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Abstract. In this paper, we introduce a two-parameters determinantal
point process in the Poincaré disc and compute the asymptotics of the variance
of its number of particles inside a disc centered at the origin and of radius r

as r → 1−. Our computations rely on simple geometrical arguments whose
analogues in the Euclidean setting provide a shorter proof of Shirai’s result for
the Ginibre-type point process. In the special instance corresponding to the
weighted Bergman kernel, we mimic the computations of Peres and Virag in

order to describe the distribution of the number of particles inside the disc.

1. Introduction.

Determinantal point processes are random point measures on locally compact polish

spaces whose correlation functions are determinants of locally trace-class non negative

operators bounded by one ([18]). They appeared in Macchi’s paper [13] under the name

‘Fermion processes’ since Fermions obey the Pauli exclusion principle so that their wave-

functions are given by Slater determinants. By the Macchi–Soshnikov–Shirai–Takahashi

Theorem ([17], [18]), given a measure space (E, µ) and an orthogonal projection onto

a closed subspace F ⊂ L2(E, µ) with Hermitian kernel K, there exists a determinan-

tal point process whose correlation functions are governed by K and whose number of

particles is almost surely equal to the dimension of F . For instance, unitarily-invariant

random matrix models give rise to determinantal point processes with almost surely finite

numbers of particles ([18]), while the Fock and the Bergman spaces provide examples

of infinite-dimensional determinantal point processes. Actually, the former corresponds

to the Ginibre process which is the weak limit of the eigenvalues process of the Ginibre

matrix model ([9]) and the latter corresponds to the zero set of the hyperbolic Gaussian

analytic function whose matrix-valued extension is also the weak limit of the eigenvalues

of square truncations of Haar unitary random matrices ([12]). For other examples and

various constructions of determinantal point processes, we refer the reader to [3].

On the other hand, the Fock and the Bergman spaces may be realized as the null

eigenspaces of the Schrödinger operators with a uniform magnetic field, known as the

Landau Laplacian, in the complex plane and in the Poincaré disc respectively. In the
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flat geometrical setting, the Landau Laplacian has a discrete spectrum—Euclidean Lan-

dau levels—labeled by the set of non negative integers whose eigenspaces are infinite-

dimensional and consist in general of polyanalytic functions. Besides, the corresponding

reproducing kernels were computed in [2] and subsequently used in [15] in order to de-

fine the Ginibre-type point processes, where the author derives the asymptotics of the

variance of the number of particles in a disc centered at the origin and of radius r as

r → ∞. Note that by analogy with the Ginibre process, a finite-dimensional version of the

Ginibre-type point process was introduced and studied in [11] yet without any reference

to an underlying random matrix model. As to the negatively-curved geometrical setting,

the Landau Laplacian always admits a continuous spectrum and a discrete spectrum-

hyperbolic Landau levels—arises as soon as the magnetic field strength is large enough.

The corresponding eigenspaces are infinite-dimensional as well, and the expressions of

their reproducing kernels are also available (see e.g. [8] and references therein).

In this paper, we use these kernels to introduce the hyperbolic analogue of the

Ginibre-type point process, and call it in a similar fashion ‘the hyperbolic-type’ point

process. Doing so allows to generalize the zero set of the hyperbolic Gaussian analytic

function within the class of determinantal processes, in opposite to the Gaussian random

series considered in [4]. Furthermore, the hyperbolic-type determinantal point process

converges weakly to the Ginibre-type point process if we let the curvature of the disc

tends to zero which is in agreement with the geometrical contraction principle. Our

main result establishes the exact asymptotics of the variance of the number of particles

lying inside a disc centered at the origin and of radius r as r → 1−. Though this is

the hyperbolic analogue of Shirai’s result for the Ginibre-type point process, our proof

is completely different from Shirai’s one and may even be adapted to the Ginibre-type

point process in order to write a different proof of Shirai’s result. More precisely, using

the invariance of the reproducing kernels under appropriate groups of transformations—

the translation group for the complex plane and the Möbius group for the Poincaré

disc—we are led to the computation of the Euclidean and the hyperbolic areas of some

planar region. For the Ginibre-type point process, the area of this region is already

known and yields directly Shirai’s result. As to the hyperbolic-type point process, the

computations are more involved than those in the Euclidean setting, nonetheless we

succeed to express this area as an incomplete hypergeometric integral and to derive

the sought asymptotics. Nonetheless, in the special instance corresponding to weighted

Bergman kernels, we mimic the computations done in [14] and obtain the full description

of the number of particles inside the disc.

