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Abstract. In this paper, the optimal problem for mixed p-capacities is
investigated. The Orlicz and Ly geominimal p-capacities are proposed and
their properties, such as invariance under orthogonal matrices, isoperimetric
type inequalities and cyclic type inequalities are provided as well. Moreover,
the existence of the p-capacitary Orlicz—Petty bodies for multiple convex bod-
ies is established, and the Orlicz and L, mixed geominimal p-capacities for
multiple convex bodies are introduced. The continuity of the Orlicz mixed
geominimal p-capacities and some isoperimetric type inequalities of the L
mixed geominimal p-capacities are proved.

1. Introduction.

The setting for this paper will be in the Euclidean space R™. A subset K C R™ is
said to be convex if Az + (1 — A)y € K for any x,y € K and any A € [0,1]. A convex
compact subset K C R" is called a convex body if int K # ¢, where int K is the interior
of K. Denote by K and Iy the set of all convex bodies and the set of all convex bodies
with the origin o in their interiors, respectively. By | K|, we mean the volume of K € K
and, particularly, we use w, to denote the volume of the unit ball BY C R"™. We use
S"~1 to denote the unit sphere in R". For K € K, the volume radius of K, denoted by

vrad(K), is defined by
1/n
vrad(K) = <K|> .

Wn,

It is well known that the affine surface area is a very important concept in convex
geometry. The study of the affine surface area can be traced back to Blaschke [4] (for
g = 1), and later it was extended to L, cases by Lutwak [21] (for ¢ > 1), Schiitt and
Werner [26] (for —n # ¢ < 1), Ludwig [15] (for Orlicz case). The affine surface area and
its extensions have many applications, such as, in the theory of valuations, approximation
of convex bodies by polytopes and the information theory of convex bodies (see e.g., [2],
[3], [11], [16], [17], [18], [26], [28]). Geominimal surface area, which can be considered
as a “dual” analogous concept of affine surface area, is also an important concept in
convex geometry. The classical geominimal surface area was first introduced by Petty
[24]. For a convex body K € Ky, the classical geominimal surface area G(K) of K can
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be defined by the following optimal problem,

G(K) = inf {/ hr(u)dS(K,u) with |L°| = wn}, (1.1)
LeKy Sgn—1

where L° denotes the polar body of L, hy, is the support function of L and S(K, ) is the
surface area measure of K (see Section 2 for the detailed terminologies). Replacing the
support function hy, by the reciprocal of the radial function p;, and Ky by Sy (the set of
star bodies about the origin o) in (1.1), one gets the definition of affine surface area for
q=1.

Closely related to the affine and geominimal surface areas is another central concept
in convex geometry, i.e., the mixed volumes. For two convex bodies K and L, the mixed
volume V; (-, -) can be defined by:

1
Vi(K.L) =+ / hi (u)dS(K, ). (1.2)
S'n.fl
In view of (1.1) and (1.2), one gets
G(K) = inf {nVl(K, L) with |L°| = wn}. (1.3)

In [24], Petty proved that there existed a unique convex body M with |M°| = w,, solves
the optimal problem in (1.3). This shows that one could define the classical geominimal
surface area G(-) based on the mixed volume V;(-,-). Motivated by this definition (1.3),
the classical geominimal surface area has been extended to L, cases by Lutwak [21] (for
g > 1) and Ye [31] (for —n # ¢ < 1). Similarly, one can define the Orlicz geominimal
surface area, please refer to [32], [34], [35]. Therefore, employing the relation between
geominimal surface area and the corresponding mixed volume, one could define the Orlicz
and L, geominimal p-capacities (1 < p < n) with the help of the Orlicz and L, mixed
p-capacities.

Recall the definitions of the Orlicz and L, mixed p-capacities for 1 < p <n. Let T
be the set of continuous functions ¢ : (0,00) — (0, 00) such that ¢ is strictly increasing,
lim;_,o+ ¢(t) = 0, ©(1) = 1 and limy_, o, (t) = co. For K, L € Ko, p € (1,n) and
¢ : (0,00) = (0,00), the nonhomogeneous and homogeneous Orlicz mixed p-capacities
of K and L are given by

- p— 1 hL(u) u w
Cooltt. D) =2 [ (30 ) g ()

CP(K) : hL(U) " _ .
/sw v (6@@(}(, L) hK(u)> dpy(K,u) =1 for ¢ €1,

where 11,(K, ) is the p-capacitary measure on S™~! given by (2.7), and p}(K,-) is a
probability measure on S"~! given by (2.11). Here we would like to mention that the
nonhomogeneous Orlicz mixed p-capacity Cp (-, ) was introduced in [13] and the ho-
mogeneous one in [19]. When ¢(t) = ¢, the mixed p-capacity was provided in [6]. By
letting (t) = t? for —n # ¢ € R, one gets the L, mixed capacities [13].
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In Section 3, we define the Orlicz and L, geominimal p-capacities with respect to
Qp which is a nonempty subset of Sy. For instance, let K € Ky be a convex body and
@ € Z, the nonhomogeneous Orlicz geominimal p-capacity gg:iicz(K ,Qp) of K can be
formulated by the following optimal problem:

ggzclfcz(Kv o) {Cp,wu(a L) with |L°| = wn}.

= inf

LeQy
Similarly, the homogeneous Orlicz geominimal p-capacity with respect to Qgy, denoted
by QI‘,’:(I,Z'CZ(K, Qp), can be defined with C) (-, -) replaced by Cj (-, -). That is,

(jgwcz(Kv o) {6,“0(](, L) with |L°| = wn}.

= inf

LeQy
In this paper, we would focus on two special cases, which are Qg = Ky and Qg = Sy. For
conveni‘ence7 we Will write QAZ‘,’LI,ZACZ(K , Ko), gg;éwf (K, So), g;j";m(l( ,Ko) and Q;’Ll,wz(K ,So)
by Gorlic=(K), Aorlie=(K), Gorlie* (K) and A9'Le* (K), respectively. For example,

Ay (1) = Gy (K. 8o) = inf { G (K, L) with |L°] = w, }.

In [19], the authors showed that there was a convex body M € Ky with |M°| = w,
such that ggféiCZ(K) = Cp,o(K,M). Similarly, there is a convex body M € Ky with
|M°| = w, such that Go7*(K) = C, , (K, M).

We also provide a detailed study on the properties of the Orlicz geominimal p-
capacity of K, such as the invariance under orthogonal matrices. In particular, we
establish some isoperimetric type inequalities.

THEOREM 1.1. Let K € Ky be a convex body with its Santald point or centroid at
the origin o and Bg = vrad(K)BY.
(i) If ¢ € To U Dy, then

AEe(K) _ Grp(K) _ Gy(K)
Agrtie=(Brc) — Ggrlie=(Bg) ~ Cp(Bk)

FEquality holds if K is an origin symmetric ball. Here C,(K) is the p-capacity of K.
(ii) If ¢ € Dy, then there exists a universal constant ¢ > 0 such that

A (K) G (K) _ Gy(K)
Apie(Br) — Ggrpes(Br) — Cp(Bx)

Special attention is also paid to the case when ¢(t) = t? for —n # g € R (see Proposi-
tion 3.4).

In section 4, we also investigate the existence of p-capacitary Orlicz—Petty bodies of
K = (Ky,Ks, - ,K,,), a vector of convex bodies, and establish analogous isoperimetric
inequalities for the L, mixed geominimal p-capacity. These results are similar to those
of the mixed L, affine and geominimal surface areas in [27], [29], [31], [33], [36], which
extended the L, affine and geominimal surface areas.
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2. Preliminaries and Notations.

In this section, we collect some basic notations and definitions in convex geometry.
One can refer to [10], [25] for more details in the Brunn—Minkowski theory.

The Minkowski sum of two sets A and B in R™, denoted by A + B, is defined by
A+B={x+y:z € A, y € B}. The scalar product of A € R and A C R", denoted
by AA, is defined by MA = {\z : © € A}. For a n x n matrix ¢, we use det¢ and ¢
to denote the determinant of ¢ and the transpose of ¢, respectively If det ¢ # 0, we say
that ¢ is invertible and employ ¢! to represent the inverse of ¢. Denote by O(n) the
set of all n x m matrices such that ¢¢* = ¢*¢ = I,,, where I,, is the identity matrix on
R™.

