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Abstract. Consider the instationary Stokes system in general un-
bounded domains Ω ⊂ Rn, n ≥ 2, with boundary of uniform class C3, and

Navier slip or Robin boundary condition. The main result of this article is the
maximal regularity of the Stokes operator in function spaces of the type L̃q

defined as Lq ∩ L2 when q ≥ 2, but as Lq + L2 when 1 < q < 2, adapted to
the unboundedness of the domain.

1. Introduction and main result.

Given an unbounded domain Ω ⊂ Rn and a finite time interval (0, T ) we consider

for a prescribed external force f : Ω× (0, T ) → Rn the instationary Stokes system with

Navier boundary condition

ut − ν∆u+∇p = f in Ω× (0, T )

divu = 0 in Ω× (0, T )

u(0) = 0 in Ω

u · n = 0, αu+ β(T (u, p)n)τ = 0 on ∂Ω× (0, T ).

(1.1)

Here u : Ω × (0, T ) → Rn, p : Ω × (0, T ) → R are the unknown velocity field and

pressure, respectively. The tensor T = T (u, p) = −pI + S(u) = −pI + 2νD(u) is the

Cauchy stress tensor where D(u) = (1/2)(∇u+ (∇u)⊤) denotes the symmetric part of

the velocity gradient, and ν > 0 is the viscosity. As usual for the Stokes system we set

ν = 1 and obtain the viscous stress tensor

S(u) = ∇u+ (∇u)⊤.

Let n denote the unit outer normal to ∂Ω, and let the subscript τ indicate the tangential

component(s) of a vector field on ∂Ω; to be more precise, for y ∈ Rn we have yτ =

y − (y · n)n. The constants α ∈ [0, 1) and β ∈ (0, 1] satisfy α + β = 1. Hence the

boundary condition αu+β(T (u, p)n)τ = 0 (called Navier or Robin condition or of third

type) simplifies to

B(u) = Bα,β(u) := αu+ β(S(u)n)τ = 0 (1.2)
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and describes two different physical cases. For α = 0, β = 1 we obtain the so-called

no-stick or perfect slip condition (Navier boundary condition), meaning that the fluid is

subject to no tangential stresses at the boundary. When 0 < α, β < 1, tangential stresses

at the boundary are proportional to the tangential velocity uτ = u on ∂Ω (Robin or third

type boundary condition); also recall the impermeability condition u ·n = 0 on ∂Ω. For

references on these boundary conditions and their physical meaning see [36].

The starting point for analytic semigroup theory applied to the instationary Stokes

system is the Stokes resolvent problem. From the rich literature for the Dirichlet case

(u = 0 on ∂Ω) we mention [38] for a potential theoretic approach, [25] for a method

using pseudodifferential operators, and [20] for multiplier techniques for the whole and

half space followed by localization methods for bounded and exterior domains. Moreover,

we refer to [13], [14] for infinite cylinders, and to [1], [2] for layers. Resolvent estimates

in weighted function spaces for (bent) half spaces and aperture domains are considered

in [21], [22], [23]. The techniques used in most of these papers exclude many other

interesting unbounded domains, e.g., domains with several exits to infinity, with infinitely

many holes, with spiraling exits, wedges with smooth vertex etc.

The semigroup approach for the Navier boundary condition (1.2) was first consid-

ered by Giga in [26] for a bounded domain as a special case of a more general condition.

For the case Rn
+ Saal [31] showed that the Stokes operator generates an analytic semi-

group and admits a bounded H∞-calculus. In [33] Shibata and Shimada proved the

unique solvability of the Stokes resolvent system with the Navier boundary condition

for bounded and exterior domains. This is done by a cut-off technique, where—as for

the Dirichlet case—existence and uniqueness are proven successively for the whole space,

the half space, bent half spaces and a bounded (or exterior) domain. We note that an

inhomogeneous divergence as well as non-zero boundary conditions are included; this will

also be used in our analysis. Finally, Shimada [36] proved maximal Ls(Lq)-regularity of

the instationary system with both Navier and Robin boundary condition for bounded

domains.

For the case of the Neumann boundary condition where T (u, p) ·n = φ is prescribed

on ∂Ω similar results were obtained by Shibata and Shimizu, see [34] for the resolvent

equation in bounded and exterior domains and [35] for the instationary system in a

bounded domain. The Neumann and further boundary conditions were also treated by

Shibata [32] and in several papers of Solonnikov and Grubb (e.g. in [27]) using pseudo-

differential operators. Boundary conditions in terms of differential forms were considered

by Miyakawa [30].

Due to counter-examples by Bogovskij and Maslennikova [4], [29] the Helmholtz

decomposition of vector fields in Lq(Ω), 1 < q < ∞, on an unbounded smooth domain

may fail unless q = 2. By analogy, a bounded Helmholtz projection Pq with the properties

required to define the Stokes operator Aq = −Pq∆ when q ̸= 2 may not exist. Therefore,

in [7], [8], [9], [10], [11] Kozono, Sohr and the first author of this article introduced the

spaces

L̃q(Ω) :=

{
Lq(Ω) + L2(Ω), if 1 ≤ q < 2,

Lq(Ω) ∩ L2(Ω), if 2 ≤ q ≤ ∞.
(1.3)
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The corresponding norm is defined as ∥u∥L̃q = max{∥u∥q, ∥u∥2} when q ≥ 2, and as

inf{∥u1∥q + ∥u2∥2 : u = u1 + u2, u1 ∈ Lq(Ω), u2 ∈ L2(Ω)} when 1 ≤ q < 2. For bounded

domains L̃q(Ω) = Lq(Ω) with equivalent norms. We note that functions in L̃q(Ω) locally

behave like Lq-functions, but globally exploit L2-properties. By well-known results of

interpolation theory, L̃q(Ω)′ ∼= L̃q′(Ω) when 1 ≤ q <∞.

By analogy, function spaces like L̃q
σ(Ω) of solenoidal vector fields, G̃q(Ω) = {∇p ∈

L̃q(Ω)} of gradient fields and W̃ k,q(Ω) of weakly differentiable functions will be defined.

In [9] the authors showed for general uniformly smooth domain Ω ⊂ Rn that in L̃q(Ω),

1 < q <∞, the corresponding Helmholtz projection P̃q is a bounded operator yielding the

algebraic and topological decomposition L̃q(Ω) = L̃q
σ(Ω) ⊕ G̃q(Ω). Its norm is bounded

by a constant depending only on q and the type τΩ of the domain; for the definition of

τΩ see Assumption 1.1 below.

The Stokes operator Ãq = −P̃q∆ with Dirichlet boundary condition generates an

analytic semigroup ([8], [11]) on L̃q
σ(Ω) and has the property of maximal regularity

([10]). Moreover, Kunstmann [28] showed that Ãq admits a bounded H∞-calculus.

These results are applied by Riechwald and the first author in [15], [16], [17] in order

to develop the theory of mild, strong and very weak solutions to the Navier–Stokes

equations with Dirichlet boundary condition in uniformly smooth domains. For a recent

review including proofs we refer to [12].

To work in general unbounded domains we use the exhaustion method, i.e., we

approximate Ω from the interior by a sequence of increasing bounded domains Ωj ⊂ Ω.

In the case of the Dirichlet boundary condition u = 0 on ∂Ω (see [8]) the boundary

condition is included in the definition of the space W 1,q
0 (Ω) and easily transferred from

the spacesW 1,q
0 (Ωj) toW

1,q
0 (Ω) as j → ∞. A similar approach cannot directly be applied

to the Robin boundary condition. Moreover, we do not have a global trace theorem at

hand for general unbounded domains. Therefore, we pose some further restrictions on

the domain Ω, see Assumption 1.1 below. Actually, it is not clear whether there are

uniform C3-domains not fulfilling Assumption 1.1; for precise definitions we refer to

Subsection 2.1 below.

Assumption 1.1. A uniform C3-domain Ω ⊂ Rn of type τΩ = (α̃, β̃,K) is assumed

to have the following representation: There exists a sequence {Ωj}j∈N of bounded uniform

C3-domains of the same type τΩ such that Ωj ⊂ Ω and

▶ Ωj ⊂ Ωj+1 for all j ∈ N and Ω =
∪∞

j=1 Ωj ,

▶ Γj := ∂Ωj ∩ ∂Ω ̸= ∅ for all j ∈ N,

▶ Γj ⊂ Γj+1 for all j ∈ N and ∂Ω =
∪∞

j=1 Γj .

To define the Stokes operator with Navier boundary condition Bα,β(u) = 0 we

introduce for 1 < q <∞ the Sobolev space

W 2,q
B (Ω) =

{
u ∈W 2,q(Ω) : B(u) = 0 on ∂Ω

}
.

The boundary condition for the spaceW 2,q
B (Ω) is understood locally in the sense of usual

traces. Then for a bounded domain Ω the domain of the Stokes operator Aq,B = −Pq∆
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is given by D(Aq,B) = Lq
σ(Ω) ∩ W 2,q

B (Ω). However, this definition is not suitable for

general unbounded domains. For this reason, let

D̃q
B(Ω) = D(Ãq,B) =

{
D(Aq,B) ∩ D(A2,B), 2 ≤ q <∞,

D(Aq,B) +D(A2,B), 1 < q < 2.
(1.4)

Using the Helmholtz projection P̃q we define the Stokes operator with Navier boundary

condition for a general uniformly smooth domain as

Ãq,B = −P̃q∆ : D̃q
B(Ω) ⊂ L̃q

σ(Ω) → L̃q
σ(Ω). (1.5)

Concerning the Stokes resolvent system λu+ Ãq,Bu = P̃qf related to (1.1) we cite

the following results [18]:

Theorem 1.2 (Resolvent problem for Ãq,B). Let 1 < q <∞, 0 < ε < π/2, δ > 0.

Let Ω ⊂ Rn, n ≥ 2, be a uniform C3-domain of type τΩ and let Assumption 1.1 be

satisfied. Then the following assertions hold :

(i) The sector Sε = {λ ∈ C : λ ̸= 0, | arg λ| < π − ε} is contained in the resolvent set

of −Ãq,B, and the resolvent (λ + Ãq,B)
−1 : L̃q

σ(Ω) → L̃q
σ(Ω) satisfies the resolvent

estimate

∥λu∥L̃q(Ω) + ∥u∥W̃ 2,q(Ω) ≤ C∥f∥L̃q(Ω) (1.6)

for f ∈ L̃q
σ(Ω), u = (λ+Ãq,B)

−1f , λ ∈ Sε with |λ| ≥ δ, where C = C(q, ε, δ, τΩ)>0.

