
1223(197)

c⃝2019 The Mathematical Society of Japan
J. Math. Soc. Japan
Vol. 71, No. 4 (2019) pp. 1223–1241
doi: 10.2969/jmsj/80858085

Generalizations of the Conway–Gordon theorems and

intrinsic knotting on complete graphs

By Hiroko Morishita and Ryo Nikkuni

(Received July 8, 2018)

Abstract. In 1983, Conway and Gordon proved that for every spatial
complete graph on six vertices, the sum of the linking numbers over all of
the constituent two-component links is odd, and that for every spatial com-
plete graph on seven vertices, the sum of the Arf invariants over all of the

Hamiltonian knots is odd. In 2009, the second author gave integral lifts of the
Conway–Gordon theorems in terms of the square of the linking number and
the second coefficient of the Conway polynomial. In this paper, we general-
ize the integral Conway–Gordon theorems to complete graphs with arbitrary

number of vertices greater than or equal to six. As an application, we show
that for every rectilinear spatial complete graph whose number of vertices is
greater than or equal to six, the sum of the second coefficients of the Conway

polynomials over all of the Hamiltonian knots is determined explicitly in terms
of the number of triangle-triangle Hopf links.

1. Introduction.

Throughout this paper we work in the piecewise linear category. Let G be a finite

simple graph. An embedding f of G into the 3-dimensional Euclidean space R3 is called

a spatial embedding of G, and the image f(G) is called a spatial graph of G. Two spatial

embeddings f and g of G are said to be equivalent if there exists a self homeomorphism Φ

on R3 such that Φ (f(G)) = g(G). We call a subgraph γ of G homeomorphic to the circle

a cycle of G, and a cycle of G containing exactly k edges a k-cycle of G. In particular,

a k-cycle is also called a Hamiltonian cycle if k equals the number of vertices of G. We

denote the set of all k-cycles of G by Γk(G). Moreover, we denote the set of all pairs of

two disjoint cycles of G consisting of a k-cycle and an l-cycle by Γk,l(G). For a cycle γ

(resp. a pair of disjoint cycles λ) and a spatial embedding f of G, f(γ) (resp. f(λ)) is none

other than a knot (resp. a 2-component link) in f(G). In particular for a Hamiltonian

cycle γ of G, we also call f(γ) a Hamiltonian knot in f(G).

Let Kn be the complete graph on n vertices, that is the graph consisting of n vertices

such that each pair of its distinct vertices is connected by exactly one edge. Then the

following fact is well-known as the Conway–Gordon theorem.

Theorem 1.1 (Conway–Gordon [8]).

(1) For any spatial embedding f of K6, we have
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λ∈Γ3,3(K6)

lk (f(λ)) ≡ 1 (mod 2),

where lk denotes the linking number in R3.

(2) For any spatial embedding f of K7, we have∑
γ∈Γ7(K7)

a2 (f(γ)) ≡ 1 (mod 2),

where a2 denotes the second coefficient of the Conway polynomial.

The second coefficient of the Conway polynomial of a knot is also congruent with

the Arf invariant of the knot modulo two [21, Corollary 10.8]. Theorem 1.1 implies

that K6 is intrinsically linked, that is, every spatial graph of K6 contains a nonsplittable

2-component link, and K7 is intrinsically knotted, that is, every spatial graph of K7

contains a nontrivial knot. The Conway–Gordon theorem made a beginning of the study

of intrinsic linking and knotting of graphs and has motivated a lot of studies of intrinsic

properties of graphs (see for example [11, Sections 2–6]). On the other hand, as far as

the authors know, there have been little results about a generalization of the Conway–

Gordon type congruences for complete graphs on eight or more vertices. Our purposes

in this paper are to generalize the Conway–Gordon theorems for complete graphs with

arbitrary number of vertices greater than or equal to six and to investigate the behavior

of the nontrivial Hamiltonian knots in a spatial complete graph. First of all, we recall

an integral Conway–Gordon theorem for K6 which was proven by the second author as

follows.

Theorem 1.2 (Nikkuni [24]). For any spatial embedding f of K6, we have

2
∑

γ∈Γ6(K6)

a2 (f(γ))− 2
∑

γ∈Γ5(K6)

a2 (f(γ)) =
∑

λ∈Γ3,3(K6)

lk (f(λ))
2 − 1. (1.1)

Note that Theorem 1.1 (1) can be recovered by taking the modulo two reduction of

(1.1), namely Theorem 1.2 is an integral lift of Theorem 1.1 (1). In [24], an integral lift

of Theorem 1.1 (2) was also given (see Theorem 2.2 (1) of the present paper). In this

paper, we generalize Theorem 1.2 for complete graphs with arbitrary number of vertices

greater than or equal to six as follows.

Theorem 1.3. Let n ≥ 6 be an integer. For any spatial embedding f of Kn, we

have ∑
γ∈Γn(Kn)

a2 (f(γ))− (n− 5)!
∑

γ∈Γ5(Kn)

a2 (f(γ))

=
(n− 5)!

2

( ∑
λ∈Γ3,3(Kn)

lk (f(λ))
2 −

(
n− 1

5

))
. (1.2)

By Theorem 1.3, we also obtain formulae of two types. First we have the following
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inequality, where the case of n = 7 has already been observed in [24, Lemma 4.2].

Corollary 1.4. Let n ≥ 6 be an integer. For any spatial embedding f of Kn, we

have ∑
γ∈Γn(Kn)

a2 (f(γ))− (n− 5)!
∑

γ∈Γ5(Kn)

a2 (f(γ)) ≥
(n− 5)(n− 6)(n− 1)!

2 · 6!
.

The lower bound of Corollary 1.4 is sharp, see Remark 2.5. Next we also have the

following congruence, that is a generalization of Theorem 1.1 (2).

Corollary 1.5. Let n ≥ 7 be an integer. For any spatial embedding f of Kn, we

have the following congruence modulo (n− 5)! :

∑
γ∈Γn(Kn)

a2 (f(γ)) ≡


− (n− 5)!

