be a positive integer. A UC-move is realized by a sequence

of V (n)-moves and welded Reidemeister moves. Hence, the V (n)-move is an unknotting

operation for welded knots.

Here, we define the An-move as a local move on arrow presentations illustrated in

Figure 3.8.
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An

1
2

n

An

1
2

n

Figure 3.8. An-move.

Lemma 3.5. Let n be an odd integer. An An-move is realized by a sequence of

A(n)-moves and arrow moves.

Proof. We consider the head-tail reversal move illustrated in Figure 3.9, which

is realized by a sequence of AR9 and A(n)-moves. (Figure 3.10 shows that one of the

head-tail reversal moves is realized by a sequence of AR9 and A(n)-moves. The other

case is shown similarly.) Combining an A(n)-move with head-tail reversal moves, we can

realize an An-move. □

Figure 3.9. Head-tail reversal move.

AR9 A(n)

n

2
1
n
n− 1

1

AR9

n

2
1

n

2
1

Figure 3.10.

By arguments similar to those in the proof of Lemma 3.3 we have the following.

Lemma 3.6. An arrow presentation for a V n-move is realized by a sequence of An-

moves and arrow moves. Conversely, surgery along an An-move is realized by a sequence

of V n-moves and welded Reidemeister moves.

4. Proofs of theorems.

In this section, we will prove Theorems 1.1, 1.2 and 1.3.
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Proof of Theorem 1.1. If n is even, then any welded link can be deformed

into some welded knot by V (n)-moves, since V (n)-moves can change the number of

components of a welded link. Therefore, Theorem 1.1 follows from Proposition 3.4. □

Fix µ distinct points 0 < x1 < · · · < xµ < 1 in the unit interval [0, 1]. Let I1, . . . , Iµ
be µ copies of [0, 1]. A µ-component virtual string link diagram is the image of an

immersion

µ⊔
i=1

Ii −→ [0, 1]× [0, 1]

such that the image of each Ii runs from (xi, 0) to (xi, 1), and the singularities are only

transverse double points that are either classical or virtual. Note that each ith strand of

a virtual string link diagram is oriented from (xi, 0) to (xi, 1). The µ-component virtual

string link diagram {x1, . . . , xµ} × [0, 1] in [0, 1]× [0, 1] is called the µ-component trivial

string link diagram.

Let 1 be the µ-component trivial string link diagram. For an integer a, let (1,Hij(a))

denote the arrow presentation of Figure 4.1, that is, Hij(a) consists of |a| horizon-
tal w-arrows whose tails (resp. heads) are attached to the ith (resp. jth) strand of 1

(1 ≤ i < j ≤ µ) such that each w-arrow has exactly one twist if a ≥ 0, and no twist

otherwise. Note that, for arrow presentations (1,Hij(a)) and (1,Hkl(a
′)), the stack-

ing products (1, Hij(a)) ∗ (1,Hkl(a
′)) and (1,Hkl(a

′)) ∗ (1,Hij(a)) are related by ends

exchange moves and arrow moves, hence, by A(n)-moves and arrow moves. Here, the

stacking product (1, A) ∗ (1, B) of arrow presentations (1, A) and (1, B) is the arrow pre-

sentation corresponding to the diagram 1A ∗ 1B . Let
∏

1≤i<j≤µ(1,Hij(aij)) denote the

stacking products of (1,Hij(aij)) for integers aij . We remark that the ordered linking

numbers λij and λji of the closure of the string link diagram
∏

1≤i<j≤µ 1Hij(aij) are equal

to aij and 0, respectively.

(a ≥ 0) (a < 0)

1st ith jth µth

1
2

a

1st ith jth µth

1
2

|a|

Figure 4.1. Arrow presentation (1, Hij(a)).

Lemma 4.1. Let n be an odd integer. For any µ-component virtual string link

diagram D, there are integers aij with 0 ≤ aij < n (1 ≤ i < j ≤ µ) such that an arrow

presentation for D can be related to
∏

1≤i<j≤µ(1,Hij(aij)) by A(n)-moves and arrow

moves.
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Proof. Let (1,
∪

1≤i,j≤µ Wij) be an arrow presentation for a µ-component virtual

string link diagram, where Wij is a set of w-arrows for 1 whose tails (resp. heads) are

attached to the ith (resp. jth) strand (1 ≤ i, j ≤ µ, possibly i = j). We show that

(1,
∪

1≤i,j≤µ Wij) can be deformed into the desired form by A(n)-moves and arrow moves

(including ends exchange moves, head-tail reversal moves and An-moves).