The polar body of K € Ky, denoted by K°, is defined as follows:

K°={x eR": (x,y) <1 for any y € K},

where (-, ) is the standard inner product in R™. Denote by K°° the polar body of K°,
and K°° = K for any K € Ky (see e.g., [25, Theorem 1.6.1]). For K € K and z € intK,
one can define K*, the polar body of K with respect to z, by K* = (K — 2)° 4+ z. For
K € K, there exists a unique point s(K) € intK, which is called the Santalé point of K,
(see e.g., [22]), such that, |[K*(5)| = inf{|K?| : z € intK}. The famous Blaschke-Santal6
inequality states: for any K € KC,

K| K] < o (2.4)

with equality if and only if K is an ellipsoid, i.e., K = ¢BY + o = {¢px + ¢ : © € BY},
where ¢ is some invertible n x n matrix on R” and xy € R™ is some vector. On the other
hand, there exists a universal constant ¢ > 0, such that, for any K € I,

|K| - |[KS5F)| > ¢mw?. (2.5)

This inequality is called the inverse Santalé inequality (see e.g., [5], [14], [23]).
The support function of a nonempty convex compact set K C R", hg : S"~! — R,
is defined by

hi(u) = max (x,u) for any u € S™ 1.
zeK

Clearly, for K, L € K and any real number \ > 0,
hak(u) = Mg (u) and hgyr(u) = hg(u) + hg(u) for any v € S"71.

A nonempty set L C R” is said to be star-shaped about the origin o if for any = € L, the
line segment from the origin o to z is contained in L. For a compact star-shaped set L
about the origin o, the radial function pz, : S"~! — [0, 00) is defined by

pr(u) =max{r >0: ruc L} forany uec S" '

A star body refers to a star-shaped set about the origin o with a positive and continuous
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radial function. Let Sy be the set of all star bodies, and clearly Ky C Sp. It is well known
that (see e.g., [25]) for any K € K¢ and any u € S"71,
1

and hgo(u) = (@)

pro(u) = ﬁ(u)

Moreover, for any L € Sy, there is an integral formula for volume

o= [ e,

n
where o(-) is the spherical measure on S"~!. For any K € K, the surface area measure
S(K,-) (see e.g., [1], [9]), is defined as follows:

S(K,A) = / dH"™ ', for any measurable subset A C "1
vic'(4)

where v! 1 "1 — 9K is the inverse Gauss map and H"~! is the (n — 1)-dimensional
Hausdorff measure on 0K. A convex body K € K is said to have a curvature function
fr: S"™1 — R, if its surface area measure S(K,-) is absolutely continuous with respect
to spherical Lebesgue measure o(-), and

dS(K,u)

fK(u) = T(u)7

almost everywhere, with respect to o(-). Define .7-"3' , a subset of Ky, by
F& ={K € Ky : fx is positive and continuous on S"'}.

For compact sets E, F' C R™, the Hausdorff distance (see e.g., [25, (1.60)]) is defined
by

du(E,F)=min{A\ >0: EC F+ ABy and F C E+ AB3}.

For a sequence of compact sets {E;}.-, and a compact set E, we say that E; — E as
i — oo with respect to the Hausdorft metric if dy(E;, E) — 0 as i — co. The following
lemma will be needed.

LEMMA 2.1.  (see [19]) Let {K;};—, C Ko be a uniformly bounded sequence such
that the sequence {|K7 |}, is bounded. Then, there exists a subsequence {K;;}32, of
{Ki};2, and a convex body K € Ko such that K;, — K. Moreover, if |K7| = wy for all
1=1,2,---, then |K°| = wy,.

Let C(S™1) be the set of all continuous functions on S"~!. For a sequence of
measures {p;};-, on S"! and a measure p on S""!, we say that y; converges weakly
to p if for any f € C(S"71),

lim fdu; = / fdp.
Sn—1

1— 00 Sgn—1
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For a function f : R™ — R, the support set of f, denoted by supp(f), is defined by
supp(f) = {z € R*: f(x) # 0}. Let C2°(R"™) denote the set of all infinitely differentiable
functions on R™ with compact supports. Let’s recall the definition of p-capacity. For a
compact set £ C R™ and 1 < p < n, the p-capacity of E, denoted by C,(E), is defined
by (see e.g., [7], [8])

Cp(E) :inf{/Rn |[Vf(x)|Pdx : fe CP(R™) and f(x) >1 on z € E},

where |z| refers to the Euclidean norm of z € R™. Clearly, C,(E) < C,(F) if E C F.
We would like to mention that when p =1 and K € Ky, the 1-capacity of K is just the
surface area of K.

The following lemma gives some basic properties of the p-capacity, and the results
can also be found in [8, Chapter 4]. Here we provide the detailed proofs of these basic
properties.

LEMMA 2.2. Let E be a compact set and p € [1,n).
(i) For any A > 0,

Cpo(AE) = N"7PC,L(E).
(ii) For any zo € R™,
Cp(E + x0) = Cp(E).
(iii) For any ¢ € O(n),
Cp(9E) = Cp(E).
(iv) The functional Cy(-) is continuous on Ko with respect to the Hausdorff metric.

PROOF. For convenience, we let R(E) = {g € C*(R") and g(z) > 1 on z € E}.
(i) For a differentiable function f : R™ — R, let f\(z) = f(Ax). Clearly, f € R(AE)
if and only if fy € R(E). By the definition of C,(-), one has

Cp(/\E):inf{ / IV f () Pda - feR()\E)}
R‘IL
v [ el b eR®)
]Rn
=\""P.Cp(E).
(ii) Similarly, we can define f,,(x) = f(x + zo) for a differentiable function f :

R™ — R and hence f € R(E + ) if and only if f;, € R(E). By the definition of Cy(-),
one has

Cp(E + x9) = inf{/]Rn |IVf(z)Pdx: f € R(E—i—xo)}
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it { [ OpFars 1€ RE))
_C,(E).

(iii) Let f:R™ — R be a differentiable function and fy(z) = f(¢z) with ¢ € O(n).
Hence, f € R(¢E) if and only if fy € R(E). Moreover, if z = ¢y, then |Vf(z)| =
|V fo(y)|- From the definition of C),(-), one has

cytop) =it { [ 1Vr@)Pds: feriom)|
—int{ [ [VhswPar: 1, e RE)}

=Cp(E).

(iv) First of all, for K € KCo, Cp(K) > 0 (see e.g. [7]). For any € > 0, choose two
positive constants A > 1 and p > 0 such that (A" 7P —1)-A\""P.C,(K) < eand pBfy C K.
It follows from [25, Lemma 1.8.18] that there exists a positive number ¢ > 0 such that
5 < p(A—1) and pBy C K when dy (K, K) < 6. Thus,

KCK+6BYCK+(A—1)pBl CK+(A—1)K = \K.
This, together with the monotonicity and homogeneity of C,(-), implies that

Cp(K) < Cp(AK) = X" P . Cp(K).

Similarly, one has K C AK and C,,(K) < A" P . C,(K). Hence
Cp(K) = Cyp(K) < (\"77 = 1) - Cp(K) < (A7 = 1) - A" - Gy (K);
Cp(K) = Cp(K) < (\"F = 1) Cy(K) < (A" 1) - A7 - Gy (K).
Thus, one gets
(Co(K) = Cy(B)] < (N7 = 1) - A"7 - Gy (K) < . O

For 1 < p < n, the equation div(|VU|P~2VU) = 0 is called the p-Laplace equation. It
can be easily checked that Up(z) = |z|®~™)/(P=1 (z # o) satisfies the p-Laplace equation
except the origin o, and hence Up(z) is called the fundamental solution of the p-Laplace
equation. The p-equilibrium potential of K € Kj is a weak solution of the following
boundary p-Laplace equation:

div(|VUP~2VU) =0 in R\ K,
U(z)=1 on 0K, (2.6)
lim|g| 00 U(z) = 0.

For K € Ky, there exists a unique solution to (2.6) (see e.g., [7]). This implies that,
for K € Ky, the p-equilibrium potential exists and is unique. In later context, we use
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Uk to denote the p-equilibrium potential of K € K. Obviously, Upp(x) = Us(z) =
|z|(P=)/(P=1) (3 # 0). Hereafter, we only consider p € (1,n).