(ii) The Stokes operator Ãq,B : D̃q
B(Ω) → L̃q

σ(Ω) is a densely defined closed operator,

and −Ãq,B generates an analytic semigroup {e−tÃq,B}t≥0 in L̃q
σ(Ω) satisfying the

estimate

∥e−tÃq,Bf∥L̃q(Ω) ≤ Ceδt∥f∥L̃q(Ω) (1.7)

for f ∈ L̃q
σ(Ω), t ≥ 0, where C = C(q, δ, τΩ) > 0.

(iii) The norms

∥ · ∥W̃ 2,q , ∥ · ∥L̃q + ∥Ãq,B · ∥L̃q , ∥ · ∥L̃q + ∥(1 + Ãq,B) · ∥L̃q , ∥(1 + Ãq,B) · ∥L̃q

are equivalent on D(1 + Ãq,B) := D(Ãq,B) with a constant depending on Ω only

through τΩ. Moreover, the adjoint operator satisfies ⟨Ãq,Bu,v⟩ = ⟨u, Ãq′,Bv⟩ for

all u ∈ D(Ãq,B), v ∈ D(Ãq′,B), and (Ãq,B)
′ = Ãq′,B.

Here and in the following we will frequently omit the symbol Ω in norms like ∥·∥Lq(Ω)

when the domain is clear from the context.

The main result of this article concerns the maximal regularity of the Stokes operator

Ãq,B .
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Theorem 1.3 (Maximal regularity for Ãq,B). Let 1 < q, s < ∞, 0 < T < ∞. Let

Ω ⊂ Rn, n ≥ 2, be a uniform C3-domain of type τΩ and let Assumption 1.1 be satisfied.

Then the following assertions hold :

(i) For every f ∈ Ls(0, T ; L̃q
σ(Ω)) and every u0 ∈ D̃q

B(Ω) there exists a unique solution

u ∈ Ls(0, T ; D̃q
B(Ω)) with ut ∈ Ls(0, T ; L̃q

σ(Ω)) of the Cauchy problem

ut + Ãq,Bu = f , u(0) = u0,

satisfying the estimate

∥ut∥Ls(0,T ;L̃q(Ω)) + ∥u∥Ls(0,T ;L̃q(Ω)) + ∥Ãq,Bu∥Ls(0,T ;L̃q(Ω))

≤ C
(
∥f∥Ls(0,T ;L̃q(Ω)) + ∥u0∥D̃q

B(Ω)

)
(1.8)

with a constant C = C(τΩ, T, q, s) > 0. By Theorem 1.2 (iii) a similar estimate

holds for the term ∥u∥Ls(0,T ;W̃ 2,q(Ω)).

(ii) For every f ∈ Ls(0, T ; L̃q(Ω)) and every u0 ∈ D̃q
B(Ω) the instationary Stokes

system (1.1) has a unique solution (u,∇p) ∈ Ls(0, T ; D̃q
B(Ω)) × Ls(0, T ; G̃q(Ω))

with ut ∈ Ls(0, T ; L̃q
σ(Ω)), defined by ut + Ãq,Bu = P̃qf , u(0) = u0, as well as

∇p(t) = (I − P̃q)(f +∆u)(t) and satisfying

∥ut∥Ls(0,T ;L̃q(Ω)) + ∥u∥Ls(0,T ;W̃ 2,q(Ω)) + ∥∇p∥Ls(0,T ;L̃q(Ω))

≤ C
(
∥f∥Ls(0,T ;L̃q(Ω)) + ∥u0∥D̃q

B(Ω)

)
(1.9)

with a positive constant C = C(τΩ, T, q, s).

This article is organized as follows. In Section 2, we describe several preliminaries

and recall necessary results for the bounded domain case. Section 3 contains the proof

of Theorem 1.3 for bounded domains when 1 < s = q < ∞ and u0 = 0. We solve

the instationary equation in a bounded domain, focusing on the maximal regularity

estimate in L̃q(Ω) with a constant depending on Ω only through its type τΩ. For the

case 2 ≤ s = q <∞, we use the localization procedure and local estimates in Lq as well

as the global L2-estimate. The case 1 < s = q < 2 is treated by duality arguments.

The unbounded domain, see Section 4, is represented by a sequence of bounded do-

mains, see Assumption 1.1. Extending the solutions of the instationary system in each of

these bounded domains to the unbounded domain Ω we obtain a sequence with a uniform

maximal regularity estimate in Ω. This uniformity is achieved since a priori constants

in Theorem 1.3 do depend on the domain only through the type τΩ. Finally, weak-limit

procedures yield a solution to the instationary system in the unbounded domain. The

uniqueness of solutions is shown separately in Subsection 4.3, together with the proof of

the remaining cases 1 < s ̸= q <∞, u(0) = u0 ̸= 0.

2. Preliminaries.

2.1. Basic notation.

Let us recall the definition of a uniform Ck-domain and its essential properties.
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Definition 2.1. A domain Ω ⊂ Rn, n ≥ 2, is called a uniform Ck-domain of type

τΩ = (α̃, β̃,K), where k ∈ N, k ≥ 2, α̃ > 0, β̃ > 0 and K > 0, if for each x0 ∈ ∂Ω there

exist—after a translation and rotation—a Cartesian coordinate system with origin at x0
and coordinates y = (y′, yn), y

′ = (y1, . . . , yn−1), and a Ck-function h(y′), |y′| ≤ α̃, with

∥h∥Ck ≤ K such that the neighborhood

Uα̃,β̃,h(x0) := {y ∈ Rn : h(y′)− β̃ < yn < h(y′) + β̃, |y′| < α̃}

of x0 satisfies Uα̃,β̃,h(x0) ∩ ∂Ω = {y = (y′, yn) ∈ Rn : h(y′) = yn, |y′| < α̃} and

U−
α̃,β̃,h

(x0) := {y ∈ Rn : h(y′)− β̃ < yn < h(y′), |y′| < α̃} = Uα̃,β̃,h(x0) ∩ Ω.

Notice that the constants α̃, β̃,K do not depend on x0 ∈ ∂Ω; moreover, the parame-

ter τΩ is only related to Ω but is not a function of Ω. We may choose the new coordinate

system y = (y′, yn) such that the axes of y′ are tangential to ∂Ω in x0. Thus we have

h(0) = 0, ∇′h(0) = 0, and due to a continuity argument for each given constant M > 0

we can choose α̃ > 0 sufficiently small such that

∥h∥C1 ≤M. (2.1)

Considering a uniform C3-domain of type τΩ = (α̃, β̃,K) there exists a covering of

Ω by open balls Bj = Br(xj) where xj ∈ Ω and r = r(τΩ) > 0, i.e. Ω ⊂
∪

j Bj , such that

with appropriate functions hj ∈ C3

Bj ⊂ Uα̃,β̃,hj
(xj) if xj ∈ ∂Ω, Bj ⊂ Ω if xj ∈ Ω.

The index j runs from 1 to some finite number N ∈ N if Ω is bounded and j ∈ N for

Ω unbounded. The covering {Bj} can be chosen in such a way that no more than some

fixed number N0 = N0(τΩ) of the balls have a nonempty intersection. Moreover, there

exists a partition of unity {φj}, φj ∈ C∞
0 (Rn), related to this covering, such that

0 ≤ φj ≤ 1, suppφj ⊂ Bj ,
∑
j

φj = 1 on Ω (2.2)

∥∇φj∥∞, ∥∇2φj∥∞, ∥∇3φj∥∞ ≤ C = C(τΩ) (2.3)

uniformly in j. For xj ∈ Ω let us assume that suppφj ⊂ B−
j , where B−

j denotes the

lower half-ball of Bj .

Now we are able to localize our problem along ∂Ω to domains of the form

H ′ := H ′
α̃,β̃,r,h

= {y ∈ Rn : h(y′)− β̃ < yn < h(y′), |y′| < α̃} ∩Br(0), (2.4)

where we assume Br(0) ⊂ {y ∈ Rn : h(y′) − β̃ < yn < h(y′) + β̃, |y′| < α̃}, and the

function h ∈ C3
0 (B

′
r(0)) satisfies h(0) = 0, ∇′h(0) = 0, and the smallness assumption

∥h∥C1 ≤ M is satisfied for some given M > 0. Here B′
r(0), 0 < r = r(τΩ) < α̃, denotes

an (n− 1)-dimensional ball.

Thanks to the properties of the support of φj we can even work in domains H the
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boundary of which decomposes into two disjoint parts ∂1H, ∂2H such that

H ⊂ H ′ and ∂H = ∂1H∪̇ ∂2H, where ∂1H ⊂ {y ∈ Rn : yn = h(y′)}. (2.5)

We choose H so that (suppφj ∩ H ′) ⊂ H and dist(suppφj , ∂2H) > 0, see Figure 1

below, and that H is a uniform C3-domain of type τΩ. Such a domain H is bounded and

uniformly star-shaped with respect to some ball

Br′(x0) ⊂ H where 0 < r̃ = r̃(τΩ) ≤ r′ ≤ r = r(τΩ). (2.6)

Figure 1. Illustration of a local domain H.

If Ω is unbounded, then it can be expressed as a union of countably many bounded

uniform C3-domains Ωj ⊂ Ω, j ∈ N, such that Ωj ⊂ Ωj+1 for all j ∈ N and Ω =
∪∞

j=1 Ωj .

Each of these subdomains is of the same type (α̃′, β̃′,K ′) and we may assume that

α̃ = α̃′, β̃ = β̃′,K = K ′, i.e. τΩj = τΩ. Under Assumption 1.1 to hold in Theorem 1.3 we

even suppose that Γj := ∂Ωj ∩ ∂Ω ̸= ∅, Γj ⊂ Γj+1 for all j ∈ N, and ∂Ω =
∪∞

j=1 Γj .

Let us introduce the following spaces of Sobolev type. Given 1 < q, q′ < ∞ such

that 1 = 1/q + 1/q′, let W 1,q(Ω) and W 1,q
0 (Ω) = C∞

0 (Ω)
∥·∥W1,q

with norm ∥ · ∥W 1,q(Ω)

denote the usual Lq-Sobolev spaces. Then

W−1,q(Ω) =
(
W 1,q′

0 (Ω)
)′

Ŵ 1,q(Ω) =
{
u ∈ Lq

loc(Ω) : ∇u ∈ Lq(Ω)
}

Ŵ−1,q(Ω) =
(
Ŵ 1,q′(Ω)

)′
.

In the space Ŵ 1,q(Ω) we identify two elements differing by a constant and equip it with

the norm ∥∇ · ∥Lq(Ω). If Ω is bounded, we may identify

Ŵ 1,q(Ω) =W 1,q(Ω) ∩ Lq
0(Ω), Lq

0(Ω) :=

{
u ∈ Lq(Ω) :

∫
Ω

u = 0

}
.

