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Abstract. The aim of this paper is to give an upper bound for the
dimension of a torus T which acts on a GKM manifold M effectively. In
order to do that, we introduce a free abelian group of finite rank, denoted by
A(Γ, α,∇), from an (abstract) (m,n)-type GKM graph (Γ, α,∇). Here, an

(m,n)-type GKM graph is the GKM graph induced from a 2m-dimensional
GKM manifold M2m with an effective n-dimensional torus Tn-action which
preserves the almost complex structure, say (M2m, Tn). Then it is shown that
A(Γ, α,∇) has rank ℓ(> n) if and only if there exists an (m, ℓ)-type GKM

graph (Γ, α̃,∇) which is an extension of (Γ, α,∇). Using this combinatorial
necessary and sufficient condition, we prove that the rank of A(ΓM , αM ,∇M )
for the GKM graph (ΓM , αM ,∇M ) induced from (M2m, Tn) gives an upper

bound for the dimension of a torus which can act on M2m effectively. As one
of the applications of this result, we compute the rank associated to A(Γ, α,∇)
of the complex Grassmannian of 2-planes G2(Cn+2) with the natural effective
Tn+1-action, and prove that this action on G2(Cn+2) is the maximal effective

torus action which preserves the standard complex structure.

1. Introduction.

GKM manifolds (or more general spaces) are “roughly” spaces with torus action

whose 0- and 1-dimensional orbits have the structure of a graph. This class of spaces

first appeared in the work of Goresky–Kottwitz–MacPherson [8] as a class of algebraic

varieties (GKM stands for their initials). Motivated by their work, Guillemin–Zara [11]

introduce a combinatorial counterpart of the GKM manifold, called a(n) (abstract) GKM

graph, and give some relationships between the (symplectic) geometry (and topology) of

GKM manifolds and the combinatorics of GKM graphs. This leads to the study of geo-

metric and topological properties of the GKM manifolds using combinatorial properties

of GKM graphs (see e.g. [6], [7], [9], [10], [15], [17], [19], [20] etc.). In this paper, we

introduce a new invariant of GKM graphs and provide a partial answer to the extension

problem of torus actions on GKM manifolds.

To state our main results more precisely, we briefly recall the setting of this paper

and background of the extension problem of torus actions. Let Tn be the n-dimensional

torus and M2m be a 2m-dimensional, compact, connected, almost complex manifold

with effective Tn-action, which preserves the almost complex structure. We denote such

a manifold by (M2m, Tn), or M2m, M , (M,T ) (if its torus action or dimensions of the
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manifold and torus are obviously known from the context). We call (M2m, Tn) a GKM

manifold if it satisfies the following properties (see Section 4 for details):

1. the set of fixed points is not empty and isolated, i.e., MT is 0-dimensional;

2. the closure of each connected component of 1-dimensional orbits is equivariantly

diffeomorphic to the 2-dimensional sphere, called an invariant 2-sphere.

By regarding fixed points as vertices and invariant 2-spheres as edges, this condition is

equivalent to the one-skeleton of (M2m, Tn) having the structure of a graph, where the

one-skeleton of (M2m, Tn) is the orbit space of the set of 0- and 1-dimensional orbits.

Note that there are several definitions of GKM manifolds (see e.g. [9], [11] etc.). This is

because the spaces with such torus actions have been studied from several different points

of view (homotopically, topologically, algebraically and geometrically). In this paper, we

study the GKM manifolds defined by Guillemin–Zara in their original paper [11]. In

particular, equivariant formality is often assumed for the cohomology of GKM spaces.

However, in this paper, we do not need to use this assumption; therefore, our definition

of a GKM manifold is more general than the equivariantly formal GKM manifolds (see

Section 4).

For example, in our setting, the following manifolds are GKM manifolds: non-

singular complete toric varieties (also called toric manifolds) and homogeneous manifolds

G/H (where G is a compact connected Lie group and H is its closed subgroup with

the same maximal torus) with torus invariant almost complex structures such as S6 =

G2/SU(3), flag manifolds and complex Grassmannians, etc.

Since GKM manifolds are even-dimensional and their effective torus actions have

isolated fixed points, the differentiable slice theorem tells us that the following inequality

holds for every GKM manifold (M,T ):

dimT ≤ 1

2
dimM.

If the equality dimT = (1/2) dimM holds, such a GKM manifold is also known as a

torus manifold (with invariant almost complex structure); famous examples are toric

manifolds. Namely, by definition, the torus action on a torus manifold is maximal, i.e.,

the torus action can not be extended to a bigger torus action. In this case, the author,

Masuda and Wiemeler [13], [14], [16], [22] have studied the extended G-actions of T -

actions on torus manifolds, where G is a non-abelian, compact, simply connected Lie

group with maximal torus T . On the other hand, for general GKM manifolds, the given

torus action might not be maximal. In fact, a restricted Tm−1-action of a 2m-dimensional

toric manifold (M2m, Tm) is often a GKM manifold (M2m, Tm−1), in other words, this

GKM manifold (M2m, Tm−1) extends to a toric manifold (M2m, Tm). Thus the following

problem naturally arises in the GKM manifolds (also see Proposition 4.3):

Problem 1.1. When does a GKMmanifold (M2m, Tn) extend to a GKMmanifold

(M2m, T ℓ)? Here, Tn ⊂ T ℓ and n < ℓ ≤ m.