LEMMA 2.3. Let K € Ky and Uk be the p-equilibrium potential of K.
(i) The p-equilibrium potential of AK, for any A > 0, is

Usk (z) = Uk (z/\).
(ii) The p-equilibrium potential of K + xq, for any xo € R", is
Uk 12 (z) = Uk (x — ).
(iii) The p-equilibrium potential of dK , for any ¢ € O(n), is
Usk () = Uk (¢'2).

PROOF. The proofs of the assertions (i)—(iii) are similar, and we only provide the
proof of (iii) which requires the most work. For convenience, let Uy (z) = Uk (¢'x) for any
x € R™. Note that Ux(z) = 1 on 0K and lim|;|_,oc Uk (x) = 0. Along with ¢ € O(n),
one gets Ug(x) = Ug(¢'z) = 1 on d(¢K) and lim ||, Ug(z) = lim|y 00 Uk (¢'x) = 0.
Moreover, for any x € R™ \ ¢ K, one can get

div(|VU,[P2VU,)(z) = div(|VUK [P 2VUk ) (¢'z) = 0.

Thus Uy is the p-equilibrium potential of ¢K, i.e., Uyi (z) = Uy(z) = Uk (¢'z) for any
r € R™. O

For K € Ky, the p-capacitary measure 1, (K,-) on S"~!, is defined by

(K, A) = / |VUk (z)[PdH™ ", for any measurable subset A C S"~1.  (2.7)
vi' (4)

One can easily get, for any A > 0 and any u € S"~ 1,
(N 1) = NP7 (K ) and - djay (K, u) = [VUR (v () PAS (K, ). (2.8)

Note that Upy (v) = Up(z) = |z|(P=)/(p=1) (2 ¢ BY), one has

_\P
duy(BY,u) = (Z_ 1;) do(u) for any u € S™ 1. (2.9)

It has been proved in [30, Theorem 1] that u, (K, ) is not concentrated on any hemisphere
of S 1 ie.,

/ (v,u)y dpy(K,u) >0 for any v € S"
Sn—1

where (v,u)y = max{(v,u),0}. The famous Poincaré formula for p-capacity can be
stated as follows: for any K € Ky,
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Colr) = B [ el ().
In particular, one has
n—op p-1
Cp(By) = <p — 1) MWy, (2.10)

For K € Ko, (K, -), a probability measure on S~ is defined as follows:

(K, A) = z:; /A hK(u)C;:zl;;)(K’ u), for any measurable subset A C S"~ 1. (2.11)

3. The nonhomogeneous and homogeneous geominimal p-capacities.

In this section, the Orlicz and L, geominimal p-capacities and their properties are
provided. In particular, we establish a series of isoperimetric type inequalities related to
these newly proposed geominimal p-capacities.

Firstly, let’s recall some notations and the results in [19]. Let D be the set of con-
tinuous functions ¢ : (0,00) — (0, 00) such that ¢ is strictly decreasing, lim;_,o+ () =
00, (1) =1 and lim;_,o ¢(t) = 0.

DEFINITION 3.1. Let ¢ € ZUD and K,L € Ky. The nonhomogeneous Orlicz
mixed p-capacity of K and L, Cp (K, L), is defined by

Cooie 1) =20 [ o () )y ()

n—op hx(u)

If L € Sy, we use Cp (K, L°) for

ey b1 SRS u u
Cpp(K, L°) = n_p/SW1 ¥ <pL(u)hK(U)> i (u)dpp (K, u).

The homogeneous analogue is defined as follows.

DEFINITION 3.2. Let ¢ € ZUD and K, L € Ky. The homogeneous Orlicz mixed
p-capacity of K and L, C) (K, L), is defined by

/S"_l ’ <5p,¢(K7L) : hK(”)) Ay Fw) =1

If L € Sy, then we use é\'p#,(K, L°) for

Cp(K) du*(K,u) = 1.
/sn190<5p,¢<K,L°>~pL<u>~hK<u>> pplfow =1

Clearly, GW(~, -) is homogeneous, i.e., if K, L € Ky and ¢ € ZU D, then for s,t > 0
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Cpo(sK,tL) = s" 71 t.C, (K, L), (3.12)
if L € §p, then
Cpo(sK, (tL)°) = s P~1 471 .C, (K, L°). (3.13)

The existence theorem of the p-capacitary Orlicz—Petty bodies was provided as fol-
lows.

THEOREM 3.1 ([19]). Let K € Ky be a convezx body and ¢ € T.
(i) There exists a convex body M € Ky such that |M°| = w, and

Cy o (K, M) = inf {OW(K, L):LeKy and |L°] = w}
(ii) There exists a conver body M € Ko such that |Z/\4\°| = wy and

Cp o (K, M) = inf {GW(K, L):LeKy and |L°] = wn}.

In addition, if ¢ € T is convex, then both M and M are UNLQUE.

We use the set 7T, ,(K) to denote the collections of all convex bodies M, and the set
'7A;W(K ) to denote the collection of all convex bodies M in Theorem 3.1. A convex body
M €T, ,(K) is called a nonhomogeneous p-capacitary Orlicz—Petty body, and a convex
body Me '7A;7¢(K ) is called a homogeneous p-capacitary Orlicz—Petty body. Note when
¢ €T is convex, Tp ,(K) and ’7A;W(K) contain only one element.

3.1. The Orlicz geominimal p-capacity.
In this subsection, we provide a detailed study of the Orlicz geominimal p-capacities.
Let
To=TN{p:(0,00) = (0,00) | (t~1/™) is strictly convex on (0,00)};
Do =DN{p:(0,00) = (0,00) | p(t~1/™) is strictly concave on (0,00)};
Dy =DN{p:(0,00) = (0,00) | p(t~1/™) is strictly convex on (0,00)}.
Let Qp C Sy be a nonempty subset of Sp. Since ’(VI‘&d(LO)L>O’ =

|[Vrad(L°)]_1L° = Wy, and hyaqqreyr = vrad(L®)hy for any L € Ko and pyrad(reyr =
vrad(L®)py, for any L € Sy, one can define the geominimal p-capacity as follows.

DEFINITION 3.3.  For K € Ky, define Go"i**(K, Qp), the nonhomogeneous Orlicz
geominimal p-capacity of K with respect to Qy, as follows:

Gorlie* (K, Q) {CM,(K, vrad(L) LO)} for p € TU Dy,

= inf

LeQo

g;’:(lfcz(K, Qp) = sup {C’WP(K, vrad(L) Lo)} for p € Dy.
LeQo

Similarly, the homogeneous Orlicz geominimal p-capacity with respect to Qp, denoted
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by égwcz (K, Qp), can be defined with C, ,(-,-) replaced by CA'pW(~, -) and D; switching

Two special cases are important and we will focus on their properties in later context.
The first one is the case when Qy = Ky, then we use ngf,icz (K) and Q;Ll,icz (K) to denote

Qf,:iicz(K7 Ko) and é\g:ffcz(K, Ko). The second case is Qp = Sy and we use A;fgcz(K)
and A1 () for GoTU* (K, S) and G27l* (K, Sp). As Ko € S, then
AT (K) < G (K) for ¢ € ZUDy and AL (K) > Gole*(K) for ¢ € Do
Agrliez(K) < Gorliez(K) for p € TUDy and ATL(K) > Goli*(K) for ¢ € Dy.

From (3.12) and (3.13), one can easily get, for any A > 0,
Sorlicz _ \n—p—1porlicz Torlicz _ \n—p—1 Jorlicz
GpllF(AK) = X"TPRGT A (K) and AT (AK) = ATTPTRADT A (K.

The following results state that all the quantities above are O(n)-invariant. More-
over, when ¢ € Z, it follows from Theorem 3.1 that Go"li*(K) = C, (K, M) for

M € Tpo(K) and Golie* (K) = Cp o (K, M) for M € T, ,(K).
COROLLARY 3.1.  If@ € ZUDyUDs, then for any ¢ € O(n) and for any K € K,
L (01) = G () and GE(010) = Gy 1)
orlicz orlicz Horlicz Horlicz
Ay F (oK) = A (K) and AY % (9K) = A S (K).