The paper is organized as follows. For sake of completeness, we recall in the next

section the definition of the Ginibre-type point process and write another proof of Shirai’s

result using the invariance of the reproducing kernels under translations. In Section 3,

we introduce the hyperbolic-type point process and prove our main result. In the last

section, we describe the distribution of the number of particles inside the disc in the case

of weighted Bergman kernels which corresponds to the lowest hyperbolic Landau level.

2. The Ginibre-type point process revisited.

Let E be a locally compact polish space and let Conf(E) be the space of locally

finite configurations, that is, the space of all discrete subsets of E having a finite number



1139(113)

The hyperbolic-type point process 1139

of elements in any compact set. We can equip Conf(E) with the sigma-algebra F(E)

generated by the maps :

NA : Conf(E) → N
X 7→ |X ∩A|

for all relatively compact subsets A ⊂ E. Then,

Definition 1. A point process is a probability measure P on (Conf(E),F(E)).

It is a determinantal point process with correlation kernel K and reference measure

µ on (E,B(E)) if for every n ∈ N and every compactly-supported bounded function

f : En → C, one has:

EP

 ∑
x1,...xn∈X

f(x1, . . . , xn)

 =

∫
En

f(x1, ..., xn) det (K(xi, xj))1≤i,j≤n dµ(x1) · · · dµ(xn).

Here, the sum in the left-hand side is over all simple n-points in the random configuration

X.

A well-known example is the Ginibre point process corresponding to the following

data:

• E = C.

• dµ(z) = e−|z|2dz/π, dz being the Lebesgue measure in C.

• F is the Fock space consisting of entire functions in the Hilbert space

L2(C, e−|z|2dz/π)

whose reproducing kernel is K0(z, w) = ezw.

It arises as the weak limit of the eigenvalues process of the Ginibre random matrix model

as the size of the matrix tends to infinity. On the other hand, the Fock space may be

realized as the null space of the Euclidean Landau Laplacian with uniform magnetic

field1:

− ∂2

∂z∂z
+ z

∂

∂z
(1)

which has discrete spectrum given by non negative integers ([2]). Besides, for any n ∈ N,
the n-th eigenspace consists of polyanalytic functions which are solutions of the general-

ized Cauchy–Riemann equation:(
∂

∂z

)n+1

f = 0, n ≥ 0,

and its reproducing kernel reads ([2]):

1Without loss of generality, the magnetic field strength may be taken equal to one.
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Kn(z, w) = ezwLn(|z − w|2), z, w ∈ C,

where Ln is the n-th Laguerre polynomial ([1]). In [15], the author introduced the

Ginibre-type point process Pn at level n as the determinantal point process with kernel

Kn. There, he also computed the variance of the number of its particles inside a disc Dr

centered at the origin and of radius r, and showed that it grows linearly as r → ∞. In

this respect, recall that the reproducing property leads to the following formula:

Proposition 1. Let P be a determinantal point process defined through a repro-

ducing kernel K with respect to a reference measure µ. Then, for any relatively compact

set A ⊂ E, the variance of NA is given by :

VarP(NA) =

∫
A

dµ(z)

∫
E\A

dµ(w)|K(z, w)|2. (2)

With the help of (2) and the convolution property of Laguerre polynomials, the

following result was proved in [15]:

Vn(Nr) =
r

π

∫ ∞

0

dt|Ln(t)|2e−t

∫ t∧4r2

0

√
1− x

4r2
dx√
x
.