As not every GKM manifold can be endowed with a torus T ℓ-action, that extends

the given action and makes it a torus manifold, in this paper we give a combinatorial
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method to determine an upper bound for ℓ. Namely we first introduce a free abelian

group with finite rank A(Γ, α,∇), called a group of axial functions, for the GKM graph

(Γ, α,∇) in Section 2. Here, a GKM graph is “roughly” the following triple (see Section 2

for details): an m-valent graph Γ; a function α : E(Γ) → H2(BTn) ≃ Zn, called an axial

function; and a collection ∇ of some bijective maps between out-going edges on adjacent

vertices, called a connection. We call such a GKM graph an (m,n)-type GKM graph in

this paper. The main theorem of this paper can be stated as follows (see Sections 2 and

3 for details):

Theorem 1.2. Let (Γ, α,∇) be an abstract (m,n)-type GKM graph. Then, the

following two statements are equivalent :

1. rk A(Γ, α,∇) ≥ ℓ for some n ≤ ℓ ≤ m ;

2. there is an (m, ℓ)-type GKM graph (Γ, α̃,∇) which is an extension of (Γ, α,∇).

As a GKM manifold (M2m, Tn) defines an (m,n)-type GKM graph (see Section 4),

Theorem 1.2 implies that the maximal dimension of a torus which can act on a GKM

manifold M is bounded from above by the rank of the group of axial functions of the

GKM graph induced from M . Namely, we obtain the main result of this paper as follows

(see Section 4 for details):

Corollary 1.3. Let (M2m, Tn) be a GKM manifold and (ΓM , αM ,∇M ) be its

(m,n)-type GKM graph. Assume that rk A(ΓM , αM ,∇M ) = ℓ. Then, the Tn-action on

M2m does not extend to any T ℓ+1-action preserving the given almost complex structure.

In particular, if rk A(ΓM , αM ,∇M ) = n, then the Tn-action on M2m is maximal

among torus actions which preserve the given almost complex structure.

Remark 1.4. Shunji Takuma also obtains a partial answer to Problem 1.1 by

introducing an obstruction class for the extension of an (m,n)-type GKM graph to an

(m,n + 1)-type GKM graph in his note [19]. Theorem 1.2 may be regarded as the

generalization of his result.

Problem 1.1 is reminiscent of the computation of the torus degree of symmetry of

a manifold X (see [12]), i.e., the maximal dimension of a torus which can act on X

effectively. A torus degree of symmetry has been studied for many classes of manifolds,

in particular from differential geometry (see e.g. [4], [12], [21], [23]). Corollary 1.3 may

be regarded as giving an upper bound of the torus degree of symmetry of an invariant

almost complex structure of a GKM manifold. As an application of Corollary 1.3, in the

final section (Section 5), we compute the torus degree of such symmetry for the complex

Grassmannian of 2-planes, denoted as

G2(Cn+2) ≃ GL(n+ 2,C)/GL(2,C)×GL(n,C) ≃ U(n+ 2)/U(2)× U(n).

Namely, we compute rk A(ΓM , αM ,∇M ) for M = G2(Cn+2) with the natural effective

Tn+1-action and prove the following fact:
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Proposition 1.5. The standard effective Tn+1-action on G2(Cn+2) is maximal

among the effective torus actions which preserve the almost complex structure.

Note that there is the natural Tn+2-action on G2(Cn+2) which is induced from the

maximal torus subgroup in U(n+ 2). However, this action is not effective.

The organization of this paper is as follows. In Section 2, we recall an abstract GKM

graph (Γ, α,∇), and introduce its group of axial functions A(Γ, α,∇). In Section 3, the

main theorem (Theorem 1.2) is proved. In Section 4, in order to apply our results

to geometry, we recall the definition of a GKM graph induced from a GKM manifold,

and prove Corollary 1.3. We also prove the T 2-action on S6 = G2/SU(3) is maximal.

In Section 5, we obtain the GKM graph obtained from the effective Tn+1-action on

G2(Cn+2), and compute its group of axial functions. This proves Proposition 1.5.

2. GKM graph and its group of axial functions.

In this section, we first recall the basic facts about GKM graphs (Γ, α,∇) (see [11])

and introduce the extension of axial functions of GKM graphs precisely. Then a finite

rank free abelian group A(Γ, α,∇), called a group of axial functions, is defined.

2.1. GKM graph and its extension.

We first prepare some notation to define a GKM graph. Let Γ = (V (Γ), E(Γ)) be

an abstract graph comprising of a set V (Γ) of vertices and a set E(Γ) of oriented edges.

For a given orientation on e ∈ E(Γ), we denote its initial vertex by i(e) and its terminal

vertex by t(e). In this paper, we assume that there are no loops in E(Γ), i.e., i(e) ̸= t(e)

for any e ∈ E(Γ), and Γ is connected. The symbol e ∈ E(Γ) represents the edge e with

its orientation reversed, i.e., i(e) = t(e) and t(e) = i(e). The subset Ep(Γ) ⊂ E(Γ) is the

set of out-going edges from p ∈ V (Γ); more precisely,

Ep(Γ) = {e ∈ E(Γ) | i(e) = p}.