PRroOOF. Here we only prove the equality of GIl°*(¢K) = Gorli*(K), and the
other cases can be proved along a similar argument. Let L € Ky. Since ¢ € O(n), then
|¢L| = |L| and vrad(¢L) = vrad(L). Moreover, by Lemma 2.3 and (2.8), one has, for
any u € S*1,

dpip (91, u) = [VUyic (v (u)) [PAS(¢K )
= [VUk (6" - ¢ vic' (¢'w)) - ¢'[PAS(K, ¢'u)
— VU (v (80)) PdS (K, ¢')
= du, (K, ¢'u). (3.14)

For u € S"~! and ¢ € O(n), let v = ¢'u. By (3.14) and (¢L)° = ¢L°, one gets
Cp. (0K, vrad(¢L)(¢L)°) = p(p((bK vrad(L)¢L°)

_ o ( vrad( L)¢Lo ) h¢K(u)dup(¢K7 u)

Sn 1 hd)K
_ ('0 VI‘dd L)L: ) hK(gbtu)dﬂp(K, ¢tu)
- hic (ot
p— vrad L L°
= - ) ) Kk (V)du, (K, v)

= CPW(K, vrad( L)L°
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This, together with Definition 3.3, implies that if o € ZU Dy,
Gor* (9K) = int{Cyp(0K, vrad(9L) (6L)°) |
$LeKo
= nf {CIW(K, vrad(L) LO)}
-Gt
Replacing “inf” by “sup”, one gets G'1'*(pK) = Go"1i**(K) when ¢ € D. O

~ In general, it is not easy to calculate GJUe%(K), Q\gﬁicz(K), Agrlicz(K) and
Aglf,wz(K ). However, when K = rBY for some r > 0, we are able to calculate their
precise values.

ProposITION 3.1.  Let ¢ € Ty UDy U Dy and r > 0. Then
orlicz n orlicz n 1 n
Azt ) = gty — o (1) 08 (3.15)
Ao (BY) = G (BY) = Cyp(BR). (3.16)
PROOF. The proofs of (3.15) and (3.16) are similar, and we only prove (3.16). For

any L € S, let L = L/vrad(L). Thus |L| = w, and vrad(L) = 1. If ¢ € T, with the
help of (2.9), (2.10) and Jensen’s inequality for the convex function ((t~'/™), one has

CP(BS) * n
1= — — du;(BY,u
/5"71 ’ (Cp,v (Bg.L°) - pp(u) - hpg (U)> ol )
[ ( _ Gy(BY) ) do ()
Sn—t Chye (Bgﬂ LO) pp(u)) Twn
—-n —1/n
Cp(B3) do(u)
8 S0<</5"1 (@,W(Bg,io) 'ﬂi(u)> nWn > >

_ [ Cu(By)
7 <6p,¢<337i°>> |

Since ¢ is increasing and ¢(1) = 1, one gets

Cp(BY) < Cp o(BY, L°) = Cp o (BY, vrad(L)L°).
Taking the infimum over L € Sy and by Definition 3.3, one has

Cy(By) < Ay5e(By) < Gortie* (By) {Coe(Bs vrad(L) 1°) } < Cy(By)

= inf
LeKy

and hence Cp(B7) = ﬁgﬁﬁfcz(Bg) = ég:ﬁi“(Bg). The results for ¢ € DyUD; follow from
a similar argument. g
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The isoperimetric type inequalities for ﬁgfﬁcz(-), égwcz(-), Agrliez () and Ggrlie(.)
are established in the following theorems.

THEOREM 3.2. Let K € Ky be a convexr body with its Santald point or centroid at
the origin o and By be an origin symmetric ball defined by By = vrad(K)BY.
(i) If p € Iy U Dy, then

A () _ Ghien(K) . Cy(K)
Agrliez(By) — Gortie*(B) — Cp(Bk)

Equality holds if K is an origin symmetric ball.
(ii) If ¢ € D1, then there exists a universal constant ¢ > 0 such that

ApEe(K) G (K) oo o)
Agrticz(Bye) — Gorlie2(By) — Cp(Bk)

PrROOF. (i) Let ¢ € Zp U Dy. It follows from the homogeneity of g}’fff“(')a
Vzl\g’rglaicz(.) and Cp(-), and Proposition 3.1 that

CP(BK)

Torlicz ~orlicz
A B =G B = ——.
1% ( K) j% ( K) vr d(K)

(3.17)
By Definition 3.3 and (3.12), one has,

Aorhicz(K) < Golie*(K) < Cp (K, vrad(K°) K) = vrad(K°) - Cp(K).
Together with (3.17) and the Blaschke-Santal$ inequality (2.4), one has

AYEe(K) _ Gp(K) _ Gy(K)
Agrtie=(By) ~ Ggrlie(Bi) ~ Cp(Bk)

If K is an origin symmetric ball, say K = rB% for some r > 0, one can easily get K = Bk
and thus equality in part (i) holds.
(ii) If ¢ € Dy, by a similar argument and the inverse Santald inequality (2.5), one

has
ApUe(K)  Gpien () vrad(K) -vrad(K°) - Gy(K) _  Gy(K)
Agrliez(By) — Gorlie(By) Cp(Bk) ~ Cp(Bk)

Along the same lines, one can get the similar results for Go7¢*(K) and A5 (K).

THEOREM 3.3. Let K € Ky be a convexr body with its Santald point or centroid at
the origin o and Bk = vrad(K)B%.
(i) If o € To U D, then

Aglen() Gl ()
A= ((Bre)?) Gy ((Be)?)

Cp(K)
Cp((Bre)®)

<
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Moreover, if ¢ € Iy, then

Apriies(Bi) — Gpri*(Bi) — Cp(Bxk)

Equality holds if K is an origin symmetric ball.

(ii) If ¢ € Dy, then
Ao () Gl Cy(E)
Aprie*(Bg) — Gpiie*(Br) — Cp(Bk)

Equality holds if K is an origin symmetric ball.
ProOF. (i) It follows from Definition 3.3 that
AoTliez () < Gorliex(K) < Cy (K, vrad(K°) K) = p(vrad(K°)) - Cp(K).  (3.18)

Note that (Bgo)° = (vrad(K°)BZ)° = (1/vrad(K°))By. By (3.15) in Proposition 3.1,
one has

AL (Bi0) = G528 (i) = ¢ (o ) - Ol (3.19)
A0 (B )°) = GoT1* (B )°) = (vrad(K°®)) - Cp((Bice)°). (3.20)

The desired result follows from (3.18) and (3.20).
If ¢ € Ty, by (3.18) and the Blaschke-Santal6 inequality (2.4), one has

) . 1
orlicz orlicz o
AP;SO (K) S gP#P (K) S (p(vrad(K )) : CP(K) S ¥ (VI‘&d(K)) . CP(K)
This along with (3.19) yields

ApS e (K) < Gor(K) < Gp(K)
Agrliez(By) — Ggrlie*(Br) — Cp(Bk)’

If K is an origin symmetric ball, it can be easily checked that the equality holds. The
case (ii) follows from the same lines as the proof of the case ¢ € Zj. 0

3.2. The L, geominimal p-capacity.
In this subsection, we let ¢(¢) = t7 in Definition 3.1 and consider the L, geominimal
p-capacity of K with respect to Ky and Sp. Let

*p_l hL(U) ! u u or ;
Coate0) = B2 [ () hclwdi () for L Ky

N A S
Cpq(K,L°) = — /Snil (pL(u) . hK(u)) hi(w)du,(K,u) for L € Sy.

DEFINITION 3.4. Let —n # ¢ € R and K € Ky. Define G, 4(K), the Ly geominimal
p-capacity with respect to g, by
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_ n/(n+q) . o1q/(n+q)
Gpg(K) = it {(Cpy(K, L)) ool g >, (3.21)
o n/(n+q) o1q/(n+q) .
Gp.q(K) = sup (Cpﬂ(K, L)) - |L° , —nFq<O0; (3.22)
LeKy

and define A, ,(K), the L, geominimal p-capacity with respect to So, by

Ay () = int {(Cpg(16, L))" Lo/}, g =0, (3.23)
Ap,q(K) — Lsu}s) {(Cp,q(K, LO))n/(n+q) . |L|q/(n+q)}, —n#q<0. (3.24)
€S5o

Clearly, Gpo(K) = A, o(K) = Cp(K) for any K € Ky. Moreover, it can be easily
checked that for ¢(t) =9 (¢ # —n) and any K € K,

gth()‘K) - )\n(nipiq)/(nJrq)gp,q(K) and Ap,q(AK) - )\n(nipiq)/(nJrq)Ap-,q(K)
for any A > 0;
Gp.q(0K) = Gp o(K) and A, (¢K) = Ay 4(K) for any ¢ € O(n).