Here, Vn stands for the variance with respect to Pn, and Nr denotes—here and after—

the number of particles inside a disc Dr centered at the origin and of radius r > 0. In

the sequel, we write a shorter proof of this result which has the merit to apply to the

hyperbolic-type point process introduced later since it relies on geometrical arguments.

To this end, perform the variables change t→ t2, x→ (2rx)2 in order to rewrite Shirai’s

formula as

Vn(Nr) = 8πr2
∫ ∞

0

tdt|Ln(t
2)|2 e

−t2

π2

∫ (t/2r)∧1

0

√
1− x2dx

=

∫
C
|Ln(|z|2)|2

e−|z|2

π2

∫ (|z|/2r)∧1

0

(4r2)
√

1− x2dx. (3)

On the other hand, start from (2) and use the invariance under translations of

Kn(z, w)µ(dw)µ(dz) to get:

Vn(Nr) =

∫
Dc

r

µ(dw)

∫
Dr

µ(dz)|Kn(z, w)|2

=
1

π2

∫
Dc

r

dw

∫
Dr

dze−|z−w|2 |Ln(|z − w|2)|2

=
1

π2

∫
Dc

r

dw

∫
w+Dr

dze−|z|2 |Ln(|z|2)|2

=
1

π2

∫
C
dze−|z|2 |Ln(|z|2)|2

∫
Dc

r∩{w,|w−z|<r}
dw

=
1

π2

∫
C
dze−|z|2 |Ln(|z|2)|2Area(Dc

r ∩Dr(z)),
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whereDr(z) is the disc centered at z and of radius r. If |z| ≥ 2r, then Area(Dc
r∩Dr(z)) =

πr2 since Dr(z) ⊂ Dc
r, which coincides with the value of the inner integral in (3):

4r2
∫ (|z|/2r)∧1

0

√
1− x2dx = 4r2

∫ 1

0

√
1− x2dx = πr2.

Otherwise, if |z| < 2r, then Dc
r∩Dr(z) is the complementary in Dr(z) of the overlapping

of the discs Dr and Dr(z) whose area admits the following expression:

Area(Dc
r ∩Dr(z)) = πr2 − 2r2 arccos

(
|z|
2r

)
+

|z|
2

√
4r2 − |z|2.

Again, this area coincides as well with the value of the inner integral in (3):

4r2
∫ (|z|/2r)

0

√
1− x2dx = πr2 − 2r2

∫ arccos(|z|/2r)

0

(1− cos(2θ))dθ.

Shirai’s formula is proved. In a nutshell, the computations of Vn(Nr) rely essentially

on the invariance under translation of the integrand, on the transitive action of the

translation group on C and on the knowledge of the expression of the Euclidean area

of Dc
r ∩ Dr(z). As we shall see in the next section, the situation is very similar in the

hyperbolic setting, yet the computations are tricky and involved.

3. The hyperbolic-type point process.

In this section, we introduce the hyperbolic-type point process. To this end, we recall

from [8] the spectral decomposition of the hyperbolic Landau Laplacian with uniform

magnetic field2 ν ≥ 0. Let D be the unit disc, then the hyperbolic Landau Laplacian is

the following differential operator acting on smooth functions as:

Hν := −4(1− zz̄)

(
(1− zz̄)

∂2

∂z∂z̄
− 2νz̄

∂

∂z̄

)
.

It is a densely defined operator in L2(D, λν) where

λν(dz) := (1− |z|2)2ν−2dz,

and admits a unique self-adjoint extension which we also denote by the same symbol Hν .

