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Abstract. In the present paper we construct two new explicit complex

bordisms between any two projective bundles over CP 1 of the same complex
dimension, including the Milnor hypersurface H1,n and CP 1 ×CPn−1. These
constructions reduce the bordism problem to the null-bordism of some projec-
tive bundle over CP 1 with the non-standard stably complex structure.

1. Introduction.

Let Pn(a) denote the fiberwise projectivisation P(ηa1 ⊕Cn−1) over CP 1, where Cn−1

denotes the trivial complex linear bundle of rank n − 1, η1 → CP 1 is the tautological

bundle over CP 1 and ηa1 denotes the tensor product of |a| copies of η1 for a < 0 (the bar

means complex conjugation) and of η1 for a ≥ 0, respectively. Pn(a) is a complex n-

dimensional manifold. In the present paper we give three different proofs of the following

well-known Theorem (see [3, Theorem 3.1 b], [4, Excercise D.6.12, p.471]).

Theorem 1.1. The manifolds Pn(a) corresponding to different a ∈ Z are complex

bordant to each other.

Any CPn−1-bundle over CP 1 is homeomorphic to Pn(a) for some a ∈ Z. Man-

ifolds of such kind include the Milnor hypersurface Pn(1) = H1,n (i.e. a generic

smooth hypersurface of bidegree (1, 1) in CP 1 × CPn) and the trivial projective bundle

Pn(0) = CP 1 × CPn−1.

Corollary 1.2. H1,n is complex bordant to CPn−1 × CP 1.

The first proof of Theorem 1.1 is an algebraic folklore result. Namely, one has

to compute Chern numbers of Pn(a) and notice that they do not depend on a (see

Proposition 2.7). On the other hand, Theorem 1.1 states that any two such complex

manifolds are connected components of the boundary of some stably complex manifold

(modulo its null-bordant boundary components). A question remaining open was to

give an explicit geometric construction of a stably complex manifold with boundary

components Pn(a), Pn(b) and null-bordant manifolds for any a, b ∈ Z. This problem

was discussed by M. Kreck, P. Landweber, T. Panov and N. Strickland since the beginning

of 2000 (private communication with T. Panov, 2018).
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766 G. Solomadin

The remaining two proofs of Theorem 1.1 are geometric, by providing an explicit

bordism between the manifolds in question. These are new results in the field giving the

solution to the aforementioned problem. Second proof of Theorem 1.1 is based on the

refinement of the gluing lemma from [8]. The original “probably well known” method

from [8] consisted of gluing three stably complex manifolds A,B,C of dimension 2n with

diffeomorphic boundaries to obtain the stably complex (2n+1)-dimensional manifold with

the respective boundary components A∪B, B∪C, C∪A with the natural stably complex

structures. Our refinement of this method consists of taking the clutching functions into

account. This results in obtaining different stably complex structures (depending on

the clutching functions) on the glued manifold for the same stably complex manifolds

A,B,C.

We apply the refined gluing lemma to three copies of D2×CPn−1 (where D2 ⊂ R2 is

a 2-ball) with prescribed clutching functions on the boundary. For any two complex pro-

jective bundles Pn(a), Pn(b) over CP 1 of complex dimension n we indicate the clutching

functions. The above construction for this data then yields the manifold W 2n+1 be-

ing a complex bordism (modulo the null-bordant boundary component) between Pn(a),

Pn(b) due to Stong’s classical “abstract nonsense” definition of bordism from [7, p.5]

(see Theorem 3.6).

The third proof of Theorem 1.1 is based on toric topology methods. We use Sarkar’s

construction [6] of a stably complex orbifold with quasitoric orbifold boundary to con-

struct the necessary manifold W 2n+1. We choose the simple (combinatorial) polytope Q

to be the Cartesian product H2 ×∆n−1 of the hexagon and the simplex with three dis-

tinguished facets F2, F4, F6. We show that for any two complex projective bundles over

CP 1 there exists an isotropy function λ on the complement {Q\F2, F4, F6} such that the

corresponding orbifold is a stably complex manifold with boundary yielding the bordism

between them (modulo the null-bordant boundary component), see Theorem 4.7.