Moreover, if ¢ # 0, —n, then with ¢(t) = t%, one has

Forlicz Cp(K 1=(/9) n+q)/n

Gy (1) = L (G 50) T (3.25)
Wn/

o C (K -(1/a) o) /.

AIO):ZCZ(K): 10( ) .A K))( +q)/ q. (326)

w}z/n g
REMARK 3.1. By (3.16) and (3.21), one gets, for any —n # ¢ € R,
n n/(n+q)
Gp.a(BE) = Apq(By) = (Cy(B))" " - | By |2/ ()
n n n/(n+ ) n n
= (Cyq(BY, BY)) 9. |Bpa/(nta),

The following proposition provides a convenient formula to calculate A, ,(K) for
q #£ —n. ForKé]:(}",let

Frapa (B w) = by "(w) - VU (vie ()7 - fre (w),

where Uy is the p-equilibrium potential of K and fg is the curvature function of K. For
—n#q€eR, let

Eupa = {K S }'S' 23Q €Sy st fu, (K u) = (pQ(u))nJrq for any u € S”fl}.

Clearly, BY € €, , as one can let Qo = ((n —p)/(p — 1))?/("*+9) . B} € Sy and thus for
any u € S"L,

fupa(BY, u) = (Z:?)p = (o (u))n-l-q.

PRroOPOSITION 3.2.  If K €, 4, then for —n # q € R,
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IR RN
A= () () et . a2

n n—p

PrOOF. Let L € 8. It can be easily checked that (3.27) is true for ¢ = 0, i.e.,

Apo) = 222 [ i) i (.0) = Gy ().

If ¢ > 0, by Holder inequality [12], one has

1 q/(n+q) p—1 n/(n+q)
DR =) T

n n—p
L\ rp— 1\ a /(nta)
= —_ . . - K q n/(nrq d
(n) (n—p> /Sn_l (2 () iy 0 (6, ) ()] o(u)
b1 ) n/inta) /4 a/(n-+a)
< (n / P (W) fupq (K, u)da(u)) (/ pﬁ(u)da(u))
p Sn—1 n Jgn-1

=0, (K, L)/ (nta) |L|q/(n+q).

Equality holds if and only if p} ™ (u) = f,, (K, u) for any u € S*~'. Taking the infimum
over L € &y, one gets

PNV OFD g\ )
() ( ) /S S o () < Ay (K. (328)

n n—op

On the other hand, since K € §,, 4, there exists a star body @ € Sy such that

po (W) = (fu,.q(K, u))l/(n+q) for any u € S™1.

Then

PN OFD g\ )
D R s

n n-—p
= Cp’q(K, QO)ﬂ/(n+q) . |Q|q/(n+q) > Ap,q(K).

This together with (3.28) yields

1 q/(n+q) p—1 n/(n+q)
)= (2) (B2 [t dst)

n n—op

Along the same lines, one can prove (3.27) when —n # g < 0. O

REMARK 3.2.  Motivated by the definition of the p-curvature image of K € F; in
[21], [31], for any K € §,, 4 and —n # ¢ € R, we can define A, K € Sy, the p-capacity
g-curvature image of K, by

n—p

n-+q
=DMy, K] (Pt ()

frpq (K w) = for any u € S" L.
’ n
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By the proof of Proposition 3.2, one also gets
Apg(K) = (Cpa (K. (A gF)*)) " 8y K| 05D = |, K[ 0050,
For —n # g € R, let
Vipg = {K €Fy Q€ Ko st fu, (K, u) = (pQ(u))n+q for any u € S”fl} .

Clearly, vy,.q € &u,,q and By € v, 4, which yields v, , # ¢. The following results
provide a convenient formula to calculate G, ,(K) when K € v, 4.

PROPOSITION 3.3. If -n#q &€ R and K € v, 4, then G, 4(K) = Ay 4(K).

PRrROOF.  First of all, we prove that A, K € Ko if K € v, 4. As K € v, 4, there
is a convex body Q € Ky such that f,, 4(K,u) = (po(u))"*4 for any u € S"~*. Together
with Remark 3.2, one gets, for any v € S"~1,

n(p —Ti)_|AI; K] ' (pAup,qK(u))n+q = (PQ(U))TLH’

and hence

DAL K Yt
byt = (M0 KN g

HMp,q n—p

Next we shall prove G, ((K) = A 4(K) under three different cases: ¢ =0, ¢ > 0
and —n # ¢ < 0. The case ¢ = 0 is trivial as G, o(K) = Ap o(K) = Cp(K).

If ¢ > 0, by (3.21) and (3.23), one gets G, 4(K) > A, ¢(K). On the other hand, by
Remark 3.2, A, K € Ko and Definition 3.4, one has

o\\n/(n+ n
-Ap,q(K) = (qu (K7 (Aupqu) )) [t ‘A(Mp7q)K|q/( o 2 gp,q(K)-

These imply G, ((K) = Ap o(K).
If —n # ¢q < 0, similarly, employing (3.22) and (3.24), Remark 3.2, A, K € Ky
and Definition 3.4, one gets

Gpa(K) < Apg(I) = (Cpg (K, (A o)) Ay, (K19 4D < G, o (K6,
Thus G, ,(K) = A, ¢(K) when —n # ¢ < 0. O

The following isoperimetric type inequalities for G, ,(K) and A, ;(K) can be easily
obtained from Theorem 3.2, Theorem 3.3, (3.25) and (3.26), and G, o(K) = Apo(K) =
Cp(K) for any K € Ky.

PROPOSITION 3.4. Let K € Ky be a convex body with its Santald point or centroid
at the origin o and Bx = vrad(K)Bj.
(i) Forq=>0,
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Apg(K) _ GpqlK) C, (k) "/t
Apq(Bk) = Gp.¢(Bk) < <Cp(BK)> .

(il) For —n < ¢ <0,

Apo(K) _ Gpq(K) C,(K) \™/ )
Ap,q(Bi) = Gp.q(Br) = (C’p(BK)) :

(iii) For g < —n, there exists a universal constant ¢ > 0 such that

Apa () GpaK) _ nojnta) ( Cy(K) )"“"*q)
Ap,q(BK) B gp,q(BK) N Cp(BK)

The cyclic inequality for G, ,(K) is given by the following theorem.

THEOREM 3.4. Let K € Kp.
(i) If n<t<0<r<sor—-nm<s<0<r<t, then

(r=s)(n+t)/(t—s)(n+r) (r=t)(n+s)/(s—t)(n+r)
gp,?'(K) < (g;v,t(K)) ' (gp,S(K)) .
(i) f n<t<r<s<0or—n<s<r<t<O0, then
(r—=s)(n+t)/(t—s)(n+r) (r=t)(n+s)/(s—t)(n+r)
Gp.r (K) < (Gpu(K)) (Gp.s(K)) :
(ili) Ift<r<-n<s<0ors<r<-n<t<DO0, then
(r—s)(n+t)/(t—s)(n+r) (r—t)(n+s)/(s—t)(n+r)
gpw(K) > (gp,t(K)) ' (gp,S(K)) ’ .

Proor. Let K,L € Ky and s, r,t be three real numbers such that 0 < (¢t —7)/(t —
s) < 1. By Holder inequality, one has

n—p

b1 t o (r=9)/(t=5)
< ( [ ) bl ) dy u))
n—p Sn—1

o (r=0)/(s—1)
(0 e diy 0

= (Cpa(K, L))V (L, )T, (3.29)

(i) Assume that —n <t <0 <7 <s. Then

p—1 T —r
Cor.1) = 2 [ W) e 0 ity ()

t—r n (r—s)(n+t) (r—=t)(n+s)
0<t75<1, n+r>0, (tfs)(n+7’)>0 and m>0

Together with (3.29) and Definition 3.4, one has

— n/(n+r) |rer/(ndr)
G (K) = it {(Cyr (K, L)) jep/een
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n/(n (r—s)(n+t)/(t—s)(n+r)
< inf {[(Cp,t(K,L)) /(n+t) |Lolt/(n+t):|

[(Contre, )™ o] (i) (”)(””)}

n/(n (r—s)(n+t)/(t—s)(n+r)
< sup {(Cp.,t(Ka )"/ |Lo|t/<n+t>}

n/(n+s (r—t)(n+s)/(s—t)(n+r)
it (€, ) el )
0

— (gp,t(K))(T—S)(n+t)/(t—s)(n+r) ) (gp7s(K))(T_t)(n+s)/(s_t)(”+r).