First, each w-arrow in Wii (1 ≤ i ≤ µ) can be moved into position to be removed by

a single AR8. Hence, all w-arrows in Wii are removed for any i. Next, (1,
∪

1≤i ̸=j≤µ Wij)

can be deformed into
∏

1≤i<j≤µ(1,Hij(aij)) for some integers aij by combining head-tail

reversal moves, ends exchange moves and AR9. Finally, we obtain the desired form by

performing An-moves and AR9. □

Proof of Theorem 1.2. It suffices to show the “if” part. Let D and D′ be

virtual link diagrams of L and L′, respectively. For any virtual link diagram, there is a

virtual string link diagram whose closure is welded isotopic to the virtual link diagram.5

Hence, by Lemma 4.1, two arrow presentations (T,A) for D and (T ′, A′) for D′ are

related to the closures of
∏

1≤i<j≤µ(1,Hij(aij)) and
∏

1≤i<j≤µ(1,Hij(a
′
ij)), respectively,

for some non-negative integers aij , a
′
ij (< n), by A(n)-moves and arrow moves. Then,

for any i, j (1 ≤ i < j ≤ µ), we have

aij ≡ λij(D) + λji(D) ≡ λij(D
′) + λji(D

′) ≡ a′ij (mod n).

Since 0 ≤ aij , a
′
ij < n, it follows that aij = a′ij . Therefore, (T,A) and (T ′, A′) are related

by A(n)-moves and arrow moves. Consequently, D(= TA) and D′(= T ′
A′) are related by

V (n)-moves and welded Reidemeister moves. □

For an integer b, let (1, Hij(b)) denote the arrow presentation of Figure 4.2, that is,

Hij(b) consists of |b| horizontal w-arrows whose heads (resp. tails) are attached to the

ith (resp. jth) strand of 1 (1 ≤ i < j ≤ µ) such that each w-arrow has no twist if b ≥ 0,

and exactly one twist otherwise. We remark that, for integers aij and bij , the ordered

linking numbers λij and λji of the closure of the string link diagram
∏

1≤i<j≤µ(1Hij(aij)∗
1Hij(bij)

) are equal to aij and bij , respectively.

(b ≥ 0) (b < 0)

1st ith jth µth

1
2

b

1st ith jth µth

1
2

|b|

Figure 4.2. Arrow presentation (1, Hij(b)).

5In fact, for a small disk which is disjoint from a given µ-component virtual link diagram, by using
VR2 we can deform the diagram so that the intersection between the deformed diagram and the disk is
the µ-component trivial string link diagram.
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Lemma 4.2. Let n be a positive integer. For any µ-component virtual string link

diagram D, there are integers aij , bij with 0 ≤ aij , bij < n (1 ≤ i < j ≤ µ) such that

an arrow presentation for D can be related to
∏

1≤i<j≤µ((1,Hij(aij)) ∗ (1,Hij(bij))) by

An-moves, ends exchange moves and arrow moves.

This lemma is proved by a similar way to Lemma 4.1. Note that we are not permitted

to use the head-tail reversal move. This is the reason why we need not only Hij(a) but

also Hij(b).

Proof of Theorem 1.3. It suffices to show the “if” part. Let D and D′ be vir-

tual link diagrams of L and L′, respectively. By Lemma 4.2, two arrow presentations

(T,A) for D and (T ′, A′) for D′ are related to the closures of
∏

1≤i<j≤µ((1,Hij(aij)) ∗
(1, Hij(bij))) and

∏
1≤i<j≤µ((1,Hij(a

′
ij)) ∗ (1,Hij(b

′
ij))), respectively, for some non-

negative integers aij , bij , a
′
ij , b

′
ij (< n), by An-moves, ends exchange moves and arrow

moves. Then, for any i, j (1 ≤ i < j ≤ µ), we have

aij ≡ λij(D) ≡ λij(D
′) ≡ a′ij (mod n)

and

bij ≡ λji(D) ≡ λji(D
′) ≡ b′ij (mod n).