Note that we will often omit the symbol Ω for spaces of functions defined on Ω to keep



1300(274)

1300 R. Farwig and V. Rosteck

notation short; by analogy, ∥u, v, . . . ∥ := ∥u∥+∥v∥+∥ . . . ∥ for some norm ∥·∥ even when

u and v etc. may be functions, vector fields etc. with different number of components.

Lemma 2.2 (Poincaré and Friedrichs inequalities). Let 1 < q < ∞ and H be a

bounded domain as in (2.5). Let either u ∈W 1,q
0 (H) or u ∈W 1,q(H),

∫
H
u = 0. Then

∥u∥Lq(H) ≤ C(q, τΩ)∥∇u∥Lq(H). (2.7)

In the case of vector fields u ∈ W 1,q(H) satisfying u · n = 0 on ∂H a similar estimate

holds.

Proof. The result for u ∈ W 1,q
0 (H) is well known. For u ∈ W 1,q(H),

∫
H
u = 0,

the inequality holds with a constant C = C(q,Ω), see [24, Theorem II.5.4]. The more

concrete dependence C = C(q, τΩ) uses the uniform star-shapedness (2.6) and is proved

in [19].

Concerning u ∈ W 1,q(H) satisfying u · n = 0 on ∂H we apply [24, Exercise II.4.5]

where the inequality is proven with a constant C ≤ diamH(|q − 2| + n + 1). Here

diamH ≤ 2r(τΩ). □

Lemma 2.3 (Divergence equation, [8], Lemma 2.1 in [11]). Let 1 < q <∞.

(i) There is a bounded linear operator R : Lq
0(H) →W 1,q

0 (H) such that divRf = f for

all f ∈ Lq
0(H). Moreover,

∥Rf∥W 1,q(H) ≤ C(q, τΩ)∥f∥Lq(H) for all f ∈ Lq
0(H).

(ii) There exists a constant C = C(q, τΩ) > 0 such that for every p ∈ Lq
0(H)

∥p∥Lq(H) ≤ C∥∇p∥W−1,q(H) = C sup
0̸=v∈W 1,q′

0 (H)

|⟨p,div v⟩|
∥∇v∥Lq′ (H)

. (2.8)

Finally, we mention some interpolation inequalities for functions from W 2,q(Ω).

Lemma 2.4 (Interpolation estimates, [8], Lemma 2.3 in [11]). Let Ω ⊂ Rn be a

bounded C2-domain of type τΩ.

(i) Let 1 < q < ∞. Then for every 0 < M < 1 there exists a positive constant

C = C(M, q, τΩ) such that for all u ∈W 2,q(Ω)

∥∇u∥Lq(Ω) ≤M∥∇2u∥Lq(Ω) + C∥u∥Lq(Ω). (2.9)

(ii) Let 2 ≤ q < ∞. Then for every 0 < M < 1 there exists a positive constant

C = C(M, q, τΩ) such that for all u ∈W 2,q(Ω)

∥u∥Lq(Ω) ≤M∥∇2u∥Lq(Ω) + C
(
∥∇2u∥L2(Ω) + ∥u∥L2(Ω)

)
. (2.10)
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2.2. Maximal regularity for half spaces.

Following [36] we introduce several function spaces used only in Lemmata 2.5 and

2.7 as well as in Proposition 2.6 below. Let D ⊂ Rn be a domain, I ⊂ R a time interval

and X a Banach space. Given 1 < s, q <∞, 0 < T ≤ ∞ we define the spaces

L̇s(I;X) = {u ∈ Ls(R;X) : u = 0 for t ̸∈ I}

Ẇ 1,s([0, T );X) = {u ∈W 1,s((−∞, T );X) : u = 0 for t < 0}
W 2,1

q,s (D × I) = Ls(I;W 2,q(D)) ∩W 1,s(I;Lq(D))

Ẇ 2,1
q,s (D × [0, T )) = {u ∈W 2,1

q,s (D × (−∞, T )) : u = 0 for t < 0},

where the second last one is equipped with the norm ∥u∥Ls(I;W 2,q) + ∥u∥W 1,s(I;Lq). Let

F denote the Fourier transform with respect to time, and let θ ∈ R. We set ⟨Dt⟩θu(t) =
F−1

[
(1 + ξ2)θ/2(Fu)(ξ)

]
(t) and define the Bessel potential spaces

Hθ,s(R;X) = {u ∈ Ls(R;X) : ⟨Dt⟩θu ∈ Ls(R;X)}

H1,1/2
q,s (D × R) = H1/2,s(R;Lq(D)) ∩ Ls(R;W 1,q(D))

Ḣ1,1/2
q,s (D × R+) = {u ∈ H1,1/2

q,s (D × R) : u = 0 for t < 0}

H1,1/2
q,s (D × (0, T )) = {u : ∃ v ∈ H1,1/2

q,s (D × R) with u = v on D × (0, T )}

Ḣ1,1/2
q,s (D × (0, T )) = {u : ∃ v ∈ Ḣ1,1/2

q,s (D × R+) with u = v on D × (0, T )}.

These spaces are equipped with the following norms:

∥u∥Hθ,s(R;X) = ∥u∥Ls(R;X) + ∥⟨Dt⟩θu∥Ls(R;X)

∥u∥
H

1,1/2
q,s (D×R) = ∥u∥H1/2,s(R;Lq(D)) + ∥u∥Ls(R;W 1,q(D))

∥u∥
H

1,1/2
q,s (D×(0,T ))

= inf{∥v∥
H

1,1/2
q,s (D×R) : v ∈ H1,1/2

q,s (D×R), u = v on D×(0, T )}

∥u∥
Ḣ

1,1/2
q,s (D×(0,T ))

= inf{∥v∥
H

1,1/2
q,s (D×R) : v ∈ Ḣ1,1/2

q,s (D×R+), u = v on D×(0, T )}.

The first step is the maximal regularity of the Stokes operator Ãq,B for the exact

half space Rn
+. We write u = (u′, un) with u′ = (u1, . . . , un−1), and similarly, h′ =

(h1, . . . , hn−1) for functions with n− 1 variables.

Lemma 2.5 (The instationary system in Rn
+). Let 1 < s, q < ∞, 0 < T < ∞ and

let functions

f ∈ Ls(0, T ;Lq(Rn
+)), g ∈ Ls(0, T ;W 1,q(Rn

+)) ∩W 1,s(0, T ; Ŵ−1,q(Rn
+))

with g(t = 0) = 0, supp g(t) ⊂ BR for t ∈ [0, T ] and some R > 0 be given. Moreover, let

h′ ∈ Ḣ
1,1/2
q,s (Rn

+ × (0, T )). Then there is a unique solution u ∈ W 2,1
q,s (Rn

+ × (0, T )) and

p ∈ Ls(0, T ; Ŵ 1,q(Rn
+)) of the system
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ut + u− divS(u) +∇p = f in Rn
+ × (0, T )

divu = g in Rn
+ × (0, T )

un = 0,
∂u′

∂xn
= −h′ on ∂Rn

+ × (0, T )

u(0) = 0 in Rn
+,

(2.11)

which satisfies the estimate

∥ut, ∇2u,∇p∥Ls(0,T ;Lq(Rn
+)) ≤ C(s, q)

(
∥f , g, ∇g∥Ls(0,T ;Lq(Rn

+))

+ ∥gt, g∥Ls(0,T ;Ŵ−1,q(Rn
+)) + ∥h′∥

H
1,1/2
q,s (Rn

+×(0,T ))

)
. (2.12)

Proof. The proof is based on [36, Theorem 5.1] where data f ∈ L̇s(R+;L
q(Rn

+)),

h′ ∈ Ḣ
1,1/2
q,s (Rn

+×R+), and g ∈ L̇s(R+;W
1,q(Rn

+))∩Ẇ 1,s([0,∞); Ŵ−1,q(Rn
+)) on the time

interval R+ such that supp g(t) ⊂ BR for all t ∈ R are considered. In this situation there

is a unique solution (u, p) ∈ Ẇ 2,1
q,s (Rn

+× [0,∞))×L̇s(R+; Ŵ
1,q(Rn

+)) of (2.11) in Rn
+×R+,

satisfying the estimate (2.12) with time interval (0, T ) replaced by R+.

To prove (2.12) with the interval [0, T ] we define extensions F , G,H ′ of f , g,h′,

respectively, from [0, T ] to R as follows: Let F (t) = 0 when t /∈ [0, T ], and

G(t) = 0 when t < 0 or t > 2T, but G(t) = g(2T − t) for t ∈ [T, 2T ].

Obviously, ∥F ∥L̇s(R;Lq) = ∥f∥Ls(0,T ;Lq), and ∥G∥Ls(R;W 1,q) = 21/s∥g∥Ls(R;W 1,q); an anal-

ogous identity holds for ∥G∥W 1,s(R;Ŵ−1,q). Moreover, suppG(t) ⊂ BR for all t ∈ R. For

h′ ∈ Ḣ
1,1/2
q,s (Rn

+ × (0, T )), we choose an extension H ′ ∈ Ḣ
1,1/2
q,s (Rn

+ × R+) such that

H ′ = h′ on Rn
+ × (0, T ) and

∥H ′∥
H

1,1/2
q,s (Rn

+×R) ≤ 2∥h′∥
H

1,1/2
q,s (Rn

+×(0,T ))
. (2.13)

Now we look for a solution of the system

zt + z − divS(z) +∇θ = F in Rn
+ × R+

div z = G in Rn
+ × R+

zn = 0,
∂z′

∂xn
= −H ′ on ∂Rn

+ × R+,

z(0) = 0 in Rn
+.

According to [36, Theorem 5.1] there is a unique solution z ∈ Ẇ 2,1
q,s (Rn

+ × [0,∞)), θ ∈
L̇s(R+; Ŵ

1,q(Rn
+)) satisfying the estimate

∥zt, ∇2z, ∇θ∥Ls(0,T ;Lq) ≤ ∥zt, ∇2z, ∇θ∥Ls(R;Lq)

≤ C
(
∥F , G, ∇G∥Ls(R;Lq) + ∥Gt, G∥Ls(R;Ŵ−1,q) + ∥H ′∥

H
1,1/2
q,s (Rn

+×R)

)
≤ C

(
∥f , g, ∇g∥Ls(0,T ;Lq) + ∥gt, g∥Ls(0,T ;Ŵ−1,q) + ∥h′∥

H
1,1/2
q,s (Rn

+×(0,T ))

)
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with constants C = C(s, q). Then (u, p) = (z, θ)
∣∣
(0,T )

solves the system (2.11) and

satisfies the desired estimate.

Uniqueness follows from the existence of solutions to the dual problem. □

In the next step we consider the case of bent half spaces. Given ω ∈ C3(Rn−1) we

define the bent half space

H̃ω = {y ∈ Rn : yn > ω(y′)}.