By switching the roles of s and ¢, one gets the case —n < s <0< r <{t.

(ii) It’s enough to prove the case —n <t < r < s < 0, since the case —n < s <1 <
t < 0 can be proved by switching the roles of s and ¢. In this case, one has
t—r n (r—s)(n+t)

<1, > 0,
—S n+r

>0 ang D +5)

t—s)(n+r) Gotmtr)

Together with (3.29) and Definition 3.4, one has

Gpr(K) = sup {(Cp,r(K, L))n/(n+r) ) |L°|T/(n+T)}
LeKo

< sup {
LeKy

n/(n+t ° n
< sup {(Cpa(K,0)" 0 po /ot
LeKy

n/(n+r)

—

(a8, 2) 7 (Gt 1) OO e |

} (r—s)(n+t)/(t—s)(n+r)

} (r=t)(n+s)/(s—t)(n+r)

-sup{ CyalB, 1)) oo/
LeKy

(r—s)(n+t)/(t—s)(n+r) (r—t)(n+s)/(s—t)(n+r)
= (gpt (gp,s(K)) .

(iii) Lett <r < —n < s < 0. Thus

t—r<1, n <0, (r—s)(n+t)
—S n+r

>0 and

(r—t)(n+
(t—s)(n+r) (s—=t)(n+r)
Together with (3.29) and Definition 3.4, one has

Gpr(K) = sup {(Cp,r(K, L))n/(n+r) ) ILo|r/(n+T)}

r—s —s r— s—t)1n/ (nt7)
> sup{[(Cp,t(K,L))( )/ >.(Cp75(K7L))< )/( t)}

}(r—s><n+t>/<t—s)<n+r>

' Lor/(nm}

n/(n+t ° n
> sup {(Cpua, 1)) Lo/
LeKy

(r—t)(n+8)/ (s—t) (n+)
n/(n+s o|s/(n+s

- sup {(CP,S(K,L)) /( )-|L |3/ (nt )}

LeKy
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(r—s)(n+t)/(t—s)(n+r) (r=t)(n+s)/(s—t)(n+r)
= (gp t(K)) ’ (gpys(K)) .

The case s < r < —n < t < 0 follows by switching the roles of s and t. O

In fact, one can check that the cyclic inequalities also hold only if one of 7, s, t equals
0, and hence the following results regarding the monotonicity of G, ;(KX) on s € R can
be obtained.

THEOREM 3.5. Let K € Ky and t,s # 0.
(i) If n<s<tors<t< —n, then

(gcp’:((KK)) ) (n+s)/s . (gc’”:((KK)))(nH)/t |

(il) If s < —n <t, then

(gp,sm)(”*”“ . (gp,m)("“)”.
Cp(K) N Gp(K)
4. The mixed geominimal p-capacities for multiple convex bodies.

4.1. The Orlicz mixed geominimal p-capacities.
Let m be a positive integer and Qg be a nonempty subset of Sy. In the following, de-

note the cartesian product Qp X -+ x Qg by (Qo)™. By L = (L1, Lo, -+ ,L,,) € (Qo)™,
[ —
we mean that, for any 1 <i¢ <m, L; € Qq. Let L° refer to the vector (L9, LS, - ,LS)).

Let K,; = (Ki]_,KiQ,"' ,Kim) for any ) > 1 and K = (K17K2"" 7I(m). By K,; - K
as ¢ — oo we mean that, for any 1 < 5 < m, K;; — K; as i — oo. By
@ = (p1,02,  ,om) € (Z)™, we mean that each ¢, € Z for i = 1,2,--- ,m, similarly,
@ € (D)™ means ¢; € D fori=1,2,--- ,m.

DEFINITION 4.1. Let ¢ € (Z)™ or p € (D)™, K = (K1,K2,-++ ,Kn) € (F)™
and L = (Ly, Lo, -, L) € (Ko)™. The Orlicz mixed p-capacity of K and L, denoted
by Cp (K, L), is defined by

Crolk.D) =2 [ <ﬁs0 (B fi ) o

where f5 (u) = hx, (u) - ‘VUKi(VI_(j (u)|P - fr,(u) for any 1 <i < m. If L € (Sp)™, then
define C) (K, L°) by

oot 1) =0 [ (e (i) ) ot

The continuity of C) (-, ) is stated as follows.
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PROPOSITION 4.1.  Let {K;};2, C (Fo)™ and {L;};=, C (Ko)™ be such that K; —
K e (F)™ and Ly —» L € (Ko)™ asi — co. If ¢ € ()™ or ¢ € (D)™, (I, fr,)™
converges uniformly to (H;"':l ij)l/m on S"t, then Cp o(K;,Li) — Cp,o(K,L) as
1 — 00.

PROOF. For any v € S !, any i > 1 and any 1 < k < m, let

ot = ( e (7 ) (0 g () "

j=1 ) o
bi(u) = (H VU, (v, @)P)
o= ([ () e )

The convergences of K; — K and L; — L imply that, for any 1 < j < m, hg,, — hg;,
and hr,; — hz, uniformly on S"~1. Thus, there are two constants ¢, C > 0 such that

¢-By CKij,K;,Lijj, L; CC-By, forany i >1andany 1<j<m.

and hence for any u € ™1,

C < h’Lij(u) th(u)

C =~ hg,(u) hg,(u) = ¢

1Q

Since ; is continuous on the interval [¢/C, C/c], then one has

m 1/m m 1/m
lH ©; (Z:’ ((Z))> “hi,, (u)] — [ H ©; (Z;L(J ((Z))> “hi; (u)] uniformly on S"7!.

Jj=1 Jj=1

Combining with the assumption that ([T}, fr, )™ — (IT7%, fx;)¥/™ uniformly on
S™~1 one gets a;(u) — a(u) uniformly on S"~! and hence there exists a positive constant
C1, such that, |a;(u)| < C; for any @ > 1 and any u € S"~!. By [6, Lemma 2.10,
Lemma 4.6], one has, for any 1 < j < m,

/Sn—l

Moreover, there exist two positive constants Cy (only dependent on K,n and p) and iy
such that when i > ig, for any 1 < 7 < m,

VUK, (vic,, " (w)|” = |VUK, (vk, " (w)) |p‘d0(u) 0. (4.30)
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/ |VUk,, (vi,, " (w))[Pdo(u) < Co and / \VUk, (v, " (u))|Pdo(u) < Co.
Sn—1 Sn—1
(4.31)

Note that a;(w) - b m(u) — a(u) - by (w) = (a;(u) — a(w)) - by (w) + a; (w) - (bi,m (@) — by ().
Hence, to prove C) o (Kj,L;) = C, (K, L), it is enough to prove

/Sﬂ_l(ai(u) —a(w)) - by, (w)do(u) — 0; (4.32)
/S i) (i) b)) () = 0 (4.33)

By the uniform convergence of a;(u) — a(u), together with (4.31) and Holder inequality
[12], one can easily get (4.32). As

ai(u) - (bim(u) — bm(u))
= a;(u) - b1 () (\VUKM (e, @) [P = |VUK,, (v, (w) [/ m)
(1) - (b 1 (1) — b1 (w)) | VU, (v, () [P

by the triangle inequality, |a;(u)| < C1, inequality | %/a — ¥/b| < %/|a — b] for a,b > 0,
Holder inequality [12], and (4.30)—(4.31), one gets, for any i > ig,

/ 01(10) + (B (1) — by () )dor (1)
Snfl

<0 - CQ(m—l)/m. (/
Sn—l

/S i) (Guns ()~ b () VU, (v, ) [ o)

1/m
|VUKW (VKmfl(u)) |p — |VUKm (VKm*l(u)) |p‘ da(u))

+

Repeating the process above, one gets

/S - ai(w) - (bim () = b (u))do(u)
< jf:lcl L gm=/m, </S

— 0.