2

(
n− 1

5

)
(n ≡ 0 (mod 8))

0 (n ̸≡ 0, 7 (mod 8))
(n− 5)!

2

(
n

6

)
(n ≡ 7 (mod 8)).

Corollary 1.5 contains the preceding results concerning Conway–Gordon type con-

gruences on the sum of a2, see Remark 2.6.

Theorem 1.3 (and Corollary 1.4) is also useful for investigating the behavior of

the nontrivial Hamiltonian knots in rectilinear spatial complete graphs. Here, a spatial

embedding fr of a graph G is said to be rectilinear if for any edge e of G, fr(e) is a

straight line segment in R3. A rectilinear spatial graph appears in polymer chemistry as

a mathematical model for chemical compounds (see [3, Section 7], for example), and the

range of rectilinear spatial graph types is much narrower than the general spatial graphs.

So we are interested in the behavior of the nontrivial Hamiltonian knots in a rectilinear

spatial complete graph. Note that every knot (resp. link) contained in a rectilinear spatial

graph of Kn is a “polygonal” knot (resp. link) with less than or equal to n sticks. It

is well-known that every polygonal knot with less than or equal to five sticks is trivial

(Proposition 3.1 (1)). Thus for rectilinear spatial complete graphs, by Theorem 1.3 we

have the following immediately.

Theorem 1.6. Let n ≥ 6 be an integer. For any rectilinear spatial embedding fr
of Kn, we have∑

γ∈Γn(Kn)

a2 (fr(γ)) =
(n− 5)!

2

( ∑
λ∈Γ3,3(Kn)

lk (fr(λ))
2 −

(
n− 1

5

))
.

Also note that a 2-component link with exactly six sticks is either a trivial link or

a Hopf link (Proposition 3.1 (2)). Thus for any rectilinear spatial embedding fr of Kn,∑
λ∈Γ3,3(Kn)

lk (fr(λ))
2
is equal to the number of “triangle-triangle” Hopf links in fr(Kn).

Then, by using Corollary 1.4 and Theorem 1.6, we can obtain the following upper and

lower bounds of
∑

γ∈Γn(Kn)
a2 (fr(γ)).
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Corollary 1.7. Let n ≥ 6 be an integer. For any rectilinear spatial embedding

fr of Kn, we have

(n− 5)(n− 6)(n− 1)!

2 · 6!
≤

∑
γ∈Γn(Kn)

a2 (fr(γ)) ≤
3(n− 2)(n− 5)(n− 1)!

2 · 6!
.

The lower bound in Corollary 1.7 is also sharp, see Remark 2.7. However, the authors

expect that the upper bound is not sharp if n ≥ 7, see Example 3.3.

For every spatial embedding f of Kn (which does not need to be rectilinear), Hirano

showed that there exist at least three nontrivial Hamiltonian knots with an odd value

of a2 in f (K8) [16], and Foisy showed that there exist at least (n − 1)(n − 2) · · · 9 · 8
nontrivial Hamiltonian knots with an odd value of a2 in f (Kn) if n ≥ 9 [5]. On the other

hand, Corollary 1.7 makes us possible to evaluate the number of nontrivial Hamiltonian

knots with a positive value of a2 in a rectilinear spatial graph of Kn as follows.

Corollary 1.8. Let n ≥ 7 be an integer. The minimum number of nontrivial

Hamiltonian knots with a positive value of a2 in every rectilinear spatial graph of Kn is

at least

rn =

⌈
(n− 5)(n− 6)(n− 1)!/(2 · 6!)

⌊(n− 3)2(n− 4)2/32⌋

⌉
,

where ⌈·⌉ and ⌊·⌋ denote the ceiling function and the floor function, respectively.

We see that rn is greater than Foisy’s lower bound of the minimum number of

nontrivial Hamiltonian knots with an odd value of a2 if n = 9, 10, 11, see Remark 2.8.

The paper is organized as follows. We shall devote Section 2 to proofs of Theorem 1.3

and Corollaries 1.4, 1.5, 1.7 and 1.8. In Section 3, we give examples and present some

open problems.

2. Proofs of Theorem 1.3 and its corollaries.

We show some lemmas which are needed to prove Theorem 1.3.

Lemma 2.1. (1) Let n ≥ 6 be an integer. For any spatial embedding f of Kn,

we have

2
∑

γ∈Γ6(Kn)

a2 (f(γ))− 2(n− 5)
∑

γ∈Γ5(Kn)

a2 (f(γ)) =
∑

λ∈Γ3,3(Kn)

lk (f(λ))
2 −

(
n

6

)
.

(2) Let n ≥ 7 be an integer. For any spatial embedding f of Kn, we have∑
λ∈Γ3,4(Kn)

lk (f(λ))
2
= 2(n− 6)

∑
λ∈Γ3,3(Kn)

lk (f(λ))
2
.

Proof of Lemma 2.1 (1). Note that each 5-cycle of Kn is shared by exactly

n − 5 subgraphs isomorphic to K6 if n ≥ 6. Then by applying Theorem 1.2 to the
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embedding f restricted to each of the subgraphs of Kn isomorphic to K6 and taking the

sum of both sides of (1.1) over all of them, we have the result. □

In order to prove Lemma 2.1 (2), we recall integral Conway–Gordon type theorems

for spatial embeddings of K7 and K3,3,1 which were proven by the second author [24] and

O’Donnol [25], respectively. Here, the complete k-partite graph Kn1,n2,...,nk
is the graph

whose vertex set can be decomposed into k mutually disjoint nonempty sets V1, V2, . . . , Vk

where the number of elements in Vi equals ni such that no two vertices in Vi are connected

by an edge and every pair of vertices in distinct sets Vi and Vj is connected by exactly

one edge. See Figure 2.1 which illustrates K3,3 and K3,3,1. In particular for K3,3,1, let

us denote the subgraph of K3,3,1 which is isomorphic to K3,3 and does not contain the

vertex u by H.