Besides, its spectrum has a purely continuous part [1,+∞[ and if ν > 1/2, then a non

negative discrete part arises and consists of the so-called hyperbolic Landau levels:

ϵνm = 4m(2ν −m− 1); m = 0, 1, . . . , [ν − 1/2], 2(ν −m)− 1 ̸= 0,

[x] being the largest integer less than or equal to x. The corresponding eigenspaces are

infinite-dimensional and the reproducing kernel Gν
m associated with a given hyperbolic

Landau level ϵνm reads ([8]):

2Unlike the Euclidean setting, the strength ν of the magnetic field can not be reduced to one.
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Gν
m(z, w) =

2(ν −m)− 1

π
(1− zw̄)−2ν

(
|1− zw̄|2

(1− |z|2)(1− |w|2)

)m

× P (0,2(ν−m)−1)
m

(
2
(1− |z|2)(1− |w|2)

|1− zw̄|2
− 1

)
(4)

where P
(0,2(ν−m)−1)
m is the m-th Jacobi polynomial ([1]). With these data in hands, we

are ready to introduce the hyperbolic-type point process :

Definition 2. Let ν > 1/2 and m ∈ {0, . . . , [ν−1/2]}. The hyperbolic-type point
process Pν

m at level ϵνm is the determinantal point process with correlation kernel Gν
m.

In the sequel, we will denote the variance with respect to Pν
m by Vν

m. Notice that

if 2ν ≥ 2 is an integer and m = 0, then Pν
0 reduces to the singular locus of a complex

Gaussian (2ν−1)×(2ν−1) matrix-valued random series in which case Gν
0 is the weighted

Bergman kernel in D ([12]). In particular, P1
0 is nothing else but the hyperbolic Gauss-

ian determinantal process defined and studied in [14], and is realized as the zeros of a

Gaussian analytic series. In particular, it was proved there that

V1
0(Nr) =

r2

1− r4
, (5)

and another proof of this result is given in [4]. However, beware that the Gaussian

analytic series in the disc studied in [4] are in general not determinantal and that as-

ymptotic formulas for the variance of Nr are derived there from a formula quite similar

to (2). More generally, the adaptation of our previous proof of Shirai’s result yields the

following formula for Vν
m(Nr):

Proposition 2. Let Pν
m be the hyperbolic-type point process at level ϵνm. Set

fν,m(x) :=

[
(2(ν −m)− 1)

π
(1− tanh2(x))ν−mP (0,2(ν−m)−1)

m

(
1− 2 tanh2(x)

)]2
,

and recall the hyperbolic distance in D :

cosh2(d(z, w)) :=
|1− zw|2

(1− |z|2)(1− |w|2)
=

1

1− tanh2(d(z, w))
.

Then,

Vν
m(Nr) = 2

∫
D
λ0(dz)fν,n(d(z, 0))

∫ |Cz,r|+Rz,r

||Cz,r|−Rz,r|∨r

arccos

(
t2 + |Cz,r|2 −R2

z,r

2t|Cz,r|

)
tdt

(1− t2)2
,

(6)

where

Cz,r :=
1− r2

1− |z|2r2
z, Rz,r :=

1− |z|2

1− |z|2r2
r.

Before proving this proposition, we state the main result of our paper:
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Theorem 1. The following asymptotics of Vν
m(Nr) holds :

Vν
m(Nr) ∼

Cν
m

1− r2
, r → 1−,

where

Cν
m =

∫
D
λ0(dz)fν,m(d(z, 0)) arccos(1− 2|z|2).

Proof of Proposition 2. Firstly, it is straightforward that:

|Gν
m(z, w)|2λν(dz)λν(dw) = fν,m(d(z, w))λ0(dz)λ0(dw). (7)

Secondly, the hyperbolic area measure λ0 and the hyperbolic distance are invariant under

the action of the Möbius transformations:

gw,θ : z 7→ eiθ
w − z

1− wz
, w ∈ D, θ ∈ [0, 2π],

which act transitively on D, see e.g. [19]. Note that gw,0 is an involution, maps the origin

to w and may be written as

gw,0 = Rarg(w)g|w|,0R− arg(w),

where

Rθ =

(
ei arg(w)/2 0

0 e−i arg(w)/2

)
.

Denoting simply gw = gw,0, it follows from (2) that:

Vν
m(Nr) =

∫
Dc

r

λν(dw)

∫
Dr

λν(dz)|Gν
m(z, w)|2

=

∫
Dc

r

λ0(dw)

∫
Dr

λ0(dz)fν,m(d(z, gw0))

=

∫
Dc

r

λ0(dw)

∫
gwDr

λ0(dz)fν,m(d(z, 0))

=

∫
Dc

r

λ0(dw)

∫
Rarg(w)g|w|Dr

λ0(dz)fν,m(d(z, 0)).