1/m
IVUKU (VKijil(u)) |p - |VUK.7’ (VKJ’*I(U)) ‘P‘ da(U)>

n—1

Hence, (4.33) is also true and then C, o (K;, L;) = Cp o (K,L) as i — oo. O

The following theorem shows the existence of the p-capacitary Orlicz—Petty bodies
for multiple convex bodies.

THEOREM 4.1.  Let K € (F)™ and ¢ € (Z)™. There exists a convez body M € Ky
such that |M°| = w, and
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Cpo (K, M, M) = inf {C’pm(K,L,~-~ JL):LeKy and |L°] = wn}.
ProOOF. For convenience, let
Gorlie* (K) = inf {CW(K, L ,L):Leky and |L°] = wn}.

Clearly, Go'li*(K) < Cp (K, By, -+ ,By) < oo. Let {M;}{2, C Ko be a sequence of
convex bodies such that

Cpo(K, M, -, M;) = ggf‘ﬁj“(K) and |M;| =w, forany i>1.

As K € (F)™, there exist two positive constants Ry > 0 and C; > 0, such that,
hi,(u) < Ry and fg,(u) - h;(u) > Cy for any 1 < j < m and any u € Sm—1. By [6,
Lemma 2.18], there is a positive constant Cs, such that, ‘VUKj(I/I_{;(U))‘p > (Cy almost
everywhere on S"~! for any 1 < j < m.

For any ¢ > 1, let R; = par,(u;) = max,egn—1{pn, (u)} and hence hps,(u) > R; -
(u,u;)y for any u € S™~1. Again, suppose that u; converges to v € S"~!. Since the
spherical measure o(-) is not concentrated on any hemisphere of S™~1, there exists an
integer jo such that

/ (u,v)y do(u) > 0.
{uesn =1 (u,v) 4+ 21/jo}

Assume that M; is not bounded uniformly, i.e., sup,;>; R; = oo. Without loss of gener-
ality, let R; — oo as ¢ — oo. Thus, for any positive constant C' > 0,

gg.ilpiCZ(K) = zlifrolo CPa‘P(K’ M'L'a Mi7 e 7M7,)

_ nin_l)g}f:;:; /SW1 (f[apj (ZZEZ;) '3 (u))l/mda(U)

O [ [T ()|
> 0167;2_(5_1) .hirggolf - Lf[l(pj <C<Zaouz>+> } 1/md0(u)
SR SON ﬁ eaxn) " dota)

= % {ﬁ%’ (Roc-jo)]l/m

Jj=1

/ (u,v) 4 do(u). (4.34)
{uesn=1: (u,v) 4 21/jo}

Letting C' — oo, one gets a contradiction ggfg‘fz (K) > oo. Thus, sup;»; R; < oo and
{M;};2, is bounded. By Lemma 2.1, one gets a convergent subsequence of {M;}5°, which
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converges to some convex body M € Ky with |M°| = w,. Without loss of generality, let
M; — M as ¢ — oco. Thus, by Proposition 4.1, one has

g;:laiCZ(K) = Z.l_ifEOCP?‘P(K’Miv' o >Mi) = CP#P(KaMa T ’M)7 (4'35)

as desired. 0

The convex body M € K in (4.35) can be called a p-capacitary Orlicz—Petty bodies
of K, and if ¢ € (Z)™, such a convex body M exists for K € (F,;)™. The following
theorem deals with the continuity of the functional ggjgw(.) on (FJ)™ for the case
pe@m.

THEOREM 4.2.  Let {K;};o, C (Fo)™ and K € (F)™ be such that K; — K
as i — oo and @ € (I)™. If ([T/~y fx,;)"/™ converges uniformly to (T}, fx,)"/™ on
Sn=1, then GoThes (K;) — Gorlic* (K) as i — oo,

PROOF. Let M € Ky and M; € Ky be such that |[M°| = |M?| = wp,
Gorli*(K) = Cpp(K, M,--- M) and G0%(K;) = Cpo(Ki, My, -+, M;) for any i > 1.
Then Proposition 4.1 yields

Gylo(K) =Cypyp(K M, M)
= lim C, ,(K;, M, --- , M)
71— 00
=limsupC)p o (K;, M,--- , M)
i—»00
> limsup G/ (K;). (4.36)
i—00
By [6, (4.19)], there exist two positive constants C3 (only dependent on K, n and p) and
10, such that, \VUKU(VI_(; (u))[P > C3 and |VUk;, (V;(Jl (u))|P > C5 almost everywhere on
S~ for any i > ig and 1 < j < m. With a modification of (4.34), one gets that {M,}°,
is bounded. Let {Kj, }72, € {K;}2; be a subsequence, such that,
Jim. Gorlie: (K;,) = lim inf Goric® (K;).
It follows from the boundedness of {M;, }7°, and Lemma 2.1 that there exist a sub-
sequence {Mlk] }32 of {M;, }72, and M’ € Ko such that M;, — M’ as j — oo and
|(M'")°| = w,. By Proposition 4.1, one has

s orlicz N 1 orlicz A
lim inf G (K;) = lim Gy (K, )

M

= Jlggo Cp,qa(Kikj s Mi ikj)

[ PR
kj

:pr‘p(K,M”... 7M’)
> G4 ()

Together with (4.36), one gets ggfgcz (K) =lim; 00 ggjgcz (K;) as desired. O
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4.2. The L; mixed geominimal p-capacity.
In this subsection we will discuss the L, mixed geominimal p-capacity for multiple
convex bodies. Firstly, we introduce the Orlicz mixed geominimal p-capacity.

DEFINITION 4.2. Let K € (Ff)™
(i) Ifp € ()™ or ¢ € (D1)™, define Gg'lie*(K), the Orlicz mixed geominimal p-capacity
with respect to Ky, by

Golie*(K) = inf {op,w(K, L ,L):Leky and |L°] = wn}.

m

(ii) Ifp € (Do)™, define Gg'Le*(K ), the Orlicz mixed geominimal p-capacity with respect
to IC(), by

Gorlie*(K) = sup {C’ID’(‘(,(K,L7 ~+,L):LeKy and |L°]| = wn}.

m

Let L = (L1, Lo, -+, Ly,) € (So)™. Define the dual mixed volume of L by [20]

V(L) =V(Ly, Ly, , L) = /Sn ) (HPL )n/m do(u).

Clearly, for any L € Sy, V(L,L,--- , L) = |L|. Moreover, by Holder inequality, one has
———

m
SH|L1‘1/m for any L:(L17L2,"' m) (SO) )

and equality holds if and only if L; (1 < i < m) are dilates of each other. For ¢ € O(n)
and L = (Ly, Lo, -+ ,Ly,) € (So)™, define ¢L by ¢L = (¢L1,¢Lo, - ,¢Ly,). It can be
checked that V(¢L) = V(L). When ;(t) = t? for any 1 < i < m, C, ,(K, L), the Orlicz
mixed p-capacity of K and L, is given by

/Sn . (H (hr, ()" fuy a (K, u)) 1/md0(u).

=1

CPﬂ(Ka L)

n—p

If L € (So)™, we let

Cpq(K,L7) =

1/m
(p2.(0) i) dot)

,’:]s

ik (I

Let Qp be a nonempty subset of Sp.

i=1

DEFINITION 4.3.  Let K = (K1, Ko, -+, K,) € (Fy )™ and —n # g € R.
(i) For ¢ > 0, the L, mixed geominimal p-capacity with respect to Q, is defined by
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Gp.q(K, Qo) {(Cp,q(K, Lo, L))" \L|q/<n+q>}.

m

= inf
LeQo

(ii) For —n # ¢ < 0, the L, mixed geominimal p-capacity with respect to Qy, is defined
by

. o o\ n/(n+q) /(n+q)
Gp.q(K,Qp) = su C,,K,L° - L /() L
paal 0) Lego {( paa )) | L] }

There are many ways to extend/modify Definition 4.3 and to define differ-
ent L, mixed geominimal p-capacities. For instance, one can replace |L|?/("+9) by
[1", |Li|9/™(+0) or V(L)4/("+9). However, their properties are similar to those for
G, (-) defined in Definition 4.3 and hence they will not be discussed here.