For the control of ω we use the definition ∥∇′ω∥Ck =
∑

|α′|≤k ∥∂α
′

x′ ∇′ω∥L∞ .

As auxiliary tools we need two estimates from [35, Propositions 2.6 and 2.8]:

Proposition 2.6. Let 1 < s, q <∞.

(i) Let 1 ≤ R < ∞ and D ⊂ Rn be a domain. Then for any v ∈ W 1,s(R;Lq(D))

there holds

∥v∥H1/2,s(R;Lq(D)) ≤ C(s, q)
(
R−1/2∥vt∥Ls(R;Lq(D)) +R1/2∥v∥Ls(R;Lq(D))

)
.

(ii) For v ∈ Ls(R;W 2,q(Rn
+)) ∩W 1,s(R;Lq(Rn

+)) there holds

∥⟨Dt⟩1/2∇v∥Ls(R;Lq(Rn
+)) ≤ C(s, q)

(
∥vt, v, ∇v, ∇2v∥Ls(R;Lq(Rn

+))

)
.

Proof. (i) is proved in [35, Proposition 2.6] for a fixed domain D ⊂ Rn with con-

stant C = C(s, q,D). To show that C can be chosen independent of the domain we use the

trivial extension operator ED : Lq(D) → Lq(Rn) such that EDu(x) = 0 for x /∈ D. Since

⟨Dt⟩1/2 commutes with ED and thus ∥⟨Dt⟩1/2u∥Ls(R;Lq(D)) ≤ ∥⟨Dt⟩1/2EDu∥Ls(R;Lq(Rn)),

[35, Proposition 2.6] yields the assertion.

(ii) is a consequence of [35, Proposition 2.8]. □

Lemma 2.7 (The instationary system in bent half spaces). Let 0 < T < ∞ and

H̃ω denote a bent half space with ω ∈ C3(Rn−1). Let

f ∈ Ls(0, T ;Lq(H̃ω)), g ∈ Ls(0, T ;W 1,q(H̃ω)) ∩W 1,s(0, T ; Ŵ−1,q(H̃ω)),

with supp g(t) ⊂ BR for any t ∈ [0, T ] and some R > 0, g(0) = 0 be given. Moreover, let

h ∈ Ḣ
1,1/2
q,s (H̃ω×(0, T )). Assume that u ∈W 2,1

q,s (H̃ω×(0, T )) and p ∈ Ls(0, T ; Ŵ 1,q(H̃ω))

solve

ut + u− divS(u) +∇p = f in H̃ω × (0, T )

divu = g in H̃ω × (0, T )

u · n = 0, Bα,β(u) = h on ∂H̃ω × (0, T )

u(0) = 0 in H̃ω.

(2.14)

Then there is a constant 0 < K0 = K0(q) < 1 such that if ∥∇′ω∥C0 ≤ K0 then the

solution (u,∇p) satisfies the estimate

∥ut∥Ls(0,T ;Lq(H̃ω)) + ∥u∥Ls(0,T ;W 2,q(H̃ω)) + ∥∇p∥Ls(0,T ;Lq(H̃ω))
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≤ C
(
∥f∥Ls(0,T ;Lq(H̃ω)) + ∥u, g∥Ls(0,T ;W 1,q(H̃ω))

+ ∥gt, g∥Ls(0,T ;Ŵ−1,q(H̃ω)) + ∥h∥
H

1,1/2
q,s (H̃ω×(0,T ))

)
with a constant C = C(q, s, ∥∇′ω∥C2 , T ) > 0.

Proof. Let u ∈ W 2,1
q,s (H̃ω × (0, T )) and p ∈ Ls(0, T ; Ŵ 1,q(H̃ω)) solve (2.14) in

H̃ω × (0, T ). In order to show the estimate we follow [36] and reduce the problem to the

half-space.

We consider the bijection φ : H̃ω → Rn
+, x = (x′, xn) 7→ (x′, xn − ω(x′)) =: y, with

Jacobian Jφ = 1. For a function v defined on H̃ω we set ṽ(y) = v(x). For derivatives we

have ∂/∂xn = ∂/∂yn and ∂/∂xj = ∂/∂yj − ∂ω/∂yj · ∂/∂yn, j = 1, . . . , n− 1.

Let us denote Ki = ∥∇′ω∥Ci , i ≥ 0, and assume that K0 ≤ 1. Setting z′(y) = ũ′(y),

zn(y) = ũn(y)−∇′ω(y′) · ũ′(y) and θ(y) = p̃(y) we see that (z, θ) satisfies the following

problem in the half-space

zt + z − divS(z) +∇θ = f̃ +R(z, θ) in Rn
+ × (0, T )

div z = g̃ in Rn
+ × (0, T )

zn = 0, −β ∂z
′

∂yn
=

h̃√
1 + |∇′ω|2

+R∂(z) on ∂Rn
+ × (0, T )

z(0) = 0 in Rn
+,

(2.15)

where f̃ , g̃ are defined by f , g as described above and supp g̃(t) is contained in a fixed

compact set for all t. The remainder terms R(z, θ) and R∂(z) are linear with respect

to zt, z,∇z,∇2z,∇θ. To be more precise, R depends on zt, z,∇z,∇2z and ∇θ, but at
each instance zt, ∇2z and ∇θ are multiplied by components of ∇′ω, whereas R∂ depends

on z,∇z such that ∇z is multiplied by ∇′ω. It is important to note that R∂(z) also

contains the term αz′ from the boundary condition Bα,β(u) = 0.

Hence, assuming K0 ≤ 1, there are constants C and CK1,K2 such that

∥R(z, θ)∥Ls(0,T ;Lq(Rn
+))

≤ C
(
K0∥zt, ∇2z, ∇θ∥Ls(0,T ;Lq(Rn

+)) + CK1,K2∥z∥Ls(0,T ;W 1,q(Rn
+))

)
. (2.16)

To get an estimate of ∥R∂(z)∥H1,1/2
q,s (Rn

+×(0,T ))
we define the extension Z of z from

[0, T ] to R as the extension G of g in the proof of Lemma 2.5 above, i.e., Z(t) = 0 when

t < 0 or t > 2T , but Z(t) = z(2T − t) for t ∈ [T, 2T ]. Hence Z ∈ W 2,1
q,s (Rn

+ × R) and

∥Z∥Ls(R;Lq(Rn
+)) = 21/s∥z∥Ls(0,T ;Lq(Rn

+)); similar results hold for ∥Zt∥Ls(R;Lq(Rn
+)) and

∥Z∥Ls(R;W 2,q(Rn
+)). Then for R∂(z) we have the estimate

∥R∂(z)∥H1,1/2
q,s (Rn

+×(0,T ))
≤ ∥R∂(Z)∥

H
1,1/2
q,s (Rn

+×R)

≤ CK0∥∇Z∥
H

1,1/2
q,s (Rn

+×R) + CK1,K2∥Z∥
H

1,1/2
q,s (Rn

+×R). (2.17)

The first term on the right-hand side is analyzed using Proposition 2.6 (ii) as follows:
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∥∇Z∥
H

1,1/2
q,s (Rn

+×R) = ∥∇Z∥Ls(R;W 1,q(Rn
+)) + ∥∇Z∥H1/2,s(R;Lq(Rn

+))

= 2∥∇Z∥Ls(R;W 1,q(Rn
+)) + ∥⟨Dt⟩1/2∇Z∥Ls(R;Lq(Rn

+))

≤ c(s, q)∥Zt, Z, ∇Z, ∇2Z∥Ls(R;Lq(Rn
+)).

For the second term we use Proposition 2.6 (i) and get with ε > 0 that

∥Z∥
H

1,1/2
q,s (Rn

+×R) = ∥Z∥Ls(R;W 1,q(Rn
+)) + ∥Z∥H1/2,s(R;Lq(Rn

+))

≤ Cε∥Z∥Ls(R;W 1,q(Rn
+)) + ε∥Zt∥Ls(R;Lq(Rn

+)). (2.18)

Summarizing the last two estimates with (2.17) we see that

∥R∂(z)∥H1,1/2
q,s (Rn

+×(0,T ))

≤ C(K0 + ε)∥Zt, ∇2Z∥Ls(R;Lq(Rn
+)) + Cε∥Z∥Ls(R;W 1,q(Rn

+)) (2.19)

where Z may be replaced by z with a minor change of C, Cε.

To complete the proof we apply the corresponding half-space estimate (2.12) to

(2.15) and obtain that

∥zt, ∇2z, ∇θ∥Ls(0,T ;Lq(Rn
+)) ≤ C(s, q)

(
∥f̃ , R(z, θ)∥Ls(0,T ;Lq(Rn

+))

+ ∥g̃∥Ls(0,T ;W 1,q(Rn
+)) + ∥g̃t, g̃∥Ls(0,T ;Ŵ−1,q(Rn

+))

+ ∥h̃, R∂(z)∥H1,1/2
q,s (Rn

+×(0,T ))

)
; (2.20)

the term (1 + |∇′ω|2)−1/2 in front of h̃ in (2.15) does not change the character of this

inequality. Choosing in (2.16), (2.19) the constants K0 and ε sufficiently small, the

Ls(0, T ;Lq(Rn
+))-norms of zt,∇2z and ∇θ can be absorbed from the right hand side of

(2.20). Thus we are led to the estimate

∥zt, ∇2z, ∇θ∥Ls(0,T ;Lq(Rn
+))

≤ C(s, q)
(
∥f̃ , g̃, ∇g̃∥Ls(0,T ;Lq(Rn

+)) + ∥g̃t, g̃∥Ls(0,T ;Ŵ−1,q(Rn
+))

+ ∥h̃∥
H

1,1/2
q,s (Rn

+×(0,T ))
+ ∥z∥Ls(0,T ;W 1,q(Rn

+))

)
.

Finally, it suffices to estimate f̃ , g̃, g̃t and h̃ by f , g, gt and h in their respective norms

to get the desired estimate for the solution (u, p). □

The main result of this subsection concerns maximal regularity estimates for solu-

tions with support in bounded domains of type H, cf. (2.4), (2.5), (2.6).