A finite connected graph Γ is called an m-valent graph if |Ep(Γ)| = m for all p ∈ V (Γ),

where the symbol |X| represents the cardinality of a finite set X.

Let Γ be an m-valent graph. We next define a label α : E(Γ) → H2(BT ) on Γ.

Recall that BTn (often denoted by BT ) is a classifying space of an n-dimensional torus

T , and its cohomology ring (over Z-coefficients) is isomorphic to the polynomial ring

H∗(BT ) ≃ Z[a1, . . . , an],

where ai is a variable with deg ai = 2 for i = 1, . . . , n. So its degree 2 part H2(BT ) is

isomorphic to Zn. We put a label on edges of Γ by using a function α : E(Γ) → H2(BT )

on edges of Γ. Set

α(p) = {α(e) | e ∈ Ep(Γ)} ⊂ H2(BT ).

An axial function on Γ is the function α : E(Γ) → H2(BTn) for n ≤ m which satisfies

the following three conditions:

(1) α(e) = −α(e);
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(2) for each p ∈ V (Γ), the set α(p) is pairwise linearly independent, i.e., each pair of

elements in α(p) are linearly independent in H2(BT );

(3) for all e ∈ E(Γ), there exists a bijective map ∇e : Ei(e)(Γ) → Et(e)(Γ) such that

1. ∇e = ∇−1
e ,

2. ∇e(e) = e, and

3. for each e′ ∈ Ei(e)(Γ), there exists an integer ce(e
′) such that

α(∇e(e
′))− α(e′) = ce(e

′)α(e) ∈ H2(BT ). (2.1)

The collection ∇ = {∇e | e ∈ E(Γ)} is called a connection on the labelled graph (Γ, α);

we denote the labelled graph with connection as (Γ, α,∇), and equation (2.1) is called a

congruence relation. We call the integer ce(e
′) in the congruence relation a congruence

coefficient of e′ on e. Here, geometrically, ce(e
′) is nothing but the Chern numbers of the

line bundles over the sphere corresponding to e, (see Section 4). The conditions above

are called the axiom of an axial function. In addtion, in this paper, we also assume the

followings:

(4) for each p ∈ V (Γ), the set α(p) spans H
2(BT ).

The axial function which satisfies (4) is called an effective axial function.

Definition 2.1 (GKM graph [11]). If an m-valent graph Γ is labeled by an axial

function α : E(Γ) → H2(BTn) for some n ≤ m, then such a labeled graph is said to

be an (abstract) GKM graph, and denoted by (Γ, α,∇) (or (Γ, α) if the connection ∇ is

obviously determined).

Definition 2.2 ((m,n)-type GKM graph). Let (Γ, α,∇) be an abstract GKM

graph. If the axial function α is effective, (Γ, α,∇) is said to be an (m,n)-type GKM

graph.

In this paper, we only consider (m,n)-type GKM graphs (n ≤ m) unless otherwise

stated.

Figure 1 shows examples of GKM graphs. Note that we often omit the axial func-

tions of the opposite directions of edges (see the 3rd figure) because it is automatically

determined by axiom (1) of a GKM graph.

We note the following lemma proved in [11, Proposition 2.1.3].

Lemma 2.3. Let (Γ, α,∇) be a GKM graph. If α(p) is three-independent for every

p ∈ V (Γ), the connection ∇ is uniquely determined.

Here, in Lemma 2.3, the set of vectors α(p) in H2(BT ) is called three-independent if

every triple {α(ei), α(ej), α(ek)} ⊂ α(p) is linearly independent (e.g., the right (3,3)-type

GKM graph in Figure 1). So, in this case, we may denote (Γ, α,∇) as (Γ, α) without the

connection ∇.

We also note the following lemma:
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p q

r

a

b

−a

−a+ b

−b a− b

a b

−a− b

−a −b

a+ b a b

c

−b+ c

a− c

−a+ b

Figure 1. Examples of (2,2)-type, (3,2)-type and (3,3)-type GKM graphs
from the left, where a, b (resp. c) are generators ofH∗(BT 2) (resp.H∗(BT 3)).
For example, in the (2, 2)-type GKM graph, the axial function is defined by
α(pq) = a, α(qr) = −a+ b, etc. In the (3, 3)-type GKM graph, we omit the
axial functions of the opposite directions of edges. Note that in the figure we
do not distinct two edges e and e, and represent it by one undirected edge.

Lemma 2.4. For all e ∈ E(Γ), ce(e) = −2.

Proof. By the axiom (1), (3)-(2) and (3)-(3) of axial function, it is straightfor-

ward. □

Remark 2.5. As we mentioned before, ce(e
′) represents the Chern number of the

line bundle over the 2-sphere corresponding to e and e′. The sign of this number depends

on the choice of the complex structure on the line bundle. The number ce(e) corresponds

to the Chern number of the tangent bundle of the 2-sphere. In our convention, we take

the orientation which gives its Chern number as −2.