Since 0 ≤ aij , bij , a
′
ijb

′
ij < n, it follows that aij = a′ij and bij = b′ij . Therefore, (T,A) and

(T ′, A′) are related by An-moves, ends exchange moves and arrow moves. Lemmas 3.1

and 3.6 imply that D(= TA) and D′(= T ′
A′) are related by V n-moves, UC-moves and

welded Reidemeister moves. □

5. V n-moves and UC-moves.

As mentioned in Section 1, the V n-move is not an unknotting operation except for

n = 1. To prove this, we will use the Alexander polynomials, which are obtained from

the group of welded links using Fox free derivatives. Here, the group of a virtual link

diagram is known to be a welded link invariant [11, Section 4], and hence (the elementary

ideals in the sense of [4] and) the Alexander polynomials extend naturally to welded link

invariants. By arguments similar to those in the proof of Theorem 1 in [13], we can show

the following.

Proposition 5.1. Let n be a positive integer. If two welded links L and L′ are

V n-equivalent, then for a non-negative integer k and for the kth elementary ideals Ek
L(t)

and Ek
L′(t) of L and L′, respectively, we have

Ek
L(t) ≡ Ek

L′(t) mod I(1− tn),

where I(1−tn) is the ideal generated by 1−tn in Z[t±1]. In particular, for the (1-variable)

kth Alexander polynomials ∆k
L(t) and ∆k

L′(t) of L and L′, respectively, we have

∆k
L(t) ≡ εtr∆k

L′(t) mod I(1− tn)
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for some ε ∈ {±1} and r ∈ Z.

Proof. Let D and D′ be virtual link diagrams of L and L′, respectively. It

suffices to show that if D and D′ are related by a single V n-move, then for properly

chosen Alexander matrices AD(t) and AD′(t),

AD(t) ≡ AD′(t) mod I(1− tn).

Suppose that D′ is obtained from D by a single R1 and a single V n-move, and put

labels x1, x2 and x3 on arcs of D and D′ as illustrated in Figure 5.1 and labels x4, . . . , xl

on the other arcs outside the figure.

D D′

R1,V n

1 2 n

x1 x2

x3 x3

x1

x3

x2

x3

Figure 5.1.

Then, we obtain presentations of the groups G(D) and G(D′) of D and D′, respec-

tively, as follows:

G(D) = ⟨x1, x2, x3, x4, . . . , xl | x1x
−1
2 , {ri}⟩,

G(D′) = ⟨x1, x2, x3, x4, . . . , xl | x1x
n
3x

−1
2 x−n

3 , {ri}⟩,

where {ri} is the set of relations corresponding to the other crossings. Using Fox free

derivatives [4], we have the Alexander matrices AD(t) and AD′(t) of D and D′, respec-

tively, as follows:

AD(t) =


1 −1 0 0 · · · 0

aγ

(
ri

xj

)  , AD′(t) =


1 −tn tn − 1 0 · · · 0

aγ

(
ri

xj

)  .

Therefore, AD(t)−AD′(t) is a zero matrix modulo I(1− tn). □

Proposition 5.2. The V n-move is not an unknotting operation on welded knots

for n ≥ 2.

Proof. We show that the trefoil knot is not V n-equivalent to the trivial knot for

n ≥ 2. The first Alexander polynomial of the trefoil knot is 1 − t + t2, and that of the

trivial knot is 1. It suffices to show that 1 − t + t2 − εtr ̸∈ I(1 − tn) for any n ≥ 2 by

Proposition 5.1 (ε ∈ {±1}, r ∈ Z).
Suppose that n ≥ 2. We define a map fn : Z[t±1] → Z by fn(

∑
i ait

i) =∑
i≡0,2 (mod n) ai, where ai ∈ Z. Since fn(δt

s(1 − tn)) = 0 (δ ∈ {±1}, s ∈ Z), it fol-

lows that f(b) = 0 for any element b ∈ I(1− tn). On the other hand, fn(1− t+ t2− εtr)

is not equal to 0 for any n ≥ 2. This completes the proof. □
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The proposition above immediately implies the following corollary.