Proposition 2.8 (The instationary system in H). Let 0 < T < ∞ and let f ∈
Lq(0, T ;Lq(H)) and g ∈ Lq(0, T ;W 1,q(H)) ∩W 1,q(0, T ; Ŵ−1,q(H)) satisfying g(0) = 0

be given. Moreover, let h ∈ Lq(0, T ;W 1,q(H)) ∩W 1,q(0, T ;Lq(H)), h · n|∂H×(0,T ) = 0,

h(0) = 0. Assume that the functions u ∈ W 2,1
q,q (H × (0, T )) and p ∈ Lq(0, T ;W 1,q(H))

solve (2.14) (with H̃ω replaced by H ) and that uniformly for a.a. t ∈ [0, T ]

dist(suppu(t) ∪ supp p(t), ∂2H) > 0. (2.21)
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Then there is a constant C = C(τΩ, q, T ) > 0 such that

∥ut,u, ∇u, ∇2u, ∇p∥Lq(0,T ;Lq(H))

≤ C
(
∥f , g, ∇g∥Lq(0,T ;Lq(H)) + ∥gt, g∥Lq(0,T ;Ŵ−1,q(H))

+ ∥h∥
H

1,1/2
q,q (H×(0,T ))

+ ∥u∥Lq(0,T ;W 1,q(H))

)
. (2.22)

An analogous result holds for the backward Stokes system where (2.14)1 is replaced

by −ut+u−divS(u)+∇p = f with the initial value u(T ) = 0, and g(T ) = 0, h(T ) = 0.

Proof. Due to (2.21) we extend u, p by zero so that (u,∇p) may be considered as

a solution of the Stokes system in a bent half space and use Lemma 2.7. The smallness

assumption is satisfied thanks to (2.1), where we choose M < 1. In our case C =

C(q, ∥∇′ω∥C2 , T ) means that C = C(τΩ, q, T ).

Moreover, since h(0) = 0 or h(T ) = 0, h satisfies the estimate (2.18), i.e.,

∥h∥
H

1,1/2
q,q (H×(0,T ))

≤ C∥h∥Lq(0,T ;W 1,q(H)) + ε∥ht∥Lq(0,T ;Lq(H)), (2.23)

where ε > 0 can be chosen sufficiently small.

For the backward equation the transformation t̃ = T − t is used. □

2.3. Maximal regularity of Aq,B for bounded domains.

We consider the instationary Stokes system

ut −∆u+∇p = f in Ω× (0, T )

divu = 0 in Ω× (0, T )

u(0) = u0 at t = 0

u · n = 0, B(u) = 0 on ∂Ω× (0, T ),

(2.24)

for bounded domains and define in view of the variation of constants formula the opera-

tors

Js,qf(t) =

∫ t

0

e−(t−τ)Aq,Bf(τ) dτ and J ′
s,qg(t) =

∫ T

t

e−(τ−t)Aq,Bg(τ) dτ

for f , g ∈ Ls(0, T ;Lq
σ(Ω)).

Theorem 2.9 (Maximal regularity). Let 1 < q, s < ∞, 0 < T < ∞, and let

Ω ⊂ Rn, n ≥ 2, be a bounded C3-domain.

(i) If f ∈ Ls(0, T ;Lq(Ω)), u0 ∈ Dq,s = (Lq
σ(Ω),D(Aq,B))1−1/s,s, the instationary

Stokes system (2.24) admits a unique solution u ∈ W 2,1
q,s (Ω × (0, T )) and p ∈

Ls(0, T ;W 1,q(Ω)), which enjoys the estimate

∥ut∥Ls(0,T ;Lq(Ω))+∥u∥Ls(0,T ;W 2,q(Ω)) + ∥p∥Ls(0,T ;W 1,q(Ω))

≤ C
(
∥f∥Ls(0,T ;Lq(Ω)) + ∥u0∥Dq,s

)
, (2.25)

where C = C(q, s, T,Ω) is independent of u, p,f ,u0.
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(ii) In particular, for f ∈ Ls(0, T ;Lq
σ(Ω)) and an initial value u0 ∈ D(Aq,B) the non-

stationary Stokes system

ut +Aq,Bu = f , u(0) = u0, (2.26)

has a unique solution u ∈ Ls(0, T ;D(Aq,B)) given by

u(t) = e−tAq,Bu0 + Js,qf(t)

and satisfying the estimate

∥ut∥Ls(0,T ;Lq(Ω)) + ∥u∥Ls(0,T ;Lq(Ω)) + ∥Aq,Bu∥Ls(0,T ;Lq(Ω))

≤ C(q, s, T,Ω)
(
∥f∥Ls(0,T ;Lq(Ω)) + ∥u0∥D(Aq,B)

)
. (2.27)

(iii) For the same data, the backward Stokes system −ut +Aq,Bu = f with u(T ) = u0,

has a unique solution u ∈ Ls(0, T ;D(Aq,B)) given by u(t) = e−(T−t)Aq,Bu0 +

J ′
s,qf(t), satisfying the estimate (2.27).

(iv) There holds the duality relation (Js,q)
′ = J ′

s′,q′ .

(v) In the case q = 2 the constant C = C(2, s, T,Ω) in (2.27) does not depend on the

domain Ω.

Proof. (i) This assertion is based on [36, Theorem 1.2]. Applying the Helmholtz

projection Pq to (2.24)1, we obtain (ii). Moreover, the unique solution of (2.26) can be

represented by the integral formula u(t) = e−tAqu0 + Js,qf(t).

(iii) The statements for the backward equation follow from (i), (ii).

(iv) Recalling (Aq,B)
′ = Aq′,B , for f ∈ Ls(0, T ;Lq

σ(Ω)) and g ∈ Ls′(0, T ;Lq′

σ (Ω)),

we easily compute that ⟨Js,qf , g⟩T,Ω = ⟨f ,J ′
s′,q′g⟩T,Ω.

(v) Since A2,B generates an analytic semigroup the assertion follows from a general

result of de Simon [6], see Lemma 2.10 below and also [37, Lemma IV.1.6.2]. Let us first

consider the equation ut +A2,Bu = f , u(0) = 0.

Lemma 2.10 (de Simon). Let 1 < T ≤ ∞, 1 < s < ∞. Let f ∈ Ls(0, T ;L2
σ(Ω))

and u = Js,2f . Then A2,Bu ∈ Ls(0, T ;L2
σ(Ω)) and

∥ut, A2,Bu∥Ls(0,T ;L2(Ω)) ≤ C∥f∥Ls(0,T ;L2(Ω)) (2.28)

with a constant C = C(s) independent of T .

A thorough inspection of the arguments in [6] shows that the constant in (2.28)

principally depends on the constant appearing in the resolvent estimate for A2, which

is independent of the domain Ω, see [18, Proposition 2.6 (ii)]. Thus C in (2.28) is

independent of Ω. On the other hand, the dependence of the constant C(q, s, T,Ω),

q ̸= 2, in the maximal regularity estimates in Theorem 2.9 on Ω remains yet unclear.

Recall that in Theorem 2.9 T < ∞. If u0 = 0, the equation ut = f − A2u and

(2.28) lead to estimates of ut and u in Ls(0, T ;L2(Ω)) by f .
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The non-homogeneous case with initial velocity 0 ̸= u0 ∈ D(A2,B) is easily reduced

to the homogeneous case by considering v(t) = u(t)− u0.

Now the proof of Theorem 2.9 is complete. □

3. Maximal regularity of Ãq,B for bounded domains.

Let 1 < q, s < ∞ and 0 < T < ∞. Similarly as for a bounded domain and the

Stokes operator Aq,B , see Subsection 2.3, we define the operators

J̃s,qf(t) =

∫ t

0

e−(t−τ)Ãq,Bf(τ) dτ and J̃ ′
s,qg(t) =

∫ T

t

e−(τ−t)Ãq,Bg(τ) dτ

for f ∈ Ls(0, T ; L̃q
σ(Ω)) and g ∈ Ls(0, T ; L̃q

σ(Ω)), respectively. Since (L̃q
σ(Ω))

′ = L̃q′

σ (Ω)

as well as (Ãq,B)
′ = Ãq′,B , see Theorem 1.2 (iii), we get the duality relation

⟨J̃s,qf , g⟩T,Ω = ⟨f , J̃ ′
s′,q′g⟩T,Ω.

Recall that for a bounded domain the spaces Lq and L̃q coincide. According to Theo-

rem 2.9, we already know that the instationary system has a unique solution satisfying

the maximal regularity estimate with a constant C = C(q, s, T,Ω) > 0. Hence, in order

to apply the exhaustion method to a general unbounded domain, see Assumption 1.1, it

suffices to show the estimate in the Ls(0, T ; L̃q(Ω))-norm with a constant depending on

Ω only through the parameter τΩ = (α̃, β̃,K).

3.1. The case 2 ≤ s = q < ∞.

Let 2 ≤ s = q < ∞ so that L̃q(Ω) = Lq(Ω) ∩ L2(Ω), and let f ∈ Lq(0, T ; L̃q
σ(Ω)).

By Theorem 2.9 the function u = J̃q,qf solves the equation

ut + Ãq,Bu = ut −∆u+∇p = f , u(0) = 0, (3.1)

with ∇p = (I − P̃q)∆u. Our aim is to prove the estimate

∥ut, u, ∇u, ∇2u, ∇p∥Lq(0,T ;L̃q(Ω)) ≤ C∥f∥Lq(0,T ;L̃q(Ω)) (3.2)

with C = C(τΩ, T, q) > 0.

Consider a parametrization {hj} of ∂Ω, the covering of Ω with balls {Bj} and the

corresponding partition of unity {φj}, 1 ≤ j ≤ N , as described in Subsection 2.1. We

define

U ′
j := U−

α̃,β̃,hj
(xj) ∩Bj for xj ∈ ∂Ω, U ′

j := Bj for xj ∈ Ω, 1 ≤ j ≤ N.

Hence we may work in domains Uj ⊂ U ′
j , assume that each Uj has the form as the set

H in (2.4), (2.5), (2.6), and apply the results of Proposition 2.8 for H.

We use the localization procedure as in [18]. Let Mj = Mj(p)(t), t ∈ (0, T ), be the

constant such that p−Mj ∈ Lq(0, T ;Lq
0(Uj)). Multiplying the instationary equation by

φj , j = 1, . . . , N , and adding the term uφj to both sides of the momentum equation we

obtain the local system
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(uφj)t + uφj − divS(uφj) +∇(φj(p−Mj))

= fφj + (p−Mj)∇φj − 2∇u∇φj

−∆φju− (∇u)T∇φj −∇2φju+ uφj in Uj × (0, T )

div(uφj) = ∇φj · u in Uj × (0, T )

φju · n = 0, B(uφj) = βu(∇φj · n) on ∂Uj × (0, T )

φju(0) = 0 in Uj .

(3.3)

We assume that ∇φj · n is extended from ∂Uj to the whole of the C3-domain Uj , and

for the extension denoted by Φj ∈ C2(Uj) it holds ∥Φj∥C2 ≤ C(τΩ) uniformly in j =

1, . . . , N .