Now, write

g|w|z =
1

|w|

[
1− 1− |w|2

|w|z + 1

]
,

then the image of Dr under the inversion z 7→ 1/(|w|z + 1) is the disc

D

(
1

1− |w|2r2
,

|w|r
1− |w|2r2

)
,
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and in turn,

g|w|Dr = D (|Cw,r|, Rw,r) .

Note that g|w|Dr reduces to the singleton {1} as |w| → 1, while

grDr = D

(
r

1 + r2
,

r

1 + r2

)
.

Consequently, ∪
w∈Dc

r

gwDr =
∪

w∈Dc
r

Rarg(w)g|w|R− arg(w)Dr = D.

Moreover, given z ∈ D, then gw(y) = z for some y ∈ Dr is equivalent to gw(z) = y since

gw is an involution. But,

{w ∈ D ; d|gw(z)| < r} = D(Cz,r, Rz,r)

is the disc centered at Cz,r and of radius Rz,r. As a result, Fubini Theorem entails:

Vν
m(Nr) =

∫
D
λ0(dz)fν,m(d(z, 0))

∫
Dc

r∩D(Cz,r,Rz,r)

λ0(dw). (8)

Finally, consider the inner integral and note that it does not depend on arg(z). Using

polar coordinates, the range of arg(w), w ∈ Dc
r ∩D(Cz,r, Rz,r), may be determined (for

fixed |w|) from Al Kashi’s theorem applied to the triangle formed by the origin, Cz,r and

one of the intersection points of ∂D(0, t) and ∂D(Cz,r, Rz,r), see Figure 1 below.

Figure 1. Range of arg(w) for fixed |w| = t (thick line).

As to the range of |w|, it is determined as follows. The closest point to the origin
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and lying in ∂D(Cz,r, Rz,r) is:

Cz,r −Rz,r
Cz,r

|Cz,r|

and its modulus is given by:

||Cz,r| −Rz,r| =
||z| − r|
1− |z|r

.

Similarly, the most distant point is:

Cz,r +Rz,r
Cz,r

|Cz,r|

and its modulus is given by:

|Cz,r|+Rz,r =
|z|+ r

1 + |z|r
.

Hence

w ∈ D(Cz,r, Rz,r) ⇒ ||Cz,r| −Rz,r| < |w| < |Cz,r|+Rz,r,

and consequently:

w ∈ Dc
r ∩D(Cz,r, Rz,r) ⇒ ||Cz,r| −Rz,r| ∨ r < |w| < |Cz,r|+Rz,r.

Altogether yields:∫
Dc

r∩D(Cz,r,Rz,r)

λ0(dw) = 2

∫ |Cz,r|+Rz,r

||Cz,r|−Rz,r|∨r

arccos

(
t2 + |Cz,r|2 −R2

z,r

2t|Cz,r|

)
tdt

(1− t2)2
.

Keeping in mind (8), the proposition is proved. □

Remark 1 (Contraction principle). From the very definition of fν,m, we derive

fν,m(d(z, 0)) =

[
2(ν −m)− 1

π
(1− |z|2)ν−mP (0,2(ν−m)−1)

m

(
1− 2|z|2

)]2
.

Let R > 1 be a positive real number and perform in (6) the variable change z 7→ z/R:

Vν
m(Nr) =

(
2(ν −m)− 1

πR2

)2 ∫
DR

(
1− |z|2

R2

)2ν−2m−2 [
P (0,2(ν−m)−1)
m

(
1−2

|z|2

R2

)]2
×
∫
Dc

r∩D(Cz/R,r,Rz/R,r)

λ0(dw),

where DR is the disc centered at the origin and of radius R. Now, rescale r 7→ r/R, take

ν = R2/2 and perform the variable change w 7→ w/R in the inner integral. Then:
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VR2/2
m (Nr/R) =

(
(R2 − 2m)− 1

πR2

)2 ∫
DR

(
1− |z|2

R2

)R2−2m−2 [
P (0,R2−2m−1)
m

(
1−2

|z|2

R2

)]2
×
∫
Dc

r∩D(C̃z,r,R̃z,r)

λ0(dw)

R2
,

where

C̃z,r =
1− (r/R)2

1− (|z|r/R2)2
z, R̃z,r =

1− (|z|/R)2

1− (|z|r/R2)2
r.