Corollary 5.3. A UC-move is realized by a sequence of V n-moves and welded

Reidemeister moves if and only if n = 1.

6. Unoriented V n-moves and associated core groups.

In this section, we will discuss relations among unoriented V n-moves, associated core

groups and the multiplexing of crossings.

For an unoriented classical link diagram D, the associated core group Π
(2)
D is defined

as follows. Each arc of D yields a generator, and each classical crossing gives a relation

yx−1yz−1, where x and z correspond to the underpasses and y corresponds to the overpass

at the crossing. This group Π
(2)
D is known as a classical link invariant [6], [9], [12], [26].

Remark 6.1. Let L be an unoriented classical link in the 3-sphere andD a classical

diagram of L. Wada [26] proved that Π
(2)
D is isomorphic to the free product of the

fundamental group of the double branched cover M
(2)
L of the 3-sphere branched along L

and the infinite cyclic group Z. That is, Π(2)
D
∼= π1(M

(2)
L ) ∗ Z.

We similarly define the associated core group Π
(2)
D of an unoriented virtual link

diagram D by generators and relations as described above. (Note that virtual crossings

do not produce any generator or relation.) It is not hard to see that Π
(2)
D is preserved

by welded Reidemeister moves, and hence we define the associated core group Π
(2)
L of

an unoriented welded link L to be the associated core group Π
(2)
D of a diagram D of L.

Moreover we have the following.

Proposition 6.2. If n is even, then Π
(2)
L is preserved by unoriented V n-moves.

Proof. Π
(2)
L is preserved by unoriented V 2-moves as illustrated in Figure 6.1,

and furthermore, an unoriented V n-move is realized by unoriented V 2-moves for any

even integer n. □

x

y

V 2
x

y

y

x

yx−1y

yx−1y

y(y−1xy−1)y = x

y

Figure 6.1.

There are welded knots whose associated core groups are nontrivial, for example, all

knots having nontrivial Fox colorings; see [24, Section 4.1]. Therefore, the proposition

above gives an alternative proof of Proposition 5.2 for even integers n.

In [16], the authors introduced the multiplexing of crossings for an unoriented virtual

link diagram, which yields a new unoriented virtual link diagram. Let (m1, . . . ,mµ) be

a µ-tuple of integers, and let D =
∪µ

i=1 Di be an unoriented µ-component virtual link

diagram. For a classical crossing of D whose overpass belongs to Dj , we define the

multiplexing of the crossing associated with mj as a local modification illustrated in
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Figure 6.2. When mj = 0, the multiplexing of the crossing is the virtualization of this

crossing. The number of classical crossings that appear in the multiplexing of the crossing

is the absolute value of mj . Let D(m1, . . . ,mµ) denote the virtual link diagram obtained

from D by the multiplexing of all classical crossings of D associated with (m1, . . . ,mµ).

For welded isotopic virtual link diagrams D and D′, D(m1, . . . ,mµ) and D′(m1, . . . ,mµ)

are also welded isotopic for any (m1, . . . ,mµ) ∈ Zµ [16, Theorem 2.1]. For an unoriented

µ-component welded link L, we define L(m1, . . . ,mµ) to be D(m1, . . . ,mµ) of a diagram

D of L.

mj > 0 mj = 0 mj < 0

← Dj

1

mj

1

|mj |

Figure 6.2. Multiplexing of a crossing.

It is not hard to see that L(m1, . . . ,mµ) can be deformed into L(0, . . . , 0) by un-

oriented V 2-moves for any µ-tuple (m1, . . . ,mµ) of even integers. Since L(0, . . . , 0) is

trivial, we have the following.

Proposition 6.3. Let (m1, . . . ,mµ) be a µ-tuple of even integers. For any un-

oriented µ-component welded link L, L(m1, . . . ,mµ) is deformed into the µ-component

trivial link by unoriented V 2-moves.