Now we apply the local maximal regularity estimate (2.22) to (3.3) and obtain (with

all norms taken over (0, T )× Uj)

∥(φju)t∥Lq(Lq) + ∥uφj∥Lq(W 2,q) + ∥∇(φj(p−Mj))∥Lq(Lq)

≤ C
(
∥fφj , (p−Mj)∇φj , ∇u∇φj , ∆φju, (∇u)T∇φj , ∇2φju, uφj∥Lq(Lq)

+ ∥∇φj · u, uφj∥Lq(W 1,q) + ∥∇φj · u, ∇φj · ut∥Lq(Ŵ−1,q) + ∥uΦj∥H1,1/2
q,q

)
.

The property (2.3) of φj yields the inequality

∥φjut, φju, φj∇u, φj∇2u, φj∇p∥Lq(Lq)

≤ C
(
∥f , p−Mj , u, ∇u∥Lq(Lq) + ∥∇φj · ut∥Lq(Ŵ−1,q) + ∥u∥

H
1,1/2
q,q

)
(3.4)

with C = C(τΩ, T, q) > 0. Note that ∥uΦj∥H1,1/2
q,q

≤ C(q, τΩ)∥u∥H1,1/2
q,q

since the operator

⟨Dt⟩1/2 commutes with the multiplication by Φj .

Hence it remains to estimate in (3.4) the last two terms and the pressure term. For

the last one we use Proposition 2.6 (i) and get with ε ∈ (0, 1)

∥u∥
H

1,1/2
q,q (Uj×(0,T ))

≤ C∥u∥Lq(0,T ;W 1,q(Uj)) + ε∥ut∥Lq(0,T ;Lq(Uj)). (3.5)

For the pressure term, thanks to ∇p = f +∆u− ut and (2.8), we have

∥p−Mj∥Lq(Uj) ≤ C(τΩ, q)

(
∥f∥Lq(Uj) + ∥∇u∥Lq(Uj)

+ sup

{ |⟨ut, ψ⟩Uj |
∥∇ψ∥Lq′ (Uj)

: 0 ̸= ψ ∈W 1,q′

0 (Uj)

})
.

To estimate |⟨ut, ψ⟩Uj | for ψ ∈W 1,q′

0 (Uj) we use the interpolation inequality

∥v∥Lr(Uj) ≤ θ

(
1

ϵ

)1/θ

∥v∥L2(Uj) + (1− θ)ϵ1/(1−θ)∥v∥Lq(Uj),

with r ∈ [2, q], θ ∈ [0, 1], 1/r = θ/2+(1−θ)/q. Let r ∈ [2, q) be such that the embedding

W 1,q′(Uj) ↪→ Lr′(Uj) holds. Then
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|⟨ut, ψ⟩Uj | ≤ ∥ut∥Lr(Uj)∥ψ∥Lr′ (Uj)

≤
(
C(τΩ, q, ε)∥ut∥L2(Uj) + ε∥ut∥Lq(Uj)

)
∥∇ψ∥Lq′ (Uj)

(3.6)

which implies

∥p−Mj∥Lq(0,T ;Lq(Uj)) ≤ C
(
∥f∥Lq(0,T ;Lq(Uj)) + ∥∇u∥Lq(0,T ;Lq(Uj))

+ ∥ut∥Lq(0,T ;L2(Uj))

)
+ ε∥ut∥Lq(0,T ;Lq(Uj)) (3.7)

with C = C(τΩ, T, q, ε) and any ε ∈ (0, 1). Moreover, the inequality (3.6), (2.3) and (2.7)

for v ∈ Ŵ 1,q′(Uj) imply that

|⟨∇φj · ut, v⟩Uj | ≤
(
C(τΩ, q, ε)∥ut∥L2(Uj) + ε∥ut∥Lq(Uj)

)
∥∇v∥Lq′ (Uj)

,

which yields for any ε ∈ (0, 1) and a constant C = C(τΩ, T, q, ε)

∥∇φj · ut∥Lq(0,T ;Ŵ−1,q(Uj))
≤ C∥ut∥Lq(0,T ;L2(Uj)) + ε∥ut∥Lq(0,T ;Lq(Uj)). (3.8)

From the estimates (3.4), (3.5), (3.7) and (3.8) we finally get that

∥φjut, φju, φj∇u, φj∇2u, φj∇p∥Lq(0,T ;Lq(Uj))

≤ C
(
∥f , u, ∇u∥Lq(0,T ;Lq(Uj)) + ∥ut∥Lq(0,T ;L2(Uj))

)
+ ε∥ut∥Lq(0,T ;Lq(Uj)), (3.9)

j = 1, . . . , N , with C = C(τΩ, T, q, ε) > 0.

Now, considering the qth power of (3.9), we perform the summation over j = 1, . . . , N

and employ the property that at most N0 = N0(α, β,K) of the neighborhoods U1, . . . , UN

intersect, see Subsection 2.1. In order to deal with the term ∥ut∥Lq(0,T ;L2(Uj)) we use

the reverse Hölder inequality
∑

j a
q/2
j ≤ (

∑
j aj)

q/2, 1 ≤ q/2, with aj = ∥ut(t, ·)∥2L2(Uj)
.

In the following we drop from time to time the designation of the time interval (0, T ) in

the notation of function spaces and norms. We obtain

∥ut, u, ∇u, ∇2u, ∇p∥qLq(0,T ;Lq(Ω)) ≤
∫ T

0

∫
Ω

((∑
j

φj |ut|
)q

+

(∑
j

φj |u|
)q

+

(∑
j

φj |∇u|
)q

+

(∑
j

φj |∇2u|
)q

+

(∑
j

φj |∇p|
)q)

dx dt

≤ N
q/q′

0

∑
j

∫ T

0

∫
Ω

(
|φjut|q + |φju|q + |φj∇u|q + |φj∇2u|q + |φj∇p|q

)
dx dt

= N
q/q′

0

∑
j

(
∥φjut, φju, φj∇u, φj∇2u, φj∇p∥qLq(Lq(Uj))

)
≤ N

q/q′

0

∑
j

(
C
(
∥f , u, ∇u∥qLq(Lq(Uj))

+ ∥ut∥qLq(L2(Uj))

)
+ εq∥ut∥qLq(Lq(Uj))

)
≤ N

q/q′

0

(
C
(
N0∥f , u, ∇u∥qLq(Lq(Ω)) +N

q/2
0 ∥ut∥qLq(L2(Ω))

)
+ εqN0∥ut∥qLq(Lq(Ω))

)
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implying that

∥ut,u, ∇u, ∇2u, ∇p∥Lq(0,T ;Lq(Ω))

≤ C
(
∥f , u, ∇u∥Lq(Lq(Ω)) + ∥ut∥Lq(L2(Ω))

)
+ ε∥ut∥Lq(Lq(Ω)) (3.10)

with C = C(τΩ, T, q, ε) > 0, ε ∈ (0, 1).

Choosing ε sufficiently small and using the estimates (2.9) and (2.10) we absorb the

terms ∥ut∥Lq(Lq(Ω)), ∥∇u∥Lq(Lq(Ω)) and finally ∥u∥Lq(Lq(Ω)) on the right-hand side of

(3.10) by the left-hand side. Then we get the inequality

∥ut, u, ∇u, ∇2u, ∇p∥Lq(0,T ;Lq(Ω)) ≤ C
(
∥f∥Lq(Lq(Ω)) + ∥ut, u, ∇2u∥Lq(L2(Ω))

)
.

Considering Theorem 1.2 (iii) and (2.27) for q = 2 (recall Theorem 2.9 (v)) the estimate

∥ut, u, ∇2u∥Lq(0,T ;L2(Ω)) ≤ C∥f∥Lq(L2(Ω))

with a constant C = C(q, T ) independent of Ω finally implies that

∥ut, u, ∇u, ∇2u, ∇p∥Lq(0,T ;Lq(Ω)) ≤ C
(
∥f∥Lq(Lq(Ω)) + ∥f∥Lq(L2(Ω))

)
with C = C(τΩ, T, q) > 0. Using the last estimate also for q = 2 we obtain the desired

L̃q-estimate (3.2) with a constant C = C(τΩ, T, q) > 0.

Moreover, from Theorem 1.2 (iii) we have

∥ut, u, Ãq,Bu∥Lq(0,T ;L̃q(Ω)) ≤ C∥f∥Lq(0,T ;L̃q(Ω)) (3.11)

with C = C(τΩ, T, q) > 0.

Obviously, also the backward equation −ut+Ãq,Bu = f , u(T ) = 0, admits a unique

solution satisfying (3.11) and (3.2) with C = C(τΩ, T, q) > 0.

3.2. The case 1 < s = q < 2.

Again we consider the Stokes system (3.1), but now for a right-hand side f ∈
Lq(0, T ; L̃q

σ(Ω)), 1 < q < 2. The aim is to prove the a priori estimate (3.2). According

to Theorem 2.9, there is a unique solution u(t) = Jq,qf(t) = J̃q,qf(t). Recall that Ω is

a bounded domain and hence L̃q(Ω) = Lq(Ω), P̃q = Pq and Ãq,B = Aq,B .

For the proof we use a duality argument. First, note that the space

C∞
0 (0, T ;C∞

0,σ) = {v ∈ C∞
0 (Ω× (0, T )) : div v(x, t) = 0 for all t ∈ (0, T )}

is dense (see [10]) in

Lq′(0, T ; L̃q′

σ (Ω)) = Lq′(0, T ;Lq′

σ (Ω)) ∩ Lq′(0, T ;L2
σ(Ω))

= (Lq(0, T ;Lq
σ(Ω)) + Lq(0, T ;L2

σ(Ω)))
′ = (Lq(0, T ; L̃q

σ(Ω)))
′.

Notice that also J̃q,q = (J̃ ′
q′,q′)

′ as well as (Ãq,B)
′ = Ãq′,B . Then for u = J̃q,qf with

f ∈ Lq(0, T ; L̃q
σ(Ω)) and v = J̃q′,q′g with g ∈ Lq′(0, T ; L̃q′

σ (Ω)) there holds the equality
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⟨f , Ãq′,Bv⟩T,Ω = ⟨ut + Ãq,Bu, Ãq′,Bv⟩T,Ω

= ⟨u, (−∂t + Ãq′,B)Ãq′,Bv⟩T,Ω

= ⟨Ãq,Bu, −vt + Ãq′,Bv⟩T,Ω = ⟨Ãq,Bu, g⟩T,Ω;

to justify the second step we mollify u and v in space and time separately and use an

approximation argument. Thus, with vg = J̃q′,q′g and the estimate (3.11) with s = q

replaced by s′ = q′ > 2 and u replaced by vg, we obtain that

∥Ãq,Bu∥Lq(0,T ;L̃q(Ω)) ≤ c sup

{
|⟨Ãq,Bu, g⟩T,Ω|
∥g∥Lq′ (L̃q′ (Ω))

: 0 ̸= g ∈ Lq′(0, T ; L̃q′

σ (Ω))

}
≤ c sup

{
|⟨Ãq,Bu,−∂tvg + Ãq′,Bvg⟩T,Ω|

∥g∥Lq′ (L̃q′ (Ω))

: 0 ̸= g ∈ Lq′(0, T ; L̃q′

σ (Ω))

}
≤ C sup

{
|⟨f , Ãq′,Bvg⟩T,Ω|

∥Ãq′,Bvg∥Lq′ (L̃q′ (Ω))

: 0 ̸= g ∈ Lq′(0, T ; L̃q′

σ (Ω))

}
≤ ∥f∥Lq(L̃q(Ω))

with a constant C = C(τΩ, T, q). Moreover, from Theorem 1.2 (iii) we know that

∥u∥W 2,q(Ω)+W 2,2(Ω) ≤ C(τΩ, q)
(
∥u∥Lq(Ω)+L2(Ω) + ∥Ãq,Bu∥Lq(Ω)+L2(Ω)

)
.