2. Topology of CP k-bundles over CP 1.

In this section we give a brief overview of some well-known topological properties of

projective fibre bundles. We will use these properties in the next two sections. We refer

to [4] as a source on topology of toric and quasitoric manifolds.

Proposition 2.1. The natural complex structure on CPn satisfies

TCPn ⊕ C ≃ (n+ 1)ηn,

where (n+ 1)ηn denotes the Whitney sum of n+ 1 copies of the vector bundle ηn.

Proposition 2.2. For any complex vector bundle ξ → CP 1 of rank n the complex

fiberwise projectivisation P(ξ) is homeomorphic to Pn(a) for some a ∈ Z.

Proposition 2.3. The natural complex structure on the projectivisation Pn(a)

satisfies

TPn(a)⊕ C2 ≃ ζ ⊗ (p∗ηa1 ⊕ Cn−1)⊕ 2p∗η1, (1)
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Explicit constructions of bordism of Milnor hypersurface H1,n and CP 1 × CPn−1 767

where ζ denotes the tautological line bundle on the projectivisation Pn(a).

In the following we will consider non-standard complex structures on CP 1 and Pn(a).

Definition 2.4. Let c0T : TCP 1 ⊕ R2 ≃R C2 and

cT (a) : TPn(a)⊕ C2 ≃R ζ ⊗ (p∗ηa1 ⊕ Cn−1)⊕ C2. (2)

be the isomorphisms of realifications of vector bundles above.

The stably complex manifold (CP 1, c0T ) is easily seen to be null-bordant. Further

we will check that (Pn(a), cT (a)) also bounds (see Proposition 2.7 (ii)).

Remark 2.5. Consider the quaternionic space H with coordinates c1, c2 ∈ C. The
unit sphere S3 ⊂ H is given by the condition |c1 + c2j|2 = 1. Left and right actions of

S1 on H are given by the formulas

L(e2πit)(c1 + c2j) = e2πit(c1 + c2j) = e2πitc1 + e2πitc2j,

R(e2πit)(c1 + c2j) = (c1 + c2j)e
2πit = e2πitc1 + e2πitc2j.

S3 ⊂ H is invariant under both of these actions. The quotients of S3 by the left and

right actions of S1 are CP 1 and (CP 1, c0T ), respectively.

By applying the Leray–Hirsch theorem (see [2, Section 20]) to the particular projec-

tive fibre bundle Pn(a) one immediately obtains

Proposition 2.6. One has an isomorphism

H∗(Pn(a);Z) ≃ Z[x, y]/(x2, yn − axyn−1),

where x = c1(p
∗η1), y = c1(ζ) in the denotations of Proposition 2.3.

We give a simple computation of Chern numbers cI of projective fibre bundles P
n(a),

a ∈ Z, below.

Proposition 2.7. Let I = {i1, . . . , ir} be a partition of n =
∑r

l=1 il, and let

a, b ∈ Z.
(i) One has the identity

cI(P
n(a)) = 2

r∏
s=1

(
n

is

) r∑
q=1

iq
n+ 1− iq

;

(ii) One has the identity cI(P
n(a), cT (a)) = 0. The stably complex manifold

(Pn(a), cT (a)) bounds ;

(iii) One has the identity

[Pn(a)]− [Pn(b)] + [Pn(b− a), cT (b− a)] = 0

in the unitary bordism ring ΩU
∗ .
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768 G. Solomadin

Proof. (i). The Chern class of TPn(a) is equal to (see (1))

n∑
q=0

cq = (1 + x)2(1− ax+ y)(1 + y)n−1

= 1 +
n∑

q=1

((
n

q

)
yq + (2− a)

(
n− 1

q − 1

)
xyq−1 + 2

(
n− 1

q − 2

)
xyq−1

)
.

Then by Proposition 2.6 one has

cI(P
n(a)) = ⟨ci1 · · · cir , [Pn(a)]⟩

= a
r∏

l=1

(
n

il

)
+

r∑
q=1

(
(2− a)

(
n− 1

iq − 1

)
+ 2

(
n− 1

iq − 2

))∏
s̸=q

(
n

is

)

= 2

r∑
q=1

(
n

iq − 1

)∏
s̸=q

(
n

is

)
= 2

r∏
s=1

(
n

is

)
·

r∑
q=1

iq
n+ 1− iq

, (3)

where by abuse of the notation ⟨∗, [Pn(a)]⟩ denotes the canonical pairing with the fun-

damental class [Pn(a)] ∈ H2(k+1)(P
n(a);Z).