In [16, Theorem 3.2], the authors proved that two unoriented classical knots K and

K ′ are equivalent up to mirror image if and only if K(m) and K ′(m) are welded isotopic

up to mirror image for any fixed non-zero integer m. Hence, it follows that if a classical

knot K is nontrivial, then K(m) is also nontrivial. By Propositions 6.2 and 6.3, if m

is even, then Π
(2)
K(m) is isomorphic to the associated core group of the trivial knot, that

is, Π
(2)
K(m)

∼= Z. Therefore, we have the following theorem although, by Remark 6.1, the

associated core groups seem to be very strong invariants.

Theorem 6.4. Let m (̸= 0) be an even integer. For any nontrivial unoriented

welded knot K, K(m) is nontrivial and Π
(2)
K(m)

∼= Z.
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7. V (n)-moves and V
n
-moves.

7.1. V (n)-moves.

When n is odd, one may consider the V (n)-move involving two strands that are

oriented antiparallel. We call such a move the V (n)-move. In this subsection, we will

show that the V (n)- and V (n)-moves are equivalent.

For an odd integer n, we define the A(n)-move as a local move on arrow presentations

illustrated in Figure 7.1. By arguments similar to those in the proof of Lemma 3.3, we

have the following.

A(n)

1
2

n

A(n)

1
2

n

Figure 7.1. A(n)-move.

Lemma 7.1. Let n be an odd integer. An arrow presentation for a V (n)-move is

realized by a sequence of A(n)-moves and arrow moves. Conversely, surgery along an

A(n)-move is realized by a sequence of V (n)-moves and welded Reidemeister moves.

By deformations similar to those in Figure 2.12, we have the following.

Lemma 7.2. An H-move is realized by a sequence of H′-moves and arrow moves,

where the H′-move is a local move on arrow presentations illustrated in Figure 7.2.

H′

Figure 7.2. H′-move.

Here, we consider two allowable moves AR11′ and AR12′ illustrated in Figure 7.3.

Each of the moves is realized by a sequence of arrow moves similar to that in Figure 2.9.

Using the moves AR11′ and AR12′, we have the following.

AR11′ AR12′

Figure 7.3. Allowable moves AR11′ and AR12′.
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Lemma 7.3. Let n be an odd integer. An ends exchange move is realized by a

sequence of A(n)-moves and arrow moves.

Proof. By Lemmas 2.5 and 7.2, it suffices to show that an H′-move is realized by

a sequence of A(n)-moves and arrow moves. Figure 7.4 indicates the proof. While the

figure describes only the case n = 3, the proof is essentially the same in all cases. □

A(n) AR11′, 12′ A(n)

Figure 7.4.

Now we can show the following.

Proposition 7.4. Let n be an odd integer. The V (n)- and V (n)-moves are equiv-

alent.

Proof. By Lemmas 3.3 and 7.1, it is enough to show that the A(n)- and A(n)-

moves are equivalent. Figure 7.5 shows that an A(n)-move is realized by a sequence

of A(n)-moves and arrow moves. (Note that we can use ends exchange moves by

Lemma 3.2.) While the figure describes only the case n = 3, the other cases are shown

similarly.

Conversely, by deformations similar to those in the figure, it is not hard to see that

an A(n)-move is realized by a sequence of A(n)-moves and arrow moves. This completes

the proof. □

AR ends

exchange

A(n) AR

Figure 7.5.

7.2. V
n
-moves.

For a positive integer n, we define the V
n
-move as a V n-move involving two strands

that are oriented antiparallel. Also, we define the A
n
-move as a local move on arrow

presentations illustrated in Figure 7.6. By arguments similar to those in the proof of

Lemma 3.3, we have the following.

Lemma 7.5. Let n be a positive integer. An arrow presentation for a V
n
-move

is realized by a sequence of A
n
-moves and arrow moves. Conversely, surgery along an

A
n
-move is realized by a sequence of V

n
-moves and welded Reidemeister moves.
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A
n

1
2

n

A
n

1
2

n

Figure 7.6. A
n
-move.

It is not hard to see that the An- and A
n
-moves are equivalent. This together with

Lemmas 3.6 and 7.5 implies the following.

Proposition 7.6. Let n be a positive integer. The V n- and V
n
-moves are equiv-

alent.
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