We close this section by defining an extension. Let (Γ, α,∇) be an (m,n)-type GKM

graph. An (m, ℓ)-type GKM graph (Γ̃, α̃, ∇̃) (for n < ℓ ≤ m) is said to be an extension

of (Γ, α,∇) if Γ̃ = Γ, ∇ = ∇̃ and there exists a projection π : H2(BT ℓ) → H2(BTn)

such that the following diagram commutes:

2a+ b

a

a+ b −b

−a− 2b

b− a

a+b c

a+ c

a

c −b

−b− c

b− a

Figure 2. The left (3,2)-type GKM graph extends to the right (3,3)-type
GKM graph. In this figure, we omit the axial function on the direction e,
because of the relation α(e) = −α(e).
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H2(BT ℓ)

π

��
E(Γ)

α̃

::tttttttttt
α // H2(BTn)

Figure 2 shows an example of an extension.

2.2. The invariant function.

Let (Γ, α,∇) be an (m,n)-type GKM graph for n ≤ m. We shall define an invariant

function c(Γ,α,∇) : E(Γ) → Zm under extensions, called a function invariant under ex-

tension of (Γ, α,∇). To define it, we first fix an order of out-going edges on each vertex

p, i.e., set

Ep(Γ) = {e1,p, . . . , em,p}.

Then we can define the free Z-module with rank m on each p, say ZEp(Γ), by regarding

{e1,p, . . . , em,p} as the formal generator of ZEp(Γ). Namely,

ZEp(Γ) := Ze1,p ⊕ · · · ⊕ Zem,p ≃ Zm.

As an order on each Ep(Γ) is fixed, the connection ∇e : Ei(e)(Γ) → Et(e)(Γ) induces a

permutation on {1, . . . ,m}. So, there is a permutation σ : {1, . . . ,m} → {1, . . . ,m} such

that

∇e(ej,i(e)) = eσ(j),t(e).

Then, the connection ∇e defines the isomorphism

Ne : ZEi(e)(Γ) → ZEt(e)(Γ) ∈ GL(m;Z) (2.2)

by the inverse (or equivalently the transpose) of the permutation (m×m)-square matrix.

More precisely, the square matrix Ne is defined as follows. If we put ZEi(e)(Γ) = Ze1,p⊕
· · · ⊕ Zem,p (p = i(e)) and ZEt(e)(Γ) = Ze1,q ⊕ · · · ⊕ Zem,q (q = t(e)), then ∇e induces

the following isomorphism:

k1e1,p ⊕ · · · ⊕ kmem,p

7→ k1eσ(1),q ⊕ · · · ⊕ kmeσ(m),q = kσ−1(1)e1,q ⊕ · · · ⊕ kσ−1(m)em,q.

Thus Ne : ZEi(e)(Γ) → ZEt(e)(Γ) is defined by the square matrix which induces the

following isomorphism

Ne :

k1
...

km

 7→

kσ−1(1)

...

kσ−1(m)

 (2.3)

where σ is the permutation induced from ∇e. Take an edge e ∈ E(Γ). Recall that the

congruence coefficient ce(e
′) which is defined by (2.1) is an integer attached on every
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edge e′ ∈ Ei(e)(Γ) for the fixed edge e ∈ E(Γ). Therefore, the m-tuple of congruence

coefficients on e defines the element in ZEi(e)(Γ) by

ce = (ce(e1,i(e)), . . . , ce(em,i(e))) ∈ Ze1,i(e) ⊕ · · · ⊕ Zem,i(e).

Thus we may define the function

c(Γ,α,∇) : E(Γ) → Zm by c(Γ,α,∇)(e) = ce.

Due to the following proposition (see also [19]), we call this function c(Γ,α,∇) a

function invariant under extension of (Γ, α,∇):

Proposition 2.6. For any extension (Γ, α̃,∇) of (Γ, α,∇), the equation c(Γ,α,∇) =

c(Γ,α̃,∇) holds.

Proof. Let (Γ, α̃,∇) be an (m, ℓ)-type GKM graph for some ℓ > n, and c̃e(e
′) be

its congruence coefficient of e′ on e. Fix an order of out-going edges on each vertex p. By

the definition of the function c(Γ,α,∇), it is enough to prove the equation ce(e
′) = c̃e(e

′)

for all e ∈ E(Γ) and e′ ∈ Ei(e)(Γ).

By definition, there is a projection π : H2(BT ℓ) → H2(BTn) such that π ◦ α̃ = α.

Together with the congruence relations (2.1), we have

π(α̃(∇e(e
′))) = α(∇e(e

′)) = α(e′) + ce(e
′)α(e)

and

π(α̃(∇e(e
′))) = π(α̃(e′) + c̃e(e

′)α̃(e))

= π(α̃(e′)) + c̃e(e
′)π(α̃(e))

= α(e′) + c̃e(e
′)α(e).

Comparing these equations, we establish the statement. □

The following lemma tells us that c(Γ,α,∇)(e) is automatically determined by

c(Γ,α,∇)(e) and Ne defined in (2.2).

Lemma 2.7. For any e ∈ E(Γ), the equation Ne(c(Γ,α,∇)(e)) = c(Γ,α,∇)(e) holds.