(ii). The Chern class of the stably complex structure on (Pn(a), cT (a)) is equal to

(see (2)):

n∑
q=0

cq = (1 + y − ax)(1 + y)n−1 = 1 +
n∑

q=1

((
n

q

)
yq − a

(
n− 1

q − 1

)
xyq−1

)
.

Then one has

cI(P
n(a), cT (a)) = ⟨ci1 · · · cir , [Pn(a)]⟩

= a

r∏
s=1

(
n

is

)
− a

r∑
q=1

(
n− 1

iq − 1

)∏
s̸=q

(
n

is

)

= a
r∏

s=1

(
n

is

)
− a

r∏
s=1

(
n

is

) r∑
q=1

iq
n

= 0. (4)

The claim about complex bordism class of (Pn(a), cT (a)) follows from theorem of Milnor

and Novikov about the complex bordism ring, see [7, p.117].

(iii). Follows from (i) and (ii) immediately. □

Proposition 2.8 (See [4, Section 7.8], [5, Example 2.4]). Pn(a) and (Pn(a), cT (a))

are toric and quasitoric manifolds, respectively, having the moment polytopes combina-

torially equivalent to ∆1 ×∆n−1, where ∆n−1 denotes the (n − 1)-dimensional simplex

in Rn−1. For any b ∈ Z the characteristic matrices of Pn(a) and (Pn(a), cT (a)) are

GLn(Z)-equivalent to
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1 −1 0 0 . . . 0 0

b −b− a 1 0 . . . 0 −1

0 0 0 1 . . . 0 −1
...

...
...

...
. . .

...
...

0 0 0 0 . . . 1 −1

 ,


−1 −1 0 0 . . . 0 0

b b− a 1 0 . . . 0 −1

0 0 0 1 . . . 0 −1
...

...
...

...
. . .

...
...

0 0 0 0 . . . 1 −1

 ,

respectively, in the following facet ordering of ∆1 × ∆n−1 : ∆0
1 × ∆n−1, ∆0

2 × ∆n−1,

∆1 ×∆n−2
1 , . . . ,∆1 ×∆n−2

n where ∆n−2
1 , . . . ,∆n−2

n denote the facets of ∆n−1.

We remind the clutching construction for vector bundles ([1, pp.20–23]).

Definition 2.9. Let X1, X2 be compact topological spaces with complex vector

bundles ξ1 → X1, ξ2 → X2. Suppose that there is given an isomorphism φ : (ξ1)|Y →
(ξ2)|Y of vector bundles over the intersection Y = X1 ∩ X2. Then the (locally trivial)

vector bundle ξ1 ∪φ ξ2 → X = X1 ∪ X2 is defined as the quotient of ξ1 ⊕ ξ2 by the

equivalence relation identifying the vector e ∈ (ξ1)|Y with the vector φ(e) ∈ (ξ2)|Y .

The clutching construction for real vector bundles is defined in a similar way.

Example 2.10. Take two 2-dimensional balls D1, D2 with trivial linear vector

bundles C → D1, C → D2. Embed the positively oriented circle S1 = {e2πit| t ∈ [0, 1)} ⊂
C. Consider the isomorphism fa : C → C of vector bundles over S1 given by the formula

fa(z, w) = (z, za ·w), a ∈ Z. Clearly, fa◦f b = fa+b for any a, b ∈ Z. The union along the

boundaries D1∪S1 D2 is the 2-dimensional sphere S2. The vector bundle C∪fa C → S2 is

isomorphic to the pull-back of ηa1 → CP 1 under the homeomorphism S2 ≃ CP 1 (see [1,

p.49]). Hence, by Proposition 2.1, the vector bundle C2∪f2⊕IdC2 → S2 is isomorphic to

the pull-back of η21⊕C ≃ 2η1 ≃ TCP 1⊕C → CP 1 under the homeomorphism S2 ≃ CP 1.