Theorem 2.2. (1) (Nikkuni [24]) For any spatial embedding f of K7, we have

7
∑

γ∈Γ7(K7)

a2 (f(γ))− 6
∑

γ∈Γ6(K7)

a2 (f(γ))− 2
∑

γ∈Γ5(K7)

a2 (f(γ))

= 2
∑

λ∈Γ3,4(K7)

lk (f(λ))
2 − 21.

(2) (O’Donnol [25]) For any spatial embedding f of K3,3,1, we have

2
∑

γ∈Γ7(K3,3,1)

a2 (f(γ))− 4
∑

γ∈Γ6(H)

a2 (f(γ))− 2
∑

γ∈Γ5(K3,3,1)

a2 (f(γ))

=
∑

λ∈Γ3,4(K3,3,1)

lk (f(λ))
2 − 1.

   K      3,3,1K3,3

u

1

3

6

2

5

4

1

3

6

2

5

4

Figure 2.1. K3,3 and K3,3,1.

Then by applying Theorem 2.2 (2) to each of the subgraphs of K7 isomorphic to

K3,3,1 and combining with Theorem 2.2 (1), we also have the following equation for every

spatial embedding of K7.

Theorem 2.3. For any spatial embedding f of K7, we have
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λ∈Γ3,4(K7)

lk (f(λ))
2
= 2

∑
λ∈Γ3,3(K7)

lk (f(λ))
2
. (2.1)

Proof of Theorem 2.3. For vertices 1, 2, . . . , 6 and u of K3,3,1, we call the ver-

tices 1, 3, 5 the black vertices, the vertices 2, 4, 6 the white vertices and the vertex u the

square vertex. Note that a k-cycle of K3,3,1 contains the square vertex if k is odd. There

are exactly seventy subgraphs Gi (i = 1, 2, . . . , 70) of K7 isomorphic to K3,3,1, because

there are seven ways to choose the square vertex and
(
6
3

)
/2 ways to choose the remaining

black and white vertices. Then for a spatial embedding f of K7, by applying Theorem 2.2

(2) to the embedding f restricted to Gi, we have

2
∑

γ∈Γ7(Gi)

a2 (f(γ))− 4
∑

γ∈Γ6(Hi)

a2 (f(γ))− 2
∑

γ∈Γ5(Gi)

a2 (f(γ))

=
∑

λ∈Γ3,4(Gi)

lk (f(λ))
2 − 1, (2.2)

where Hi is the subgraph of Gi isomorphic to K3,3 not containing the square vertex

(i = 1, 2, . . . , 70). Let us take the sum of both sides of (2.2) for all i. Since each 7-cycle γ

of K7 is shared by exactly seven Gi’s (there are seven ways to choose the square vertex

from the vertices of γ and then the assignment of the black and white vertices is uniquely

determined), we have

70∑
i=1

∑
γ∈Γ7(Gi)

a2 (f(γ)) = 7
∑

γ∈Γ7(K7)

a2 (f(γ)) . (2.3)

Since for each 6-cycle γ of K7 there exists the unique Gi such that Hi contains γ (the

assignment of the black and white vertices is uniquely determined), we have

70∑
i=1

∑
γ∈Γ6(Hi)

a2 (f(γ)) =
∑

γ∈Γ6(K7)

a2 (f(γ)) . (2.4)

Since each 5-cycle γ of K7 is shared by exactly ten Gi’s (there are five ways to choose

the square vertex from the vertices of γ and two ways to choose the remaining black and

white vertices), we have

70∑
i=1

∑
γ∈Γ5(Gi)

a2 (f(γ)) = 10
∑

γ∈Γ5(K7)

a2 (f(γ)) . (2.5)

Since each pair of two disjoint cycles λ in Γ3,4 (K7) is shared by exactly six Gi’s (there

are three ways to choose the square vertex from the 3-cycle in λ and two ways to choose

the remaining black and white vertices), we have

70∑
i=1

∑
λ∈Γ3,4(Gi)

lk (f(λ))
2
= 6

∑
λ∈Γ3,4(K7)

lk (f(λ))
2
. (2.6)
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Thus by combining (2.3), (2.4), (2.5) and (2.6) with (2.2), we have

7
∑

γ∈Γ7(K7)

a2 (f(γ))− 2
∑

γ∈Γ6(K7)

a2 (f(γ))− 10
∑

γ∈Γ5(K7)

a2 (f(γ))

= 3
∑

λ∈Γ3,4(K7)

lk (f(λ))
2 − 35. (2.7)

Then by (2.7) and Theorem 2.2 (1), we have

4
∑

γ∈Γ6(K7)

a2 (f(γ))− 8
∑

γ∈Γ5(K7)

a2 (f(γ)) =
∑

λ∈Γ3,4(K7)

lk (f(λ))
2 − 14. (2.8)

On the other hand, by Lemma 2.1 (1) we have

2
∑

γ∈Γ6(K7)

a2 (f(γ))− 4
∑

γ∈Γ5(K7)

a2 (f(γ)) =
∑

λ∈Γ3,3(K7)

lk (f(λ))
2 − 7. (2.9)

By (2.8) and (2.9), we have the desired conclusion. □

Proof of Lemma 2.1 (2). Note that each pair of two disjoint 3-cycles of Kn

is shared by exactly n − 6 subgraphs isomorphic to K7 if n ≥ 7. Then by applying

Theorem 2.3 to the embedding f restricted to each of the subgraphs of Kn isomorphic

to K7 and taking the sum of both sides of (2.1) over all of them, we have the result. □

Now we show a lemma which plays a major role in the proof of Theorem 1.3. The

proof is in the same spirit as that of Theorem 2.2 (1) in [24].