Therefore, using the relation ∇p = f − ut +∆u, from the preceding estimate and from

(3.11) we get

∥ut, u, ∇u, ∇2u, ∇p∥Lq(0,T ;L̃q(Ω)) ≤ C∥f∥Lq(0,T ;L̃q(Ω))

with C = C(τΩ, T, q) > 0.

Hence Theorem 1.3 is proven for Ω bounded, 1 < s = q <∞ and u(0) = 0.

4. The case of unbounded domains.

Let now Ω ⊂ Rn be an unbounded domain of uniform C3-type τΩ, and let {Ωj}j∈N
be a sequence of bounded subdomains of uniform C3-type τΩ as in Assumption 1.1.

Given 1 < s = q < ∞ and f ∈ Lq(0, T ; L̃q
σ(Ω)) we set f j := f |Ωj ∈ Lq(0, T ; L̃q(Ωj)). In

view of Section 3 we consider for each j ∈ N the solution (uj ,∇pj) ∈
(
Lq(0, T ; D̃q

B(Ωj))∩
W 1,q(0, T ; L̃q

σ(Ωj))
)
× Lq(0, T ; G̃q(Ωj)) in Ωj × (0, T ) of the instationary Stokes system

with right-hand side f j :

∂tuj −∆uj +∇pj = f j in Ωj × (0, T )

divuj = 0 in Ωj × (0, T )

uj · nj = 0, B(uj) = 0 on ∂Ωj × (0, T )

uj(0) = 0 in Ωj .

(4.1)
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From Section 3 we know that uj , pj satisfy the estimate

∥∂tuj∥Lq(0,T ;L̃q(Ωj))
+ ∥uj∥Lq(0,T ;W̃ 2,q(Ωj))

+ ∥∇pj∥Lq(0,T ;L̃q(Ωj))

≤ C∥f j∥Lq(0,T ;L̃q(Ωj))
≤ C∥f∥Lq(0,T ;L̃q(Ω)) (4.2)

with C = C(τΩ, T, q) > 0 independent of j ∈ N.
In the following, we use the notation g̃j for the extension of a function or a vector

field gj defined on Ωj × (0, T ) by zero to the whole of Ω× (0, T ), i.e.,

g̃j(x, t) =

{
gj(x, t) for (x, t) ∈ Ωj × (0, T ),

0 for (x, t) ∈ Ω\Ωj × (0, T ).

In particular, for f j = f |Ωj we get, as j → ∞,

f̃ j → f strongly in Lq(0, T ; L̃q(Ω)). (4.3)

4.1. The case 2 ≤ s = q < ∞.

Let 2 ≤ q < ∞ and let us consider the pressure first. Extending ∇pj by zero to

∇̃pj ∈ Lq(0, T ; L̃q(Ω)) we get that

∥∇̃pj∥Lq(0,T ;L̃q(Ω)) = ∥∇pj∥Lq(0,T ;L̃q(Ωj))
≤ C∥f∥Lq(0,T ;L̃q(Ω))

with the same constant as in (4.2). From the reflexivity of the Bochner spaces we obtain

(at least for a not relabelled subsequence) that ∇̃pj ⇀ Q weakly in Lq(0, T ; L̃q(Ω)) and

∥Q∥Lq(0,T ;L̃q(Ω)) ≤ lim inf
j→∞

∥∇̃pj∥Lq(0,T ;L̃q(Ω)) ≤ C∥f∥Lq(0,T ;L̃q(Ω)), (4.4)

again with a constant as in (4.2). To identify Q as a gradient field, let ϕ ∈
C∞

0 (0, T ;C∞
0,σ(Ω)). Without loss of generality we may assume that suppϕ(t) ⊂ Ωj for

all j ≥ j0, t ∈ (0, T ). Then, since ∇pj ∈ Lq(0, T ; G̃q(Ωj)) and ϕ ∈ C∞
0 (0, T ;C∞

0,σ(Ωj)),

we get

⟨Q,ϕ⟩T,Ω = lim
j→∞

⟨∇̃pj , ϕ⟩T,Ω = lim
j≥j0

⟨∇pj , ϕ⟩T,Ωj = 0,

and the de Rham argument yields the existence of a gradient ∇p such that

Q = ∇p ∈ Lq(0, T ; G̃q(Ω)). (4.5)

Let us now consider the velocity fields

uj ∈ Lq(0, T ; D̃q
B(Ωj)) ∩W 1,q(0, T ; L̃q

σ(Ωj))

with D̃q
B(Ωj) = L̃q

σ(Ωj) ∩ W̃ 2,q
B (Ωj). We extend each component of uj ,∇uj ,∇2uj ∈

Lq(0, T ; L̃q(Ωj)) by zero to the whole of Ω yielding extensions

ũj ∈W 1,q(0, T ; L̃q
σ(Ω)), ∇̃uj , ∇̃2uj ∈ Lq(0, T ; L̃q(Ω));



1314(288)

1314 R. Farwig and V. Rosteck

we note that the extensions of ∇uj ,∇2uj are L̃q(Ω)-functions in space and need not be

derivatives with respect to the spatial variable. Furthermore, since ∥∂tũj∥Lq(0,T ;L̃q(Ω)) =

∥∂tuj∥Lq(0,T ;L̃q(Ωj))
and

∥ũj∥Lq(0,T ;L̃q(Ω)) + ∥∇̃uj∥Lq(0,T ;L̃q(Ω)) + ∥∇̃2uj∥Lq(0,T ;L̃q(Ω)) = ∥uj∥Lq(0,T ;W̃ 2,q(Ωj))

(4.2) implies that

∥∂tũj , ũj , ∇̃uj , ∇̃2uj∥Lq(0,T ;L̃q(Ω)) ≤ C(τΩ, T, q)∥f∥Lq(0,T ;L̃q(Ω)). (4.6)

From the estimate (4.6) which is uniform in j ∈ N we get the weak convergences (at least

for not relabelled subsequences)

∂tũj ⇀ û, ũj ⇀ u, ∇̃uj ⇀ ∇u, ∇̃2uj ⇀ ∇2u in Lq(0, T ; L̃q(Ω)). (4.7)

Note that all convergences are meant componentwise and that the weak limits of the

extended gradients are easily seen to be spatial derivatives of u. Moreover, û = ut and

divu = 0. From (4.7), the lower semicontinuity of norms as well as from (4.6) it follows

that

∥ut∥Lq(0,T ;L̃q(Ω)) + ∥u∥Lq(0,T ;W̃ 2,q(Ω)) ≤ C(τΩ, T, q)∥f∥Lq(0,T ;L̃q(Ω)). (4.8)

In particular, u ∈ Lq(0, T ; W̃ 2,q(Ω)) and ut ∈ Lq(0, T ; L̃q
σ(Ω)).

Next we show that u satisfies the Robin boundary condition B(u) = 0 on ∂Ω. This

boundary condition is understood as follows: Let

ϕ ∈ C∞
0 (0, T ;C∞

0,n(Ω)) := {φ ∈ C∞
0 ((0, T )× Ω) : φ · n = 0 on ∂Ω× (0, T )}.

Then, since ϕ is tangential on ∂Ω, there holds the identity

0 = ⟨B(u), ϕ⟩T,∂Ω = ⟨αu, ϕ⟩T,∂Ω + β⟨S(u)n, ϕ⟩T,∂Ω

= ⟨αu, ϕ⟩T,∂Ω + β⟨S(u),∇ϕ⟩T,Ω + β⟨divS(u), ϕ⟩T,Ω. (4.9)

Assume that suppϕ(t)∩Ω ⊂ Ωj and dist(suppϕ(t), ∂Ωj\Γj) > 0 for all j ≥ j0. Thus we

also have ϕ ∈ C∞
0 (0, T ;C∞

0,n(Ωj)) with ϕ · nj |Γj = ϕ · n|Γj = 0 and ϕ|∂Ωj\Γj
= 0. Since

all extensions ′′ ˜ ′′ are meant componentwise we obtain that

⟨S(u)n, ϕ⟩T,∂Ω = ⟨S(u),∇ϕ⟩T,Ω + ⟨∆u, ϕ⟩T,Ω

= lim
j→∞

(⟨
S̃(uj),∇ϕ

⟩
T,Ω

+
⟨
∆̃uj , ϕ

⟩
T,Ω

)
= lim

j≥j0

(
⟨S(uj),∇ϕ⟩T,Ωj + ⟨∆uj , ϕ⟩T,Ωj

)
= lim

j≥j0
⟨S(uj)nj , ϕ⟩T,∂Ωj .

By analogy, trace theorems and compact embeddings for Bochner spaces imply that

⟨u, ϕ⟩T,∂Ω = limj≥j0 ⟨uj , ϕ⟩T,∂Ωj . Since B(uj) = 0 on ∂Ωj we conclude that
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⟨B(u), ϕ⟩T,∂Ω = 0 for all ϕ ∈ C∞
0 (0, T ;C∞

0,n(Ω)),

i.e., B(u) = 0 on ∂Ω×(0, T ). Thus u ∈ Lq(0, T ; (W 2,q
B (Ω)∩Lq

σ(Ω))∩(W
2,2
B (Ω)∩L2

σ(Ω))) =

Lq(0, T ; D̃q
B(Ω)) and ut ∈ Lq(0, T ; L̃q

σ(Ω)).

From the weak convergence properties of ∂tũj , ∆̃uj , ∇̃pj and f̃ j , see e.g. (4.7) and

(4.3), it follows immediately that ut − ∆u + ∇p = f in Ω × (0, T ) in the sense of

distributions. Moreover, by (4.7), for all φ ∈ C1
0 ([0, T ); L̃

q′(Ω))

−⟨ũj(0), φ(0)⟩Ω =

∫ T

0

⟨∂tũj , φ⟩Ω dt+

∫ T

0

⟨ũj , φt⟩Ω dt

→
∫ T

0

⟨ut, φ⟩Ω dt+

∫ T

0

⟨u, φt⟩Ω dt = −⟨u(0), φ(0)⟩Ω.