Again, we will focus on the case G, 4(K) =G, (K,Ko) and A, ,(K) =G, (K, So).
Clearly, for any K € Ko,

Gpq(K, -+, K)=Gpq(K) and Apy(K, -+, K)=Apq(K).

m m

Moreover, if p;(t) =7 (1 < i < m,—n # q € R), then, for any K = (K1, Ks, - ,K,,) €
(Fo)™,
Grr () = w2/ - G ro/m (K).

p,q

The following proposition states G, 4(-) and A, 4(-) are O(n)-invariant.

PROPOSITION 4.2. Let K = (K1, Ko, ,Ky;,) € (F)™ and —n # q € R. Then
for any ¢ € O(n), one has

gp,q(ﬁbK) = gp,q(K) and Ap,q(¢K) = Ap,q(K)-

PRrROOF. We only prove G, ,(¢K) = G, ((K), and A, ,(¢K) = A, 4(K) follows
along a similar argument. For any 1 < i < m and any u € S"~ !, let v = ¢'u and then
Fupa(BK 1) = byl (u) - VU, (v, ()P - forc, (w)
= hie," (") [VUK, (Vi (9" w) " - fre, (6")
= fup.q(Ki,v).

Hence for any L € (Sp)™,

_ m 1/m
Cpa(0K, (61)°) = L /S n1(H<p¢Li<u>)‘qfup,q<¢Ki,u>) do(u)

n=p i=1
—1 m - 1/m
- Z -p ‘/Snfl ( (pr(¢"u)) " fuya (K, ¢tu)> do(u)
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= 2:21) /Sn_1 <f[1 (PLi(U))qfup-,q(KiaU)>l/mdU(U)

=C,(K,L°).

Together with (¢L)° = ¢L° and |¢L| = |L| for any L € Sy, one has, for ¢ > 0,

Gpa(0K) = int {(Cyy(@K.(GL)° (L) - . (6L)°)"/ "7 - jorjo/ ) |

— inf {(Cp}q(K,LO,LO, . 7Lo>)n/(n+q) . |L|q/(7l+q)}

The case —n # q < 0 follows along the same lines. O
For A, 4(-), we have the following result.
PROPOSITION 4.3.  Let K = (K, Ky, -+, K,,) € (F;H)™.

(i) Ifq >0, then

Apq(K) = inf {(Cp’q(K7L°))n/("+q) . H |Li|Q/’”(”+q)}

Le(So)™ Pl
o oy\n/(ntq) /(n+q)
= f K L -V(L)? .
Lel(go)m {(Cp’q( ’ )) V( ) }

(ii) If —n < ¢ <0, then

Apq(K)= sup {(Cp’q(K7L°))"/("+Q) . H |Li|<I/7n(n+q)}

Le(So)™ o

= sup { (Cp,q(K, Lo>)"/(”+‘1) . V(L)Q/(nJrlI) }
Le(So)™

(iil) If ¢ < —n, then

Apo(K) = sup {(Cpg(B, L))" T(my/ )
Le(So)™

For —n # q € R, let
£Hpvq
= {K c (].'a')m . HQ S SQ s.t. (Hfqu(Ki,u))
=1

1/m
= (pQ(u))n+q for any u € S”_l} .

One can easily check that (B3,---,Bjy) € ,, 4, and hence §,,, ; # ¢. In general, it is
difficult to get the precise value of A, ,(K). However, the following proposition provides
a convenient formula to calculate A, ,(K) if K € §,,, 4. The proof of this proposition is
similar to the ones of Proposition 3.2, so we omit it.
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PROPOSITION 4.4.  Let K = (K1, Ko, ,Ky,) €&y, 4. Then, for any —n # q € R,

I\ @D\ /) n/m(n+a)
Au=(0) - (0) L (Iatn)

n—p

The following result can be obtained.

COROLLARY 4.1. Let K = (K1, Ky, ,Kp) €§,,,4 and —n # q € R. Then

n n m(n X / m(n+q)
Ay, B[ [A Ep) qu| 'Ap,q(K) (nt) :V(Aupqulf" 7Aup7qu) R

Hpsq

Proor. By Remark 3.2 and Proposition 4.4, one has

V(Auqul’“ Aup»qK)

n/m
“if (Uori)anto
i — 1A
/Sn 1 (Hn 1) ‘ uqu| fup,q(Kiyu)

i=1

1 n/minta) /o, N/t n/m(n-+q)
(Mot () L (L aton)

n—p

do(u)

)n/M(n-i-q)

(fin-

This yields the desired result. g

n/m(n+q)
) '-Ap,q(K)~

Let —n # g € R. We define v,, 4, a subset of (F;)™, as follows:

LT

m 1/m
= {K € (FH)™: 3Q € Ky s.t. (Hfup,q(Kiau)> = (pQ(u))n+q for any u € S"_l} .
i=1

The following proposition provides a convenient formula to calculate G, ,(K) for K €
V,,.q- In particular,

n n n n n n\\ "/ (n+q) n n
gnq(Bz ) 732) = Ap,q(B2 1 732) = -Ap,q(Bz) = (Cp(Bz )) o |B2 |q/( ),
PROPOSITION 4.5.  Let K = (K1, Ky, -+, Ky,) €vy, 4 and —n # q € R. Then
gp,q(K) :Ap,q(K)-

PrOOF. Dueto K = (K1,K>,---,Ky,) €v,, 4, we can define L € Ko by its radial
function:
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1/m
(pr(w)) n+q <Hfup q Kl,u)) for any u € S"7L.

When g = 0, the desired formula follows trivially, i.e.,

Gpo(K) =A,o(K) = p-l /Sn_1 (ﬁf#p,O(Ki’“)>l/mdU(“)~

n—p
If ¢ > 0, it follows from the proof of Proposition 4.4 and L € K that
o o\ 7/ (n+4q) n
gp-,q(K) 2 Anq(K) = (Cp,q(KvL o L )) v |L|q/( o z gnq(K)-
Hence G, ((K) = A, o(K). The case —n # ¢ < 0 follows from a similar argument. O

Similar to Theorem 3.4, we have the following cyclic inequalities for G, 4(-). Similar
results hold for A, ,(-).

THEOREM 4.3. Let K € (F )™
(i) If n<t<0<r<sor—-n<s<0<r<t, then

(r=s)(n+t)/(t=s)(n+r) (r=t)(n+s)/(s=t)(n+r)
Gp.r(K) < (Gp.1(K)) - (Gp.+(K)) :
(i) If n<t<r<s<0or—-n<s<r<t<O0, then

G,.(K) < (gp)t(K))(T—S)("+t)/(t—3)(n+r) ] (gp)s(K))(T—t)(n+3)/(s—t)(n+7“).

(i) Ift<r<-—-n<s<0ors<r<-n<t<O0, then

r—s)(n+t)/(t—s)(n+r) (r—t)(n+s)/(s—t)(n+r)
Gy (K) = (G (K)) ") (Gpa(K)) .

From Definition 4.3 and Holder inequality, one can get the Aleksandrov—Fenchel
inequality for Gp, (-). Similar results can be obtained for A, 4(-).

THEOREM 4.4. Let K € (]-"J)m. For1<j<m and —n < q <0, one has

) J
(Grq(K)) < ng,q(K17K27"' Ko K, Kon—jyis s K1)
=1

J

Moreover, if j = m, one has

(gp’q H o

Furthermore, Definition 4.3 yields the isoperimetric type inequality as follows.

COROLLARY 4.2. Let K = (K1,Ko,  ,Ky) € (F5)™
(i) If¢ >0, then
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gp,q(Kvi%"' , ﬁ( - K“B2)>n/m(n+lI).
glhq(Bg’Bgv"' ) — ;U7q( Bn)
_,_/

m

Equality holds if K; = r;BY with r; >0 for any 1 <i <m and [[\=,r; = 1.
(ii) Ifg < —n, then

gp7q(K17K2’... ; ﬁ( o K“BZ)>n/m(n+Q)-
glhq(Bgv Bg’ -, B =1 Bn)
_\/—/

m

Equality holds if K; = r;BY withr; >0 for any 1 <i<m and []]*,r; = 1.
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