Lemma 2.4. Let n ≥ 7 be an integer. Assume that there exist three constants b, c

and d such that∑
γ∈Γn−1(Kn−1)

a2 (g(γ)) + b
∑

γ∈Γ5(Kn−1)

a2 (g(γ)) = c
∑

λ∈Γ3,3(Kn−1)

lk (g(λ))
2
+ d

for any spatial embedding g of Kn−1. Then we have∑
γ∈Γn(Kn)

a2 (f(γ)) + b(n− 5)
∑

γ∈Γ5(Kn)

a2 (f(γ))

=
c(n− 6)(n+ 1)− 3b

n

∑
λ∈Γ3,3(Kn)

lk (f(λ))
2
+ d(n− 1) +

b

2

(
n− 1

5

)

for any spatial embedding f of Kn.

Proof. In the following, we denote the edge ofKn connecting two distinct vertices

i and j by ij, and denote a path of length 2 of Kn consisting of two edges ij and jk by

ijk. We denote the subgraph of Kn obtained from Kn by deleting the vertex m and all of

the edges incident to m by K
(m)
n−1 (m = 1, 2, . . . , n). Actually K

(m)
n−1 is isomorphic to Kn−1

for any m. For 1 ≤ i < j ≤ n and i, j ̸= m, let F
(m)
ij be the subgraph of Kn obtained
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from Kn by deleting the edges ij and mk for all k with 1 ≤ k ≤ n, k ̸= i, j. Note that

F
(m)
ij is homeomorphic to Kn−1, namely F

(m)
ij is obtained from K

(m)
n−1 by subdividing the

edge ij by the vertex m, see Figure 2.2.

m

i

j

Figure 2.2. F
(m)
ij (n = 7).

Let f be a spatial embedding of Kn. Then for the embedding f restricted to F
(m)
ij ,

by the assumption we have∑
γ∈Γn(F

(m)
ij )

a2 (f(γ)) +
∑

γ∈Γn−1(K
(m)
n−1)

ij ̸⊂γ

a2 (f(γ))

+ b

( ∑
γ∈Γ6(F

(m)
ij )

imj⊂γ

a2 (f(γ)) +
∑

γ∈Γ5(K
(m)
n−1)

ij ̸⊂γ

a2 (f(γ))

)

= c

( ∑
λ=γ∪γ′∈Γ3,4(F

(m)
ij )

γ∈Γ4(F
(m)
ij ), γ′∈Γ3(F

(m)
ij )

imj⊂γ

lk (f(λ))
2
+

∑
λ∈Γ3,3(K

(m)
n−1)

ij ̸⊂λ

lk (f(λ))
2

)
+ d. (2.10)

Let us take the sum of both sides of (2.10) over 1 ≤ i < j ≤ n and i, j ̸= m. For an

n-cycle γ of Kn, let i and j be the two vertices of Kn which are adjacent to m in γ

(1 ≤ i < j ≤ n and i, j ̸= m). Then γ is an n-cycle of F
(m)
ij . This implies that∑

1≤i<j≤n
i,j ̸=m

∑
γ∈Γn(F

(m)
ij )

a2 (f(γ)) =
∑

γ∈Γn(Kn)

a2 (f(γ)) . (2.11)

For an (n − 1)-cycle γ of K
(m)
n−1, let ij be an edge of K

(m)
n−1 which is not contained in γ.

Note that there are
(
n−1
2

)
− (n − 1) = (n2 − 5n + 4)/2 ways to choose such a pair of i

and j. This implies that∑
1≤i<j≤n
i,j ̸=m

∑
γ∈Γn−1(K

(m)
n−1)

ij ̸⊂γ

a2 (f(γ)) =
n2 − 5n+ 4

2

∑
γ∈Γn−1(K

(m)
n−1)

a2 (f(γ)) . (2.12)
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For a 6-cycle γ of Kn which contains the vertex m, let i and j be the two vertices of Kn

which are adjacent to m in γ. Then γ is a 6-cycle of F
(m)
ij which contains imj. This

implies that ∑
1≤i<j≤n
i,j ̸=m

∑
γ∈Γ6(F

(m)
ij )

imj⊂γ

a2 (f(γ)) =
∑

γ∈Γ6(Kn)
m⊂γ

a2 (f(γ)) . (2.13)

For a 5-cycle γ of K
(m)
n−1, let ij be an edge of K

(m)
n−1 which is not contained in γ. Note

that there are
(
n−1
2

)
− 5 = (n2 − 3n − 8)/2 ways to choose such a pair of i and j. This

implies that∑
1≤i<j≤n
i,j ̸=m

∑
γ∈Γ5(K

(m)
n−1)

ij ̸⊂γ

a2 (f(γ)) =
n2 − 3n− 8

2

∑
γ∈Γ5(K

(m)
n−1)

a2 (f(γ)) . (2.14)

For a pair of disjoint cycles λ of Kn consisting of a 4-cycle γ which contains the vertex

m and a 3-cycle γ′, let i and j be the two vertices of Kn which are adjacent to m in γ.

Then λ is a pair of disjoint cycles of Kn consisting of a 4-cycle γ which contains imj and

a 3-cycle γ′. This implies that∑
1≤i<j≤n
i,j ̸=m

∑
λ=γ∪γ′∈Γ3,4(F

(m)
ij )

γ∈Γ4(F
(m)
ij ), γ′∈Γ3(F

(m)
ij )

imj⊂γ

lk (f(λ))
2
=

∑
λ=γ∪γ′∈Γ3,4(Kn)

γ∈Γ4(Kn), γ′∈Γ3(Kn)
m⊂γ

lk (f(λ))
2
. (2.15)

For a pair of disjoint 3-cycles λ of K
(m)
n−1, let ij be an edge of K

(m)
n−1 which is not contained

in λ. Note that there are
(
n−1
2

)
− 6 = (n2 − 3n − 10)/2 ways to choose such a pair of i

and j. This implies that∑
1≤i<j≤n
i,j ̸=m

∑
λ∈Γ3,3(K

(m)
n−1)

ij ̸⊂λ

lk (f(λ))
2
=

n2 − 3n− 10

2

∑
λ∈Γ3,3(K

(m)
n−1)

lk (f(λ))
2
. (2.16)