Example 2.11. Consider the projectivisation p : Pn(a) → CP 1. The restriction

of ζ ⊗ (p∗ηa1 ⊕Cn−1) → Pn(a) to the preimage p−1(S1) = S1 ×CPn−1 of the equatorial

circle coincides with the restriction of ζ⊗Cn. Denote by Fn(a) the isomorphism fa⊕Id :

Cn → Cn of vector bundles, i.e. the clutching function of the vector bundle ηa1 ⊕Cn−1 →
CP 1 ≃ S2 with respect to the union D1∪S1 D2. Take two copies X1, X2 of the Cartesian

product D2 × CPn−1, so that X1 ∩X2 = S1 × CPn−1. Then the clutching function of

ζ⊗ (p∗ηa1 ⊕Cn−1)⊕2p∗η1 → Pn(a) appearing in the natural complex structure on Pn(a)

(see (1)) with respect to the decomposition X1 ∪X2 is the isomorphism

Id⊗ Fn(−a)⊕ F2(2) : ζ ⊗ Cn ⊕ C2 → ζ ⊗ Cn ⊕ C2

of vector bundles over S1×CPn−1. Next, the clutching function of ζ⊗(p∗ηa1⊕Cn−1)⊕C2

appearing in the non-standard stably complex structure cT (a) on Pn(a) (see (2)) with

respect to the decomposition X1 ∪X2 is the isomorphism

Id⊗ Fn(−a)⊕ F2(0) : ζ ⊗ Cn ⊕ C2 → ζ ⊗ Cn ⊕ C2

of vector bundles over S1 × CPn−1.

769(97)



770 G. Solomadin

3. Geometric construction of bordism using the gluing lemma.

In this section we use the gluing lemma (Lemma 3.4 below) in unitary bordism

theory to produce the explicit bordism between any two projective fibre bundles over

CP 1 of the same dimension.

First remind the construction of the opposite stably complex structure on a stably

complex manifold.

Definition 3.1. Let (M2n, cT ) be a stably complex compact manifold (closed or

with boundary) of dimension 2n with the real vector bundle isomorphism

cT : TM ⊕ R2(m−n) → ξ,

where ξ is a complex vector bundle over M . Then the stably complex manifold (M2n, cT )

is defined as the smooth manifold M with opposite orientation, endowed with another

stably complex structure cT given by the composition

cT : TM ⊕ R2(m−n+1) cT ⊕Id−→ ξ ⊕ C Id⊕J−→ ξ ⊕ C ,

where J : C → C is the fiberwise operator of complex conjugation over M . We denote

(M2n, cT ) by M .

We remark that [M ] = −[M ] in the complex bordism ring.

Let (Xi, cT ,i, ξi) be a stably complex compact manifold of dimension 2n with bound-

ary diffeomorphic to a smooth manifold M , so that

cT ,i : TXi ⊕ R2(m−n) ≃ ξi,

where i = 1, 2. (Without loss of generality we assume that complex vector bundles ξ1, ξ2
have ranks equal to m by adding trivial vector bundles.) The collar lemma implies that

the normal bundles of the natural inclusions of M to X1, X2 are trivial. Hence, X1∪MX2

is a smooth 2n-dimensional manifold. In order to induce a stably complex structure on

X1 ∪M X2 from X1, X2 we introduce the notion of a τ -isomorphism.

Let f : (ξ1)|M → (ξ2)|M be an isomorphism of complex vector bundles. By the collar

lemma, one has (TX1)|M = (TX2)|M = TM⊕R, so we define g = (cT ,2)|−1
M ◦f ◦(cT ,1)|M

completing the following commutative diagram

TM ⊕ R2(m−n)+1 (ξ1)|M

TM ⊕ R2(m−n)+1 (ξ2)|M

(cT ,1)|M

g f

(cT ,2)|M

(5)

of isomorphisms of real vector bundles. Due to commutativity of (5) and [1, p.22] we

have the isomorphism

φ : (TX1 ⊕ R2(m−n)) ∪g (TX2 ⊕ R2(m−n)) ≃ ξ1 ∪f ξ2,
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of real vector bundles defined as ι1 over X1 and ι2 over X2.

Definition 3.2. We call any isomorphism

τ : T (X1 ∪M X2)⊕ R2(m−n) ≃ (TX1 ⊕ R2(m−n)) ∪g (TX2 ⊕ R2(m−n)),

of real vector bundles the τ -isomorphism for the data (X1, ι1, ξ1), (X2, ι2, ξ2), f .