Proof. Let σ be the permutation on {1, . . . ,m} induced from ∇e. Then,

∇e(ej,i(e)) = eσ(j),i(e) (and ∇e(eσ(j),i(e)) = ej,i(e)). Therefore, by definitions of Ne and

c(Γ,α,∇), it is enough to show the following equality: ce(eσ−1(j),i(e)) = ce(ej,i(e)), i.e.,

ce(ej,i(e)) = ce(eσ(j),i(e))

for all j = 1, . . . ,m. Due to the congruence relations (2.1) on e and e, we have

α(∇e(ej,i(e)))− α(ej,i(e)) = ce(ej,i(e))α(e)

= α(eσ(j),i(e))− α(ej,i(e))
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and

α(∇e(eσ(j),i(e)))− α(eσ(j),i(e)) = ce(eσ(j),i(e))α(e)

= α(ej,i(e))− α(eσ(j),i(e)).

By these equations and α(e) = −α(e), we establish the statement. □

Example 2.8. Figure 3 shows an example of the invariant function c(Γ,α,∇) induced

from a (3, 2)-GKM graph (Γ, α). In this case, we put the order of Ep(Γ) as in Figure 3

by

e1,p = e1, e2,p = e2, e3,p = e3,

and the order of Eq(Γ) similarly by

e1,q = e1, e2,q = e2, e3,q = e3.

Then by using the congruence relation for the axial function defined in Figure 3, the

connection ∇ei for i = 1, 2, 3 is determined uniquely by ei 7→ ei and ej 7→ ek, where

{i, j, k} = {1, 2, 3} in Figure 3. For example, for the edge e1, by definition of c(Γ,α,∇)

and Lemma 2.4, we have

c(Γ,α,∇)(e1) = (−2, 1, 1).

With the similar computation (and using Lemma 2.7), we obtain c(Γ,α,∇) as the right-

hand graph in Figure 3.

p q

a

−a− b

b

e1

e2

e3

(−2, 1, 1)

(1,−2, 1)

(1, 1,−2)

e1

e2

e3

(−2, 1, 1)

(1,−2, 1)

(1, 1,−2)

Figure 3. The left one is the (3, 2)-GKM graph (Γ, α) in Figure 1 and the
right one is its invariant function c(Γ,α,∇) : E(Γ) → Z3.

2.3. A group of axial functions A(Γ, α,∇) of (Γ, α,∇).

Let (Γ, α,∇) be an (m,n)-type GKM graph. In this subsection, we introduce a

finitely generated free abelian group A(Γ, α,∇), called a group of axial functions. Before

defining A(Γ, α,∇), we prepare some notation. Let f ∈ ZEp(Γ). The symbol fe(∈ Z)
represents the integer of the coefficient in f corresponding to the edge e ∈ Ep(Γ). For

example, if we put the order Ep(Γ) = {e1, . . . , em} and f = (x1, . . . , xm) ∈ Zm ≃ ZEp(Γ)

with respect to this order, then we put fej = xj .
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Definition 2.9 (Group of axial functions). A Z-module A(Γ, α,∇) is defined by

the submodule of

{f : V (Γ) → Zm} =
⊕

p∈V (Γ)

ZEp(Γ) ≃
⊕

p∈V (Γ)

Zm

which satisfies the following relations for all e ∈ E(Γ):

Ne(f(p))− f(q) = f(q)ec(Γ,α,∇)(e) (2.4)

where i(e) = p, t(e) = q, Ne : ZEp(Γ) → ZEq(Γ) is the square matrix defined in (2.3)

and f(q)e ∈ Z is the integer defined just before. This module A(Γ, α,∇) is said to be a

group of axial functions of (Γ, α,∇) (also see Remark 3.5).

Remark 2.10. As the set {f : V (Γ) → Zm} is a finitely generated free Z-module

with rank m|V (Γ)| i.e., a free abelian group with finite rank, its submodule A(Γ, α,∇)

is so too. It is also easy to check that two groups of axial functions with different orders

for Ep(Γ) (for any p ∈ V (Γ)) are isomorphic.

Remark 2.11. The geometric idea behind the definition of the group of axial

functions is as follows: one essentially needs to define the set of all possible weights of

a generic circle action (the circle being a subcircle of the maximal torus action which

can act on a GKM manifold) making sure that the Chern number of the line bundles, in

which the tangent bundle splits over each invariant sphere, stay the same.

The following corollary follows immediately from Definition 2.9 and Proposition 2.6:

Corollary 2.12. Let (Γ, α,∇) be a GKM graph and (Γ, α̃,∇) be its extension.

Then the two groups of axial functions are isomorphic, i.e., A(Γ, α,∇) ≃ A(Γ, α̃,∇).

We note the following property of equation (2.4) which will be useful to compute

A(Γ, α,∇).

Lemma 2.13. Let f : V (Γ) → Zm be any function. If equation (2.4) holds for some

edge e ∈ E(Γ), then f(p)e = −f(q)e and equation (2.4) also holds for the edge e, where

p = i(e) and q = t(e).