Using the limiting relation ([1]):

lim
R→∞

P (0,R2−2m−1)
m

(
1− 2

|z|2

R2

)
= Lm(|z|2),

it follows that

lim
R→∞

R2VR2/2
m (Nr/R) =

1

π2

∫
C
e−|z|2 [Lm(|z|2)

]2 ∫
Dc

r∩Dr(z)

dw = Vn(Nr).

Such a result is expected to hold by the virtue of the geometrical contraction principle.

However, what is not expected and less obvious is the rescaling of the magnetic field

strength.

Now, we shall prove Theorem 1.

Proof. The inner integral displayed in the RHS of (6) may be transformed after

performing an integration by parts into:

∫ |Cz,r|+Rz,r

||Cz,r|−Rz,r|∨r

1√
4|Cz,r|2t2 − (t2 + |Cz,r|2 −R2

z,r)
2

(t2 +R2
z,r − |Cz,r|2)

t(1− t2)
dt

− 1

(1− r2)
arccos

(
r2 + |Cz,r|2 −R2

z,r

2r|Cz,r|

)
1{|Cz,r|−Rz,r<r}. (9)

Performing further the variables change t 7→ t2, the integral above becomes:

1

2

∫ Fz,r

Ez,r∨r2

1√
−t2 + 2Az,rt−B2

z,r

(t+Bz,r)

t(1− t)
dt,

where

Az,r := |Cz,r|2 +R2
z,r, Bz,r := R2

z,r − |Cz,r|2,
Ez,r := (Rz,r − |Cz,r|)2, Fz,r := (Rz,r + |Cz,r|)2.

The trinomial inside the square root factorizes as

−t2 + 2Az,rt−B2
z,r = (t− Ez,r)(Fz,r − t),
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and the following decomposition holds

(t+Bz,r)

t(1− t)
=
Bz,r

t
+

1 +Bz,r

1− t
.

We are then led to:

1

2

∫ Fz,r

Ez,r∨r2

1√
(t− Ez,r)(Fz,r − t)

[
Bz,r

t
+

1 +Bz,r

1− t

]
dt,

which may be turned into an incomplete hypergeometric-type integral after the variable

change

t 7→ Fz,r − (Fz,r − Ez,r)t.

Indeed, quick computations yield:

1

2

∫ 1∧Hz,r

0

dt√
t(1− t)

[
Bz,r

Fz,r − (Fz,r − Ez,r)t
+

1 +Bz,r

(Fz,r − Ez,r)t+ 1− Fz,r

]
(10)

where

Hz,r :=
Fz,r − r2

Fz,r − Ez,r
.

Set

Uz,r :=
Fz,r − Ez,r

1− Fz,r
, Vz,r :=

Fz,r − Ez,r

Fz,r
.

Then, (10) may be written as

1

2

∫ 1∧Hz,r

0

dt√
t(1− t)

[
Bz,r

Fz,r

1

1− Vz,rt
+

1 +Bz,r

1− Fz,r

1

1 + Uz,rt

]
. (11)

Now, we are ready to let r → 1− in (11). More precisely, we obviously have

lim
r→1−

Cz,r = 0, lim
r→1−

Rz,r = 1, lim
r→1−

Hz,r =
1− |z|

2
,

whence

lim
r→1−

(1− r2)
Bz,r

Fz,r

∫ 1∧Hz,r

0

dt√
t(1− t)

1

1− Vz,rt
=

∫ (1−|z|)/2

0

dt√
t(1− t)

lim
r→1−

(1− r2) = 0.