Proposition 3.3. Suppose that there exists a τ -isomorphism τ for the data

(X1, ι1, ξ1), (X2, ι2, ξ2), f . Then the isomorphism

φ ◦ τ : T (X1 ∪M X2)⊕ R2(m−n) → ξ1 ∪f ξ2

of real vector bundles defines the stably complex structure on the manifold X1 ∪M X2.

If there is a stably complex structure onX1∪MX2 restricting to the given stably com-

plex structures on X1, X2 with the given clutching function f , then the τ -isomorphism

for the corresponding data exists.

Now we give the refined version of the gluing lemma from [8] in terms of clutch-

ing functions of vector bundles. Let (A, cT ,A, ξA), (B, cT ,B , ξB), (C, cT ,C , ξC) be compact

stably complex 2n-dimensional manifolds with boundary diffeomorphic to a stably com-

plex manifold (M, cT ,M , ξM ). (Without loss of generality we assume that ξA, ξB , ξC , ξM
have ranks equal to m by adding trivial vector bundles.) For instance, one has

cT ,A : TA⊕ R2(m−n) ≃R ξA.

Let fA : (ξA)|∂A → ξM , fB : (ξB)|∂B → ξM and fC : (ξC)|∂C → ξM be isomorphisms

of complex vector bundles. Let

fA,B := f−1
B ◦ fA, fB,C := f−1

C ◦ fB, fC,A := f−1
A ◦ fC .

We define

gA,B = (cT ,B)|−1
M ◦ fA,B ◦ (cT ,A)|M ,

gB,C = (cT ,C)|−1
M ◦ fB,C ◦ (cT ,B)|M ,

gC,A = (cT ,A)|−1
M ◦ fC,A ◦ (cT ,C)|M .

The isomorphisms

φA,B : (TA⊕ R2(m−n)) ∪gA,B
(TB ⊕ R2(m−n)) ≃ ξA ∪fA,B

ξB ,

φB,C : (TB ⊕ R2(m−n)) ∪gB,C
(TC ⊕ R2(m−n)) ≃ ξB ∪fB,C

ξC ,

φC,A : (TC ⊕ R2(m−n)) ∪gC,A (TA⊕ R2(m−n)) ≃ ξC ∪fC,A ξA,

exist and are well-defined.

Now we would like to have the following τ -isomorphisms:

τA,B : T (A ∪B)⊕ R2(m−n) ≃ (TA⊕ R2(m−n)) ∪gA,B (TB ⊕ R2(m−n)),
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τB,C : T (B ∪ C)⊕ R2(m−n) ≃ (TB ⊕ R2(m−n)) ∪gB,C
(TC ⊕ R2(m−n)),

τC,A : T (C ∪A)⊕ R2(m−n) ≃ (TC ⊕ R2(m−n)) ∪gC,A
(TA⊕ R2(m−n)),

in order to induce the stably complex structures on smooth manifolds A ∪M B,B ∪M

C,C ∪M A.

Lemma 3.4. Suppose that the τ -isomorphisms τA,B , τB,C , τC,A exist. Then the

stably complex manifold W 2n+1 obtained from the product M × H of M and the 6-gon

H ⊂ R2 by attaching A× [0, 1], B× [0, 1] and C× [0, 1] to M ×H1,M ×H3 and M ×H5,

respectively, is well-defined, where H1, . . . , H6 are edges of H in the counterclockwise

order. The connected boundary components of W are stably complex manifolds A∪M B,

B ∪M C, C ∪M A with stably complex structures cT ,A,B = φA,B ◦ τA,B, cT ,B,C = φB,C ◦
τB,C , cT ,C,A = φC,A ◦ τC,A, respectively. In particular, one has the relation

[A ∪M B, cT ,A,B ] + [B ∪M C, cT ,B,C ] + [C ∪M A, cT ,C,A] = 0 (6)

in the bordism group ΩU
2n.

Proof. The construction of the manifold W is given in [8, Lemma 2.1]. The other

claims follow from Proposition 3.3. □

We stress that the stably complex structures on A ∪M B, B ∪M C, C ∪M A from

Lemma 3.4 depend not only on the stably complex structures on A,B,C but also on the

vector bundle isomorphisms fA, fB, fC .