By combining (2.11), (2.12), (2.13), (2.14), (2.15) and (2.16) with (2.10), we have

∑
γ∈Γn(Kn)

a2 (f(γ)) +
n2 − 5n+ 4

2

∑
γ∈Γn−1(K

(m)
n−1)

a2 (f(γ))

+ b

( ∑
γ∈Γ6(Kn)

m⊂γ

a2 (f(γ)) +
n2 − 3n− 8

2

∑
γ∈Γ5(K

(m)
n−1)

a2 (f(γ))

)

= c

( ∑
λ=γ∪γ′∈Γ3,4(Kn)

γ∈Γ4(Kn), γ′∈Γ3(Kn)
m⊂γ

lk (f(λ))
2
+

n2 − 3n− 10

2

∑
λ∈Γ3,3(K

(m)
n−1)

lk (f(λ))
2

)
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+
d(n2 − 3n+ 2)

2
. (2.17)

Then for the embedding f restricted to K
(m)
n−1, by the assumption we have∑

γ∈Γn−1(K
(m)
n−1)

a2 (f(γ)) = −b
∑

γ∈Γ5(K
(m)
n−1)

a2 (f(γ)) + c
∑

λ∈Γ3,3(K
(m)
n−1)

lk (f(λ))
2
+ d. (2.18)

By combining (2.17) and (2.18), we have∑
γ∈Γn(Kn)

a2 (f(γ)) + b
∑

γ∈Γ6(Kn)
m⊂γ

a2 (f(γ)) + b(n− 6)
∑

γ∈Γ5(K
(m)
n−1)

a2 (f(γ))

= c
∑

λ=γ∪γ′∈Γ3,4(Kn)

γ∈Γ4(Kn), γ′∈Γ3(Kn)
m⊂γ

lk (f(λ))
2
+ c(n− 7)

∑
λ∈Γ3,3(K

(m)
n−1)

lk (f(λ))
2
+ d(n− 1). (2.19)

Now we take the sum of both sides of (2.19) over m = 1, 2, . . . , n. For a 6-cycle γ of Kn,

let m be a vertex of Kn which is contained in γ. Note that there are six ways to choose

such a vertex m. This implies that

n∑
m=1

∑
γ∈Γ6(Kn)

m⊂γ

a2 (f(γ)) = 6
∑

γ∈Γ6(Kn)

a2 (f(γ)) . (2.20)

For a 5-cycle γ of Kn, let m be a vertex of Kn which is not contained in γ. Then γ is a

5-cycle of K
(m)
n−1. Note that there are n− 5 ways to choose such a vertex m. This implies

that

n∑
m=1

∑
γ∈Γ5(K

(m)
n−1)

a2 (f(γ)) = (n− 5)
∑

γ∈Γ5(Kn)

a2 (f(γ)) . (2.21)

For a pair of disjoint cycles λ of Kn consisting of a 4-cycle γ and a 3-cycle γ′, let m be

a vertex of Kn which is contained in γ. Note that there are four ways to choose such a

vertex m. This implies that

n∑
m=1

∑
λ=γ∪γ′∈Γ3,4(Kn)

γ∈Γ4(Kn), γ′∈Γ3(Kn)
m⊂γ

lk (f(λ))
2
= 4

∑
λ∈Γ3,4(Kn)

lk (f(λ))
2
. (2.22)

For a pair of two disjoint 3-cycles λ of Kn, let m be a vertex of Kn which is not contained

in λ. Then λ is a pair of two disjoint 3-cycles of K
(m)
n−1. Note that there are n− 6 ways

to choose such a vertex m. This implies that

n∑
m=1

∑
λ∈Γ3,3(K

(m)
n−1)

lk (f(λ))
2
= (n− 6)

∑
γ∈Γ3,3(Kn)

lk (f(λ))
2
. (2.23)



1233(207)

Generalizations of the Conway–Gordon theorems 1233

By combining (2.20), (2.21), (2.22) and (2.23) with (2.19), we have

n
∑

γ∈Γn(Kn)

a2 (f(γ)) + 6b
∑

γ∈Γ6(Kn)

a2 (f(γ)) + b(n− 5)(n− 6)
∑

γ∈Γ5(Kn)

a2 (f(γ))

= 4c
∑

λ∈Γ3,4(Kn)

lk (f(λ))
2
+ c(n− 6)(n− 7)

∑
λ∈Γ3,3(Kn)

lk (f(λ))
2
+ dn(n− 1). (2.24)

Then by (2.24) and Lemma 2.1 (1) and (2), we have the desired conclusion. □

Proof of Theorem 1.3. We prove this by induction on n. In the case of n = 6,

by Theorem 1.2 we have the result. Assume that n ≥ 7, then we have∑
γ∈Γn(Kn−1)

a2 (g(γ))− (n− 6)!
∑

γ∈Γ5(Kn−1)

a2 (g(γ))

=
(n− 6)!

2

∑
λ∈Γ3,3(Kn−1)

lk (g(λ))
2 − (n− 6)!

2

(
n− 2

5

)
(2.25)

for any spatial embedding g of Kn−1. Then by (2.25) and Lemma 2.4, we have∑
γ∈Γn(Kn)

a2 (f(γ))− (n− 5)!
∑

γ∈Γ5(Kn)

a2 (f(γ))

=
1

n

(
(n− 6)!

2
(n− 6)(n+ 1) + 3(n− 6)!

) ∑
λ∈Γ3,3(Kn)

lk (f(λ))
2

− (n− 6)!

2

(
n− 2

5

)
(n− 1)− (n− 6)!

2

(
n− 1

5

)
=

(n− 5)!

2

∑
λ∈Γ3,3(Kn)

lk (f(λ))
2 − (n− 5)!