(12)

Similarly

lim
r→1−

(1− r2)
1 +Bz,r

2(1− Fz,r)

∫ 1∧Hz,r

0

dt√
t(1− t)

1

1 + Uz,rt
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=
(1 + |z|)2

(1− |z|2)

∫ (1−|z|)/2

0

dt√
t(1− t)

1

1 + Uz,1t

=
2(1 + |z|)
(1− |z|)

∫ (1/2) arccos(|z|)

0

1

1 + Uz,1 sin
2 t
dt

=

∫ arccos(|z|)

0

(1− |z|2)
(1− |z|)2 + 4|z| sin2(t/2)

dt

=

∫ arccos(|z|)

0

(1− |z|2)
1 + |z|2 − 2|z| cos t

dt

= 2arctan

(
1 + |z|
1− |z|

tan

[
arccos(|z|)

2

])
,

where the last equality follows from formula 2.556 (1) in [10]. Since

tan
(u
2

)
=

sin(u)

1 + cos(u)
,

then

2 arctan

(
1 + |z|
1− |z|

tan

[
arccos(|z|)

2

])
= 2arctan

(√
1 + |z|
1− |z|

)
= π − arccos(|z|). (13)

Finally, using the expressions

|Cz,r| −Rz,r =
|z| − r

1− |z|r
, |Cz,r|+Rz,r =

|z|+ r

1 + |z|r
,

we get

r2 + |Cz,r|2 −R2
z,r

2r|Cz,r|
=
r2 + (|z|2 − r2)/(1− |z|2r2)
2r(1− r2)|z|/(1− |z|2r2)

=
|z|(1 + r2)

2r
,

which in turn yields the limit:

lim
r→1−

arccos

(
r2 + |Cz,r|2 −R2

z,r

2r|Cz,r|

)
1{|Cz,r|−Rz,r<r} = arccos(|z|)1{|z|<1}. (14)

Gathering (6), (9), (12), (13) and (14), we deduce that:

Cν
m =

∫
D
λ0(dz)fν,m(d(z, 0)) [π − 2 arccos(|z|)]

=

∫
D
λ0(dz)fν,m(d(z, 0)) arccos(1− 2|z|2),

which proves Theorem 1. □

Remark 2. For m ∈ {0, . . . , [ν − (1/2)], let

Aν
m(D) = {h ∈ L2(D, λν),Hνh = ϵνmh}
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be the corresponding generalized Bergman space. An orthogonal basis (ϕνm(j))j≥0 of

Aν
m(D) was given for instance in [8], eq. (2,2), and one readily sees that

Cν
m =

(
2(ν −m)− 1)

π

)2 ∫
D
λν(dz)[ϕ

ν
m(m)]2 arccos(1− 2|z|2).

By the virtue of eq. (2.4) in [8], we further get the following bound:

Cν
m ≤ (2(ν −m)− 1)2

π
||ϕνm(m)||2L2(D,λν)

= 2(ν −m)− 1.

4. The weighted Bergman kernel and the lowest hyperbolic Landau

level.

The Specialization of Theorem 1 with m = 0 and integer values of 2ν gives the

asymptotics as r → 1− of the variance of the number of zeros in Dr of the complex

Gaussian matrix-valued series. Nonetheless, we may mimic the proofs of Lemma 14 in

[14] (when the discs coincide) and of Theorem 2 (i) of that paper in order to derive the

distribution of Nr for any real ν > 1/2. More precisely,

Theorem 2. For any s ∈ (−1, 1),

E((1 + s)Nr ) =

∞∏
j=1

(
1 + s(2ν − 1)

(2ν)j−1

(j − 1)!
Br(j, 2ν − 1)

)
,

where

Br(j, 2ν − 1) :=

∫ r2

0

sj−1(1− s)2ν−2ds,

is the incomplete Beta integral. In particular, Nr has the same distribution as

∞∑
j=1

Xj

where (Xj)j≥1 are independent {0, 1}-valued random variables defined on some probability

space (Ω,F,Q) such that

Q(Xj = 1) = (2ν − 1)
(2ν)j−1

(j − 1)!
Br(j, 2ν − 1) =

Br(j, 2ν − 1)

B1(j, 2ν − 1)
.