Example 3.5. Take three copies of 2-ball D2 as A,B,C, respectively. Choose

fA = f1, fB = f−1, fC = f−1. The manifolds A ∪M B, B ∪M C, C ∪M A are spheres

S2 with different stably complex structures corresponding to the vector bundles η21 ⊕C,
C2, η21 ⊕ C. Their respective clutching functions are f2 ⊕ Id, f0 ⊕ Id, f−2 ⊕ Id (see

Example 2.10). Clearly, the corresponding τ -isomorphisms exist. The relation (6) takes

form

[CP 1] + [CP 1, c0T ]− [CP 1] = 0, (7)

which indeed holds in ΩU
2 .

Theorem 3.6. Let a, b ∈ Z. Then Lemma 3.4 yields the stably complex man-

ifold W 2n+1 with boundary consisting of disjoint union of stably complex manifolds

Pn(a), Pn(b) and (Pn(b− a), cT (b− a)) for some data.

Proof. Substitute three copies of D2 × CPn−1 into A,B,C, so that M = S1 ×
CPn−1. Substitute Id ⊗ Fn(0) ⊕ F2(1), Id ⊗ Fn(a) ⊕ F2(−1), Id ⊗ Fn(b) ⊕ F2(−1)

into fA, fB , fC , respectively. It follows from Example 2.11 that the corresponding τ -

isomorphisms exist. Hence, Lemma 3.4 applies and yields the stably complex manifold

from the claim. □
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4. Geometric construction of bordism using manifolds with quasitoric

boundary.

In this section we utilize the Sarkar’s construction of orbifolds with quasitoric orb-

ifold boundary [6] in order to give another explicit complex bordism between any two

projective fibre bundles over CP 1 of the same dimension.

We follow the notions and denotations from [6].

Definition 4.1. An (n + 1)-dimensional (combinatorial) simple polytope Q ⊂
Rn+1 is said to be a polytope with exceptional facets Q1, . . . , Qk, if Qi ∩Qj is empty for

any 1 ≤ i < j ≤ k, and vertQ =
∪
vertQi, where vertQ denotes the set of vertices of Q.

A simple polytope Q with exceptional facets Q1, . . . , Qk is denoted by {Q \Q1, . . . , Qk}.

Let F(Q) = {F1, . . . , Fm} be the set of all facets of the polytope Q.

Definition 4.2. A function λ : F(Q) → Zn is called an isotropy function on

{Q\Q1, . . . , Qk}, if the vectors λ(Fi1), . . . , λ(Fir ) are linearly independent in Zn whenever

the intersection of the facets Fi1 , . . . , Fir is nonempty. The vector λ(Fi) is called an

isotropy vector assigned to the facet Fi, i = 1, . . . ,m.

Let F be a non-empty codimension l face in Q. If F = P , then we let M(P ) = Zn.

Otherwise, 0 < l ≤ n + 1. If F is a face of Qi for some i ∈ {1, . . . , k}, then F is the

intersection of a unique collection of l facets Fi1 , . . . , Fil−1
, Qi of Q. Otherwise, F is the

intersection of l facets Fi1 , . . . , Fil of Q. Let

M(F ) =

{
Z⟨λ(Fij )| j = 1, . . . , l − 1⟩, if F = Fi1 ∩ · · · ∩ Fil−1

∩Qi,

Z⟨λ(Fij )| j = 1, . . . , l⟩, if F = Fi1 ∩ · · · ∩ Fil ,

having M(F ) ⊆ Zn, where Z⟨∗⟩ denotes the Z-linear hull of a set in Zn.

For any non-empty face F of codimension l in Q consider a compact torus

Tn
M(F ) = (M(F )⊗ R)/M(F )

of dimension l−1 or l depending on the situation of the face F . The inclusionM(F ) ⊆ Zn

induces the natural homomorphism

fF : TM(F ) ⊆ Tn

for any face F ⊂ Q, where Tn = (Zn ⊗ R)/Zn. Denote the image of fF by Im(fF ).