Thus we obtain that 0 = ũj(0)⇀ u(0) = 0 weakly in L̃q(Ω). Furthermore, combining

(4.8), (4.4) and (4.5) we get the inequality

∥ut∥Lq(0,T ;L̃q(Ω)) + ∥u∥Lq(0,T ;W̃ 2,q(Ω)) + ∥∇p∥Lq(0,T ;L̃q(Ω)) ≤ C∥f∥Lq(0,T ;L̃q(Ω)) (4.10)

with C = C(τΩ, T, q) > 0.

4.2. The case 1 < s = q < 2.

Now let 1 < q < 2. We again start with the pressure gradient. In this case we have

∇pj ∈ Lq(0, T ;Gq(Ωj) +G2(Ωj)) and hence we can choose ∇p1j ∈ Lq(0, T ;Gq(Ωj)) and

∇p2j ∈ Lq(0, T ;G2(Ωj)) such that ∇pj = ∇p1j +∇p2j and—by a reflexivity argument—

∥∇pj∥Lq(0,T ;L̃q(Ωj))
= ∥∇p1j∥Lq(0,T ;Lq(Ωj)) + ∥∇p2j∥Lq(0,T ;L2(Ωj)).

Extending ∇p1j and ∇p2j by zero to functions ∇̃p1j and ∇̃p2j to Ω× (0, T ), from (4.2) we

have with the same constant C = C(τΩ, T, q)

∥∇̃p1j∥Lq(0,T ;Lq(Ω)) = ∥∇p1j∥Lq(0,T ;Lq(Ωj)) ≤ C∥f∥Lq(0,T ;L̃q(Ω)),

∥∇̃p2j∥Lq(0,T ;L2(Ω)) = ∥∇p2j∥Lq(0,T ;L2(Ωj)) ≤ C∥f∥Lq(0,T ;L̃q(Ω)).

This implies that in the weak sense (at least for subsequences)

∇̃p1j ⇀ Q1 in Lq(0, T ;Lq(Ω)), ∇̃p2j ⇀ Q2 in Lq(0, T ;L2(Ω)) (4.11)

and

∥Q1∥Lq(0,T ;Lq(Ω)) + ∥Q2∥Lq(0,T ;L2(Ω)) ≤ C∥f∥Lq(0,T ;L̃q(Ω))

again with a constant as in (4.2).

Let ϕ ∈ C∞
0 (0, T ;C∞

0,σ(Ω)) and assume that suppϕ(t) ⊂ Ωj for all j ≥ j0, t ∈ (0, T ).

Then we get that

⟨Q1, ϕ⟩T,Ω = lim
j≥j0

⟨∇p1j , ϕ⟩T,Ωj = 0, ⟨Q2, ϕ⟩T,Ω = lim
j≥j0

⟨∇p2j , ϕ⟩T,Ωj = 0,
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and the de Rham argument yields the existence of gradients ∇p1, ∇p2 such that Q1 =

∇p1 ∈ Lq(0, T ;Gq(Ω)) and Q2 = ∇p2 ∈ Lq(0, T ;G2(Ω)). Defining ∇p = ∇p1 +∇p2 we

obtain ∇p ∈ Lq(0, T ; G̃q(Ω)) satisfying

∥∇p∥Lq(0,T ;L̃q(Ω)) ≤ C∥f∥Lq(0,T ;L̃q(Ω)) (4.12)

with a constant C = C(τΩ, T, q) > 0.

Let us now concentrate on the velocity fields

uj ∈ Lq(0, T ; D̃q
B(Ωj)), ∂tuj ∈ Lq(0, T ; L̃q

σ(Ωj)).

Recall that D̃q
B(Ωj) = L̃q

σ(Ωj) ∩ W̃ 2,q
B (Ωj). We choose a decomposition uj = u1

j + u2
j

with u1
j ∈ Lq(0, T ;Dq

B(Ωj)), u
2
j ∈ Lq(0, T ;D2

B(Ωj)) satisfying

∥uj∥Lq(0,T ;W̃ 2,q(Ωj))
= ∥u1

j∥Lq(0,T ;W 2,q(Ωj)) + ∥u2
j∥Lq(0,T ;W 2,2(Ωj)). (4.13)

In the similar way as before we extend u1
j , ∇u1

j , ∇2u1
j ∈ Lq(0, T ;Lq(Ωj)) and

u2
j , ∇u2

j , ∇2u2
j ∈ Lq(0, T ;L2(Ωj)) by zero to Ω and obtain extensions

ũ1
j , ∇̃u1

j , ∇̃2u1
j ∈ Lq(0, T ;Lq(Ω)), ũ2

j , ∇̃u2
j , ∇̃2u2

j ∈ Lq(0, T ;L2(Ω)).

By (4.2) we have (omitting the designation of the interval 0, T )

∥∂t(ũ1
j + ũ2

j )∥Lq(L̃q(Ω)) = sup

{ |⟨∂t(ũ1
j + ũ2

j ), φ⟩T,Ω|
∥φ∥Lq′ (L̃q′ (Ω))

: 0 ̸= φ ∈ Lq′(L̃q′(Ω))

}
≤ sup

{ |⟨∂t(u1
j + u2

j ), φ⟩T,Ωj |
∥φ∥Lq′ (L̃q′ (Ωj))

: 0 ̸= φ ∈ Lq′(L̃q′(Ωj))

}
= ∥∂tuj∥Lq(L̃q(Ωj))

≤ C∥f∥Lq(L̃q(Ω))

as well as due to (4.13)

∥ũ1
j , ∇̃u1

j , ∇̃2u1
j∥Lq(Lq(Ω)) + ∥ũ2

j , ∇̃u2
j , ∇̃2u2

j∥Lq(L2(Ω))

= ∥uj∥Lq(W̃ 2,q(Ωj))
≤ C(τΩ, T, q)∥f∥Lq(L̃q(Ω)).

From these uniform estimate we obtain the weak convergences

ũ1
j ⇀ u1, ∇̃u1

j ⇀ ∇u1, ∇̃2u1
j ⇀ ∇2u1 in Lq(0, T ;Lq(Ω)),

ũ2
j ⇀ u2, ∇̃u2

j ⇀ ∇u2, ∇̃2u2
j ⇀ ∇2u2 in Lq(0, T ;L2(Ω)).

(4.14)

Defining u := u1 + u2 we see that

ũj ⇀ u, ∂tũj ⇀ û = ut weakly in Lq(0, T ; L̃q
σ(Ω)). (4.15)
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Hence we already have u ∈ Lq(0, T ;Lq
σ(Ω)∩W 2,q(Ω))+Lq(0, T ;L2

σ(Ω)∩W 2,2(Ω)), ut ∈
Lq(0, T ; L̃q

σ(Ω)). Moreover, from the previous estimates, the lower weak semicontinuity

of norms and from (4.12) we get the a priori estimate (4.10).

In the next step we verify the Robin boundary condition for u1 and u2 and

hence for u. Let ϕ ∈ C∞
0 (0, T ;C∞

0,n(Ω)) and assume that suppϕ(t) ⊂ Ωj ,

dist(suppϕ(t), ∂Ωj\Γj) > 0 for all j ≥ j0. Thus ϕ ∈ C∞
0 (0, T ;C∞

0,n(Ωj)) with ϕ ·nj |Γj =

ϕ · n|Γj = 0 and ϕ|∂Ωj\Γj
= 0. From (4.14), noting that u1

j ∈ Lq(0, T ;W 2,q
B (Ωj)) and

u2
j ∈ Lq(0, T ;W 2,2

B (Ωj)), we get as in Subsection 4.2 that

⟨S(ui)n, ϕ⟩T,∂Ω = lim
j≥j0

⟨S(ui
j)nj , ϕ⟩T,∂Ωj for i = 1, 2,

and hence that ⟨S(u)n, ϕ⟩T,∂Ω = ⟨S(u1)n, ϕ⟩T,∂Ω + ⟨S(u2)n, ϕ⟩T,∂Ω. Since due to com-

pact embeddings and trace theorems ⟨ui, ϕ⟩T,∂Ω = limj≥j0⟨ui
j , ϕ⟩T,∂Ωj , i = 1, 2, and

B(uj) = 0 on ∂Ωj we conclude that B(u) = 0 on ∂Ω.

Altogether, for 1 < q < 2 we proved that u = u1 + u2 ∈ Lq(0, T ; D̃q
B(Ω)).

Again it is immediate that u, ∇p satisfy the Stokes equation ut − ∆u + ∇p = f ,

divu = 0 in the sense of distributions as well as the desired a priori estimate (4.10) with

a constant C = C(τΩ, T, q) > 0. As in the case q ≥ 2 we also have 0 = ũj(0)⇀ u(0) = 0

weakly in L̃q(Ω).

We note that similar results for the backward Stokes system −ut+Ãqu = f , u(T ) =

0, can be deduced in an analogous way.

4.3. End of the proof of Theorem 1.3.

The case s ̸= q follows from an abstract extrapolation argument, see [3, page 191]

and [5], where we have to consider the shifted operator δ + Ãq,B , δ > 0. This argument

shows that if (4.10) holds for some s ∈ (1,∞), i.e. here with s = q, then it holds for all

s ∈ (1,∞).

To show uniqueness let us assume that u ∈ Ls(0, T ;D(Ãq,B)) satisfies ut +

Ãq,Bu = 0, u(0) = 0. Then for given g ∈ Ls′(0, T ; L̃q′(Ω)) there is a solution

v ∈ Ls′(0, T ;D(Ãq′,B)) of −vt + Ãq′,Bv = P̃q′g, v(T ) = 0. So we have

⟨u, g⟩T,Ω = ⟨u, P̃q′g⟩T,Ω = ⟨u,−vt + Ãq′,Bv⟩T,Ω = ⟨ut + Ãq,Bu,v⟩T,Ω = 0

for all g ∈ Ls′(0, T ; L̃q′(Ω)) and thus u = 0.

Finally, considering the inhomogeneous equation ut + Ãqu = f , u(0) = u0 ∈
D(Ãq,B) we solve the equation vt + Ãq,Bv = F := f − Ãq,Bu0, v(0) = 0. Then

u(t) = v(t) + u0 is the desired solution satisfying the maximal regularity estimate with

right-hand side C(∥f∥Ls(0,T ;L̃q(Ω)) + ∥u0∥D(Ãq,B)), where as before C = C(τΩ, T, q) > 0.

Now the proof of Theorem 1.3 is complete. □
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