2

(
n− 1

5

)

for any spatial embedding f of Kn. This completes the proof. □

Proof of Corollary 1.4. Note that no pair of two disjoint 3-cycles λ of Kn is

shared by two distinct subgraphs of Kn isomorphic to K6. Then Theorem 1.1 (1) implies

that
∑

λ∈Γ3,3(Kn)
lk (f(λ))

2
is greater than or equal to the number of subgraphs of Kn

isomorphic to K6, that is equal to
(
n
6

)
, and by a direct calculation we have

(n− 5)!

2

((
n

6

)
−
(
n− 1

5

))
=

(n− 5)(n− 6)(n− 1)!

2 · 6!
. (2.26)

Thus by (2.26) and Theorem 1.3, we have the result. □

Remark 2.5. Endo–Otsuki introduced a certain special spatial embedding fb of

Kn, a canonical book presentation ofKn [9], and Otsuki also showed that fb (Kn) contains

exactly
(
n
6

)
Hopf links corresponding to all the pairs of two disjoint 3-cycles of Kn if n ≥ 6

[26]. Thus the lower bound of Corollary 1.4 is sharp. Furthermore, for any 5-cycle γ of

Kn, fb(γ) is a trivial knot. Thus for an integer n ≥ 6, we have
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∑
γ∈Γn(Kn)

a2 (fb(γ)) =
(n− 5)(n− 6)(n− 1)!

2 · 6!
.

Proof of Corollary 1.5. For any two spatial embeddings f and g of Kn, by

Theorem 1.3, we have∑
γ∈Γn(Kn)

a2 (f(γ))−
∑

γ∈Γn(Kn)

a2 (g(γ))

≡ (n− 5)!

2

( ∑
λ∈Γ3,3(Kn)

lk (f(λ))
2 −

∑
λ∈Γ3,3(Kn)

lk (g(λ))
2

)
(mod (n− 5)!). (2.27)

Since
∑

λ∈Γ3,3(Kn)
lk (f(λ))

2
and

∑
λ∈Γ3,3(Kn)

lk (g(λ))
2
have the same parity, that is also

equal to the parity of
(
n
6

)
, by (2.27), we have∑

γ∈Γn(Kn)

a2 (f(γ)) ≡
∑

γ∈Γn(Kn)

a2 (g(γ)) (mod (n− 5)!). (2.28)

Note that there exists a spatial embedding g of Kn such that∑
λ∈Γ3,3(Kn)

lk (g(λ))
2
=

(
n

6

)
, (2.29)

see Remark 2.5 or Remark 2.7. Thus by (2.28) and (2.29), we have∑
γ∈Γn(Kn)

a2 (f(γ)) ≡
(n− 5)!

2

((
n

6

)
−
(
n− 1

5

))
(mod (n− 5)!) (2.30)

for any spatial embedding f of Kn. Here, it can be seen that
(
n
6

)
is odd if and only if

n ≡ 6, 7 (mod 8), and
(
n−1
5

)
is odd if and only if n ≡ 0, 6 (mod 8) by an application

of Lucas’s theorem for binomial coefficients (see [10] for example). If n ̸≡ 0, 7 (mod 8),

then since
(
n
6

)
−
(
n−1
5

)
is even, by (2.30), we have∑
γ∈Γn(Kn)

a2 (f(γ)) ≡ 0 (mod (n− 5)!).

If n ≡ 0 (mod 8), then since
(
n
6

)
is even and

(
n−1
5

)
is odd, by (2.30), we have

∑
γ∈Γn(Kn)

a2 (f(γ)) ≡ − (n− 5)!

2

(
n− 1

5

)
(mod (n− 5)!).

If n ≡ 7 (mod 8), then since
(
n
6

)
is odd and

(
n−1
5

)
is even, by (2.30), we have

∑
γ∈Γn(Kn)

a2 (f(γ)) ≡
(n− 5)!

2

(
n

6

)
(mod (n− 5)!).
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This completes the proof. □

Remark 2.6. By applying the case of n = 7 in Corollary 1.5, we have∑
γ∈Γ7(K7)

a2 (f(γ)) ≡
2!

2

(
7

6

)
≡ 1 (mod 2),

that is, Theorem 1.1 (2). On the other hand, for any spatial embedding f of K8, it was

shown that
∑

γ∈Γ8(K8)
a2 (f(γ)) ≡ 0 (mod 3) by Foisy [13] and 1 (mod 2) by Hirano [15].

These results imply that
∑

γ∈Γ8(K8)
a2 (f(γ)) ≡ 3 (mod 6), and it can also be shown by

applying the case of n = 8 in Corollary 1.5:∑
γ∈Γ8(K8)

a2 (f(γ)) ≡ −3!

2

(
7

5

)
= −63 ≡ 3 (mod 6).

Hirano also showed that
∑

γ∈Γn(Kn)
a2 (f(γ)) ≡ 0 (mod 2) for any spatial embedding f

of Kn if n ≥ 9 [15]. Corollary 1.5 also generalizes it remarkably.

Proof of Corollary 1.7. We obtain the desired lower bound from Corol-

lary 1.4 directly, since for every 5-cycle γ, fr(γ) is trivial. On the other hand, it is known

that every rectilinear spatial graph of K6 contains at most three Hopf links (Hughes [17],

Huh–Jeon [18], Nikkuni [24]). This implies that
∑

λ∈Γ3,3(Kn)
lk (fr(λ))

2
is less than or

equal to 3
(
n
6

)
, and by a direct calculation we have

(n− 5)!

2

(
3

(
n

6

)
−
(
n− 1

5

))
=

3(n− 2)(n− 5)(n− 1)!