Proof. Let e = ej,p and e = eσ(j),q, where σ is the permutation induced from

∇e. Put

f(p) =

k1,p
...

km,p

 .

Then f(p)e = kj,p and
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Ne(f(p)) =

x1

...

xm

 =

kσ−1(1),p

...

kσ−1(m),p

 .

This shows that Ne(f(p))e = xσ(j) = kj,p = f(p)e. Therefore, together with Lemma 2.4,

we have

Ne(f(p))e − f(q)e = f(p)e − f(q)e = −2f(q)e.

So f(p)e = −f(q)e. Note that Ne = N−1
e because ∇e = ∇−1

e . Thus, evaluating equation

(2.4) by Ne and using Lemma 2.7, we have

f(p)−Ne(f(q)) = −f(p)eNe(c(Γ,α,∇)(e)) = −f(p)ec(Γ,α,∇)(e).

This establishes the statement. □

Example 2.14. Before proving the main theorem, let us compute A(Γ, α,∇) of

(Γ, α,∇) in Example 2.8. By the definition of A(Γ, α,∇), we first have

A(Γ, α,∇) = {f : {p, q} → Z3 | Nei(f(p))− f(q) = f(q)eic(Γ,α,∇)(ei)}.

Put f(p) = (x, y, z) ∈ ZEp(Γ) and f(q) = (x′, y′, z′) ∈ ZEq(Γ). Then by Lemma 2.13

x′ = −x, y′ = −y and z′ = −z. Therefore, for example for the case when i = 1, the

relation of A(Γ, α,∇) says that1 0 0

0 0 1

0 1 0

x

y

z

−

−x

−y

−z

 = −x

−2

1

1

 .

Hence, we also have the relation x+ y + z = 0. Similarly, computing for the other edges

e2, e3 (Lemma 3.2 proved later may also be useful), we get

A(Γ, α,∇) = {(f(p), f(q)) = ((x, y, z), (−x,−y,−z)) | x+ y + z = 0}(≃ Z2).

3. Main theorem.

In this section, we prove the following main theorem.

Theorem 3.1. Let (Γ, α,∇) be an (m,n)-type GKM graph. Then the following

two statements are equivalent :

1. there is an (m, ℓ)-type GKM graph which is an extension of (Γ, α,∇) for some

ℓ ≥ n ;

2. ℓ ≤ rk A(Γ, α,∇)(≤ m).

In particular, if rk A(Γ, α,∇) = k, then there is an extended (m, k)-type GKM graph

(Γ, α̃,∇) which is the maximal among extensions.
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3.1. Proof of (1) ⇒ (2).

We first prove (1) ⇒ (2) in Theorem 3.1. The following lemma is the key lemma:

Lemma 3.2. Let (Γ, α,∇) be an (m,n)-type GKM graph. Then, the rank of

A(Γ, α,∇) satisfies the following inequality :

n ≤ rk A(Γ, α,∇) ≤ m.

Proof. We first prove the inequality rk A(Γ, α,∇) ≤ m. By definition, f ∈
A(Γ, α,∇) ⊂

⊕
p∈V (Γ) ZEp(Γ). Under the same notation as in equation (2.4), we put

f(p) =

x1

...

xm

 , f(q) =

 y1
...

ym

 , c(Γ,α,∇)(e) =

k1,p
...

km,p


where xj , yj are variables and kj,p ∈ Z for all j = 1, . . . ,m. Put f(p)e = xj . Then by

equation (2.4) for e, for all i = 1, . . . ,m the following equation holds:

yσ(i) − xi = xjki,p,

where σ is the permutation on {1, . . . ,m} induced from ∇e. This implies that once we

choose the value f(p) ∈ Zm for a vertex p which is connected to q by an edge, then

the value f(q) ∈ Zm is automatically and uniquely determined. Since Γ is a connected

graph, iterating this argument on each edge, we can determine the value f(r) uniquely

for all r ∈ V (Γ) if we choose a value for f(p). This implies that the restriction map

ρp : A(Γ, α,∇) → Zm such that ρp(f) = f(p) (3.1)

is the injective homomorphism for any vertex p ∈ V (Γ), which proves rk A(Γ, α,∇) ≤ m.

We next prove the next inequality n ≤ rk A(Γ, α,∇). As (Γ, α,∇) is an (m,n)-type

GKM graph, taking a linear basis of H2(BTn) as {a1, . . . , an}, its axial function can be

written as α : E(Γ) → H2(BTn) = Za1 ⊕ · · · ⊕ Zan ≃ Zn. Let πi : H
2(BTn) → Zai be

the projection onto the ith coordinate of H2(BTn) with respect to this basis. Define

αi : E(Γ)
α−→ H2(BTn)

πi−→ Zai.