Definition 4.3. W (Q,λ) is the quotient space

Q× Tn/ ∼,

with respect to the equivalence relation

(x, t1) ∼ (x, t2) ⇔ t−1
1 t2 ∈ Im(fF ),

where F is the unique face of Q containing x in its relative interior. The space W (Q,λ)
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is a T-space where the action is induced by left action of Tn on itself. Let

π : W (Q,λ) → Q

be the projection map defined by the formula π([x, t]) = x. We consider the standard

orientation of Tn and orientation on Q induced from the ambient space Rn+1.

Consider an (n + 1)-dimensional simple polytope {Q \ Q1, . . . , Qk} in Rn+1 with

distinguished facets, and an isotropy function λ : F → Zn. The space W (Q,λ) is a

(2n+ 1)-dimensional orbifold with boundary consisting of quasitoric orbifolds, generally

speaking. Define a function ξi : F(Qi) → Zn by the formula

ξi(Qi ∩ Fj) = λ(Fj). (8)

The function ξi is easily seen to be a di-characteristic function on Qi (see [6]).

Theorem 4.4 ([6, Corollary 4.5, Theorem 5.5]). Suppose that λ(Fi1), . . . , λ(Fir ) is

a part of a basis in Zn whenever the intersection Fi1∩· · ·∩Fir is nonempty. Then W (Q,Λ)

is a smooth stably complex (2n+1)-dimensional manifold with the boundary
⊔

M(Qi, ξi).

The function ξi is a characteristic function on Qi, so M(Qi, ξi) is a quasitoric manifold,

i = 1, . . . , k. The restriction of the stably complex structure on W (Q,Λ) to M(Qi, ξi)

coincides with the canonical stably complex structure on M(Qi, ξi).

One can avoid the direct check of the isotropy property of the function λ due to the

following simple

Lemma 4.5. Let {Q \Q1, . . . , Qk} be a simple (n+ 1)-dimesional polytope with a

function λ : F(Q)\{Q1, . . . , Qk} → Zn. Let ξi : F(Qi) → Zn be the respective restrictions

of λ to the facets of Qi given by (8), i = 1, . . . , k. Suppose that ξi is a di-characteristic

(resp. characteristic) function for any i = 1, . . . , k. Then λ is an isotropy function (resp.

satisfying the condition of Theorem 4.4).

Now let Q = H2 × ∆n−1 ⊂ Rn+1, where H2 ⊂ R2 is the hexagon and ∆n−1 ⊂
Rn−1 is the (n − 1)-dimensional simplex. Denote the edges of H2 by H1, . . . ,H6 in the

counter-clockwise order, and denote the facets of ∆n−1 by ∆1, . . . ,∆n. Then the facets

F1, . . . , Fn+6 of Q are

H1 ×∆n−1, . . . ,H6 ×∆n−1,H2 ×∆1, . . . , H
2 ×∆n,

respectively. Choose the distinguished facets F2, F4, F6 of Q. Clearly, vertQ =∪3
i=1 vertF2i. Consider the function λ : F(Q) \ {F2, F4, F6} → Zn taking values equal

the columns of the following (n× (n+ 3))-matrix
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1 −1 −1 0 0 . . . 0 0

0 −a −b 1 0 . . . 0 −1

0 0 0 0 1 . . . 0 −1
...

...
...

...
...

. . .
...

...

0 0 0 0 0 . . . 1 −1

 ,

in the increasing order of facet indices. (See Figure 1.)

F1, (1, 0)

F2

F3, (−1,−a)F4

F5, (−1,−b)

F6

F8, (0,−1)

F7, (0, 1)

Figure 1. Polytope Q with distinguished facets (gray) and isotropy function

for n = 2. F1, . . . , F6 are sides of Q counterclockwise and F7, F8 are top and

bottom facets of Q, respectively.

Proposition 4.6. λ is an isotropy function on {Q \ F2, F4, F6} satisfying the

condition of Theorem 4.4.

Proof. Follows immediately from Proposition 2.8 and Lemma 4.5. □

Now the construction of Theorem 4.4 gives the following

Theorem 4.7. W 2n+1 = W ({Q \ F2, F4, F6}, λ) is a stably complex (2n + 1)-

dimensional manifold with stably complex manifolds Pn(a), Pn(b), (Pn(b−a), cT (b−a))

being the boundary components of W .
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