2 · 6!
. (2.31)

Thus by (2.31) and Theorem 1.6, we get the desired upper bound. □

Remark 2.7. A special rectilinear spatial embedding fsr of Kn can be constructed

by taking n vertices 1, 2, . . . , n of Kn in order on the moment curve (t, t2, t3) in R3 and

connecting every pair of two distinct vertices i and j by a straight line segment, see

Figure 2.3 for n = 6, 7, 8. We call fsr the standard rectilinear spatial embedding of

Kn. For the standard rectilinear spatial embedding fsr of Kn (n ≥ 6) and a subgraph

F of Kn isomorphic to K6, it can be easily seen that the embedding fsr restricted to

F is equivalent to the standard rectilinear spatial embedding of K6. Since the standard

rectilinear spatial graph of K6 contains exactly one nonsplittable 2-component link which

is a Hopf link, fsr (Kn) contains exactly
(
n
6

)
triangle-triangle Hopf links. Thus the lower

bound in Corollary 1.7 is sharp.

Before proving Corollary 1.8, we recall two geometric invariants of knots and links.

For a knot or link L, the crossing number of L is the minimum number of crossings in

a regular diagram of L on the plane, denoted by c(L), and the stick number of L is the

minimum number of edges in a polygon which represents L, denoted by s(L).

Proof of Corollary 1.8. For a knot K, it has been shown that
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fsr(K6)

fsr(K8)fsr(K7)

Figure 2.3. Standard rectilinear spatial embedding fsr of Kn (n = 6, 7, 8).

c(K) ≤ (s(K)− 3) (s(K)− 4)

2
(2.32)

by Calvo [7, Theorem 4], and also has been shown that

a2(K) ≤ c(K)2

8
(2.33)

by Polyak–Viro [27, Theorem 1.E]. By combining (2.32) and (2.33), for a polygonal knot

K with less than or equal to n sticks, we have

a2(K) ≤
⌊
(n− 3)2(n− 4)2

32

⌋
. (2.34)

Then by the lower bound in Corollary 1.7 and (2.34), we have the desired estimation

from below. □

Remark 2.8. The concrete values of rn for 7 ≤ n ≤ 15 are given in the following

table. Note that in the case of n = 8, we can obtain an estimate from below better than

r8 of the number of nontrivial Hamiltonian knots with a positive value of a2 in every

rectilinear spatial graph of K8, see Example 3.5 and Remark 3.6.
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n 7 8 9 10 11 12 13 14 15 · · ·
rn 1 2 12 92 772 7187 73628 823680 10015889 · · ·

3. Examples and problems.

In the following examples, we denote a k-cycle i1i2 ∪ i2i3 ∪ · · · ∪ ik−1ik ∪ iki1 of

Kn by [i1i2 · · · ik]. We also recall the following fundamental results on stick numbers for

knots and links (see Adams [3, Section 1.6], Negami [23, Theorem 6], Adams–Brennan–

Greilsheimer–Woo [4, Theorem 2.1] and Calvo [7, Theorem 1]), where we denote each of

knots and links appearing in the statement by using its label in Rolfsen’s table [30].

Proposition 3.1. Let L be a link. Then the following statements hold.

(1) If L is a nontrivial knot, then s(L) ≥ 6.

(2) s(L) = 6 if and only if L is equivalent to 31, 0
2
1 or 221.

(3) s(L) = 7 if and only if L is equivalent to 41 or 421.

(4) s(L) = 8 if and only if L is equivalent to 51, 52, 61, 62, 63, the granny knot 31#31,

the square knot 31#3∗1, 819, 820 or 521.

Example 3.2. Let fr be a rectilinear spatial embedding of K6. Then by Theo-

rem 1.6 (Theorem 1.2) and Corollary 1.7, we have∑
γ∈Γ6(K6)

a2 (fr(γ)) =
1

2

∑
λ∈Γ3,3(K6)

lk (fr(λ))
2 − 1

2
, (3.1)

0 ≤
∑

γ∈Γ6(K6)

a2 (fr(γ)) ≤ 1. (3.2)

As it has been shown in [24, Section 4], (3.1) and (3.2) enable us to give an alternative

topological proof of the fact that every rectilinear spatial graph fr (K6) contains at most

one trefoil knot, in particular, fr (K6) does not contain a trefoil knot if and only if

fr (K6) contains exactly one Hopf link, and fr (K6) contains a trefoil knot if and only

if fr (K6) contains exactly three Hopf links, which was originally proven by Huh–Jeon

[18] in combinatorial way. Actually, it follows from Proposition 3.1 (1) and (2) that∑
γ∈Γ6(K6)

a2 (fr(γ)) equals the number of trefoil knots in fr (K6) because a2(31) = 1,

and
∑

λ∈Γ3,3(K6)
lk (fr(λ))

2
equals the number of Hopf links in fr (K6).

Example 3.3. For a spatial embedding f of K7, by Theorem 1.3, we have∑
γ∈Γ7(K7)

a2 (f(γ))− 2
∑

γ∈Γ5(K7)

a2 (f(γ)) =
∑

λ∈Γ3,3(K7)

lk (f(λ))
2 − 6, (3.3)

and we also have ∑
γ∈Γ7(K7)

a2 (f(γ))− 2
∑

γ∈Γ5(K7)

a2 (f(γ)) ≥ 1, (3.4)
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56
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56

h(K7) h(K8)

Figure 3.1.