Recall that we chose an order on Ep(Γ) = {e1,p, . . . , em,p} for each p ∈ V (Γ). Let

αi(ej,p) = k
(i)
j,pai

for some k
(i)
j,p ∈ Z. Then the map fi : V (Γ) → Zm is defined by

fi(p) =


k
(i)
1,p
...

k
(i)
m,p

 ∈ ZEp(Γ) ≃ Zm,
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for each p ∈ V (Γ). We claim that fi ∈ A(Γ, α,∇) and {f1, . . . , fn} spans the rank n

submodule in A(Γ, α,∇). Let p = i(e), q = t(e) ∈ V (Γ) for some e ∈ E(Γ). In order to

prove fi ∈ A(Γ, α,∇), by definition, it is enough to show the equation

Ne(fi(p))− fi(q) = fi(q)ec(Γ,α,∇)(e). (3.2)

Now we have

α(∇e(ej,p)) = α(eσ(j),q) = α(ej,p) + ce(ej,p)α(e).

Taking πi on these equations, we obtain

αi(∇e(ej,p)) = k
(i)
σ(j),qai = k

(i)
j,pai + ce(ej,p)k

(i)
e ai

for all j = 1, . . . ,m, where k
(i)
e ai = αi(e) = fi(p)eai. Therefore, we have

k
(i)
σ(1),q

...

k
(i)
σ(m),q

 =


k
(i)
1,p
...

k
(i)
m,p

+ k(i)e

 ce(e1,p)
...

ce(em,p)

 .

As Ne = N−1
e (where Ne is defined by ∇e), we have the following from this equation:

Ne(fi(q)) = fi(p) + fi(p)ec(Γ,α,∇)(e).

Thus, by multiplying Ne and using Lemma 2.7, we have that

Ne(fi(p))− fi(q) = −fi(p)ec(Γ,α,∇)(e).

Now, by the definition of αi, we have that fi(p)e = −fi(q)e. Hence, we obtain equa-

tion (3.2) and establish that fi ∈ A(Γ, α,∇) for all i = 1, . . . , n. Now, by definition of

the effective axial function, the collection {α(ep,1), . . . , α(ep,m)} spans H2(BTn) ≃ Zn

for each p ∈ V (Γ). This implies that for every p ∈ V (Γ) there is a collection

{f1(p), . . . , fn(p)} which spans some n-dimensional subspace in ZEp(Γ)(≃ Zm). Since the

restriction map (3.1) is injective, this also implies that the set of functions {f1, . . . , fn}
spans some n-dimensional submodule in A(Γ, α,∇)(⊂ Zm). This establishes that

n ≤ rk A(Γ, α,∇). □

Assume that there is an (m, ℓ)-type GKM graph (Γ, α̃,∇) which is an extension of

(Γ, α,∇) for some n ≤ ℓ ≤ m. Then it easily follows from Corollary 2.12 and Lemma 3.2

that

ℓ ≤ rk A(Γ, α̃,∇) = rk A(Γ, α,∇) ≤ m.

This establishes the statement (1) ⇒ (2) in Theorem 3.1.
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3.2. Proof of (2) ⇒ (1).

We next prove (2) ⇒ (1) in Theorem 3.1 for an (m,n)-type GKM graph (Γ, α,∇).

Assume that

ℓ ≤ rank A(Γ, α,∇)(≤ m)

for some ℓ ≥ n. We shall prove that there exists an extension (m, ℓ)-type GKM graph

(Γ, α̃,∇) of the (m,n)-type GKM graph (Γ, α,∇).

Let f ∈ A(Γ, α,∇). Put the order of Ep(Γ) as {e1,p, . . . , em,p} for p ∈ V (Γ) and

f(p) =

k1,p
...

km,p


with respect to this order. Then we may define αa

f : E(Γ) → Za for every a ∈ H2(BTn)

by

αa
f (ej,p) = kj,pa.

We call this label αa
f on edges an a-labeling induced from f ∈ A(Γ, α,∇). From the proof

of Lemma 3.2, it is easy to see that αi := πi ◦ α = αai

fi
for i = 1, . . . , n. Therefore,

we obtain the following corollary from the proof of Lemma 3.2, which is the key fact to

prove (2) ⇒ (1) and tells us that the axial function α can be recovered from A(Γ, α,∇)

by using αa
f .

Corollary 3.3. Let (Γ, α,∇) be an (m,n)-type GKM graph. Then there exists

fi ∈ A(Γ, α,∇) for i = 1, . . . , n such that {f1, . . . , fn} spans an n-dimensional subspace

of A(Γ, α,∇) and for the fixed basis a1, . . . , an of H2(BTn) the axial function can be split

into

α1 ⊕ · · · ⊕ αn = α : E(Γ) → H2(BTn) =
n⊕

i=1

Zai

where αi := αai

fi
is the ai-labeling induced from fi.

As ℓ ≤ rk A(Γ, α,∇), there are independent elements (as free Z-module)

f1, . . . , fℓ ∈ A(Γ, α,∇).

Moreover, because of ℓ ≥ n, we may choose the first part f1, . . . , fn as the basis induced

from (Γ, α,∇) in Corollary 3.3 (also see the definitions of fi’s in the proof of Lemma 3.2),

and put

fi(p) =


k
(i)
1,p
...

k
(i)
m,p

 ∈ ZEp(Γ) ≃ Zm, (3.3)
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for i = 1, . . . , ℓ and p ∈ V (Γ). Fix the basis of H2(BT ℓ) as a1, . . . , aℓ, where the first n

elements a1, . . . , an are the basis of H2(BTn) (see Corollary 3.3), where Tn ⊂ T ℓ. Let

αi be the ai-labeling induced from fi, i.e., αi = αai

fi
, for i = 1, . . . , ℓ. Then, we can define

the function as follows:

α̃ :=
ℓ⊕

i=1

αi : E(Γ) → H2(BT ℓ).