Proof. Since the proof follows the lines written pp. 15–16 in [14], we shall only

indicate what modifications should be performed there. Firstly, the statement of Lemma

14 in [14] for identical discs is modified as follows: the weighted Bergman kernel admits

the following expansion:

Gν
0(z, w) =

2ν − 1

π

1

(1− zw̄)2ν
=

2ν − 1

π

∑
j≥0

(2ν)j
j!

(zw)j .
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But since λν is radial, then the discussion in the bottom of p. 15 in [14] is still valid and

yields the binomial moments of Nr: for any k ≥ 1,

Eν
0(Nr(Nr − 1) · · · (Nr − k + 1)) =

∫
Dk

r

det(Gν
0(zl, zm))1≤l,m≤k dz1 · · · dzk

=
∑
σ∈Sk

∏
τ∈σ

(−1)|τ |+1
∑
j≥0

[
(2ν − 1)(2ν)j

j!
Br(j + 1, 2ν − 1)

]|τ |
,

(15)

where Sk is the symmetric group of {1, . . . , k}, |τ | is the size of the cycle τ in the

permutation σ. Secondly, we come to the proof of Theorem 2 (i) in [14]: set

βν
k := E

((
Nr

k

))
=

1

k!

∑
σ∈Sk

∏
τ∈σ

(−1)|τ |+1
∑
j≥0

[
(2ν − 1)(2ν)j

j!
Br(j + 1, 2ν − 1)

]|τ |
,

and

βν(s) =
∑
k≥0

βν
ks

k, s ∈ (−1, 1), βν
0 = 1.

Then, the recurrence equation (32) in [14] still holds and may be derived by simply

separating the block of a given permutation σ containing 1 from the others:

βν
k =

1

k

k∑
l=1

(−1)l+1
∑
j≥0

[
(2ν − 1)(2ν)j

j!
Br(j + 1, 2ν − 1)

]l
βν
k−l,

and so does equation (33) there, where now

ψ(s) ≡ ψν(s) :=
∞∑
l=1

(−s)l+1
∑
j≥0

[
(2ν − 1)(2ν)j

j!
Br(j + 1, 2ν − 1)

]l
.

Finally, integrating with respect to s leads to

log(β(s)) = −
∑
j≥0

∞∑
l=1

1

l

[
− (2ν − 1)(2ν)j

j!
sBr(j + 1, 2ν − 1)

]l
=
∑
j≥1

log

(
1 + s

(2ν − 1)(2ν)j−1

(j − 1)!
Br(j, 2ν − 1)

)
.

The rest of the proof is similar. □

From (15), we readily obtain:

E(Nr(Nr − 1))
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=

∑
j≥0

(2ν − 1)(2ν)j
j!

Br(j + 1, 2ν − 1)


2

−
∑
j≥0

[
(2ν − 1)(2ν)j

j!
Br(j + 1, 2ν − 1)

]2
whence

V (Nr) =
∑
j≥0

(2ν − 1)(2ν)j
j!

Br(j + 1, 2ν − 1)−
∑
j≥0

[
(2ν − 1)(2ν)j

j!
Br(j + 1, 2ν − 1)

]2
.

If ν = 1, then

(2ν − 1)(2ν)j
j!

Br(j + 1, 2ν − 1) = r2(j+1),

and one retrieves Peres–Virag’s result (5).

Acknowledgments. The authors are grateful to Tomoyuki Shirai for his helpful

remarks.

References

[ 1 ] G. E. Andrews, R. Askey and R. Roy, Special functions, Encyclopedia of Mathematics and its

Applications, 71, Cambridge University Press, Cambridge, 1999, xvi+664 pp.

[ 2 ] N. Askour, A. Intissar and Z. Mouayn, Espaces de Bargmann généralisés et formules explicites
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