∑
γ∈Γ7(K7)

a2 (f(γ)) ≡ 1 (mod 2)

by Corollaries 1.4 and 1.5. Let h be the spatial embedding of K7 as illustrated in the

left hand side of Figure 3.1. It is known that h (K7) contains exactly one nontrivial

knot h([1357246]) which is a trefoil knot [8]. Since a2 (31) = 1, the embedding h realizes

the lower bound in (3.4). In particular for a rectilinear spatial embedding fr of K7, by

Theorem 1.6 and Corollary 1.7, we have∑
γ∈Γ7(K7)

a2 (fr(γ)) =
∑

λ∈Γ3,3(K7)

lk (fr(λ))
2 − 6, (3.5)

1 ≤
∑

γ∈Γ7(K7)

a2 (fr(γ)) ≤ 15. (3.6)

As it has been shown in [24], the lower bound in (3.6) enables us to give much simpler

topological proof of the fact that every rectilinear spatial graph of K7 contains a trefoil

knot, which was originally proven by Brown [6] and Ramı́rez Alfonśın [28] in combina-

torial and computational way. Actually, by (3.6), there exists at least one Hamiltonian

cycle γ0 of K7 such that a2 (fr(γ0)) > 0. Then by Proposition 3.1 (2) and (3), fr(γ0)

is either a trefoil knot or a figure eight knot. Since a2 (41) = −1, the knot fr (γ0) must

be a trefoil knot. We also remark here that h is equivalent to the standard rectilinear

spatial embedding fsr of K7 in Figure 2.3. We refer the reader to [19], [22] for related

works on rectilinear spatial graphs of K7 (especially in [19], a remarkable result is shown

that the number of figure eight knots in a rectilinear spatial graph of K7 is at most

three). Moreover, according to a computer search in [20], there seems to be no recti-

linear embedding fr of K7 such that
∑

γ∈Γ7(K7)
a2 (fr(γ)) = 13, 15, or equivalently by

(3.5),
∑

λ∈Γ3,3(K7)
lk(fr(γ))

2 = 19, 21. This strongly suggests that the upper bound in

Corollary 1.7 is not sharp.
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Problem 3.4. Determine the sharp upper bound of
∑

γ∈Γn(Kn)
a2 (fr(γ)) for all

rectilinear spatial embeddings fr of Kn for each n ≥ 7.

Example 3.5. For a spatial embedding f of K8, by Theorem 1.3, we have∑
γ∈Γ8(K8)

a2 (f(γ))− 6
∑

γ∈Γ5(K8)

a2 (f(γ)) = 3
∑

λ∈Γ3,3(K8)

lk (f(λ))
2 − 63, (3.7)

and we also have ∑
γ∈Γ8(K8)

a2 (f(γ))− 6
∑

γ∈Γ5(K8)

a2 (f(γ)) ≥ 21, (3.8)

∑
γ∈Γ8(K8)

a2 (f(γ)) ≡ 3 (mod 6)

by Corollaries 1.4 and 1.5. Let h be the spatial embedding ofK8 as illustrated in the right

hand side of Figure 3.1. It is known that h (K8) contains exactly twenty one nontrivial

Hamiltonian knots, all of which are trefoil knots [5]. Since h(γ) is a trivial knot for any

5-cycle γ of K8, the embedding h realizes the lower bound in (3.8). In particular for a

rectilinear spatial embedding fr of K8, by Theorem 1.6 and Corollary 1.7, we have∑
γ∈Γ8(K8)

a2 (fr(γ)) = 3
∑

λ∈Γ3,3(K8)

lk (fr(λ))
2 − 63, (3.9)

21 ≤
∑

γ∈Γ8(K8)

a2 (fr(γ)) ≤ 189. (3.10)

By Proposition 3.1, all of the polygonal knots with eight sticks are 01, 31, 41, 51, 52, 61,

62, 63, 31#31, 31#3∗1, 819 and 820. Moreover, the values of a2 for them are as follows:

K 01 31 41 51 52 61 62 63 31#31 31#3∗1 819 820
a2(K) 0 1 −1 3 2 −2 −1 1 2 2 5 2

Thus it follows from (3.10) that every rectilinear spatial graph of K8 always contains at

least one of 31, 51, 52, 63, 31#31, 31#3∗1, 819 and 820 as a Hamiltonian knot. Moreover,

since the maximum value of a2 in every polygonal knot with exactly eight sticks is equal

to five, we can refine (2.34) if n = 8 and then we can also refine Corollary 1.8: the

minimum number of nontrivial Hamiltonian knots with a positive value of a2 in every

rectilinear spatial graph of K8 is at least ⌈21/5⌉ = 5. But this is not yet the sharp lower

bound, see Remark 3.6.

As we mentioned in Remark 2.7, the standard rectilinear spatial embedding fsr of

K8 in Figure 2.3 realizes the lower bound in (3.10). Moreover, it is known that all of the

nontrivial Hamiltonian knots in fsr (K8) are trefoil knots [29]. This means that fsr (K8)

also contains exactly twenty one nontrivial Hamiltonian knots, all of which are trefoil

knots. We also remark here that h and fsr are not equivalent because h (K8) contains a

“triangle-pentagon” link with nonzero even linking number (actually h([257] ∪ [13846])

is equivalent to 421), but fsr (K8) does not contain such a triangle-pentagon link. The
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authors do not know whether the embedding h is equivalent to a certain rectilinear spatial

embedding of K8 or not.

Remark 3.6. It is known that every rectilinear spatial graph of K3,3,1,1 contains

at least one nontrivial Hamiltonian knot with a positive value of a2 (Hashimoto–Nikkuni

[14, Corollary 1.10]). Since there are two hundred and eighty subgraphs ofK8 isomorphic

toK3,3,1,1 and for any 8-cycle γ ofK8 there exist thirty six subgraphs ofK8 isomorphic to

K3,3,1,1 containing γ, we have that there are at least ⌈280/36⌉ = 8 nontrivial Hamiltonian

knots with a positive value of a2 in every rectilinear spatial graph of K8.

Problem 3.7. Determine the minimum number of nontrivial Hamiltonian knots

(with a positive value of a2) in every rectilinear spatial graph of Kn for each n ≥ 8.

We also refer the reader to [12], [1] and [2] for a study of counting nontrivial knots

and nonsplittable links in a spatial graph of Kn1,n2,...,nk
. In particular, a computer

program Gordian [2] is very useful, which enables us to calculate the values of a2 for

all constituent knots and lk for all constituent 2-component links in a spatial complete

graph without difficulty.

Acknowledgements. The authors are very grateful to the editor and the referee

for their helpful and appropriate comments.
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