The following lemma says that the triple (Γ, α̃,∇) is a GKM graph extending (Γ, α,∇).

Lemma 3.4. The triple (Γ, α̃,∇) defined as above is an (m, ℓ)-type GKM graph

which is an extension of an (m,n)-type GKM graph (Γ, α,∇).

Proof. Since α =
⊕n

i=1 αi and α̃ = α⊕ (
⊕ℓ

i=n+1 αi), it is enough to prove that

α̃ satisfies the axioms of a GKM graph under the same connection ∇ of (Γ, α,∇).

We first claim that axiom (1) of a GKM graph holds for α̃, i.e., α̃(e) = −α̃(e). To do

this, by the definition of α̃, it is enough to show that αi(e) = −αi(e) for all i = 1, . . . , ℓ.

Let e = ej,p ∈ Ep(Γ) and e = eσ(j),q ∈ Eq(Γ) for j = 1, . . . ,m, where i(e) = p, t(e) = q

and σ is the permutation on {1, . . . ,m} induced from ∇e : Eq(Γ) → Ep(Γ). Then by the

definition of αi, we have that

αi(e) = αi(ej,p) = k
(i)
j,pai

and

αi(e) = αi(eσ(j),q) = k
(i)
σ(j),qai

where fi(p)e = k
(i)
j,p and fi(q)e = k

(i)
σ(j),q ∈ Z. As fi ∈ A(Γ, α,∇), it follows from Lemma

2.13 that k
(i)
j,p = −k

(i)
σ(j),q. This establishes axiom (1) of a GKM graph.

We next claim condition (4) regarding effectiveness, i.e., α̃(p) = {α̃(e) | e ∈ Ep(Γ)}
spans H2(BT ℓ) for all p ∈ V (Γ). Recall that for Ep(Γ) := {e1,p, . . . , em,p},

α̃(ej,p) =
ℓ⊕

i=1

αi(ej,p) =
ℓ⊕

i=1

k
(i)
j,pai,

where the integer k
(i)
j,p is the jth coefficient of fi(p) ∈ Zm (see (3.3)). Now {f1, . . . , fℓ}

spans an ℓ-dimensional subspace of A(Γ, α,∇). As the restriction map defined in (3.1) is

injective (by similar arguments as in the proof of Lemma 3.2), we have that the subset

{f1(p), . . . , fℓ(p)} ⊂ Zm also spans a subgroup which is isomorphic to Zℓ for all p ∈ V (Γ).

This shows that the (m× ℓ)-matrix (k
(i)
j,p)i,j has rank ℓ(≤ m) and some minor (of (ℓ× ℓ)-

smaller square matrix in (k
(i)
j,p)i,j) with determinant ±1, for all p ∈ V (Γ). Therefore,

there are ℓ elements in α̃(p) = {α̃(e1,p), . . . , α̃(em,p)} which generate H2(BT ℓ). This

establishes condition (4).

We also check axiom (2), i.e., α̃(p) is pairwise linearly independent for all p ∈ V (Γ).

As α is an axial function, α(p) is pairwise linearly independent for all p ∈ V (Γ), i.e., α(e)
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and α(e′) are linearly independent for all pairs e, e′ ∈ Ep(Γ). Moreover, we may write

α̃(e) =

ℓ⊕
i=1

αi(e) =

n⊕
i=1

αi(e)⊕

(
ℓ⊕

i=n+1

αi(e)

)
= α(e)⊕

(
ℓ⊕

i=n+1

αi(e)

)
,

and

α̃(e′) =

ℓ⊕
i=1

αi(e
′) =

n⊕
i=1

αi(e
′)⊕

(
ℓ⊕

i=n+1

αi(e
′)

)
= α(e′)⊕

(
ℓ⊕

i=n+1

αi(e
′)

)
.

Here, by definition of αi, the element αi(e) (resp. αi(e
′)), for i = n + 1, . . . , ℓ, is inde-

pendent with respect to α(e) (resp. α(e′)). Hence, we have that α̃(e) and α̃(e′) are also

pairwise linearly independent. This establishes axiom (2).

Finally, we claim axiom (3), i.e., α̃ satisfies the following congruence relation: for

each e′ ∈ Ei(e)(Γ)

α̃(∇e(e
′)) = α̃(e′) + ce(e

′)α̃(e),

where ce(e
′) is the integer that satisfies

α(∇e(e
′)) = α(e′) + ce(e

′)α(e).

Since α̃ =
⊕ℓ

i=1 αi, it is enough to prove that αi satisfies the congruence relation:

αi(∇e(e
′)) = αi(e

′) + ce(e
′)αi(e).

Set e = ej,p and e′ = eh,p for some j, h = 1, . . . ,m, and ∇e(e
′) = eσ(h),q. By definition,

αi(ej,p) = k
(i)
j,pai. Therefore, it is enough to check the following relation:

k
(i)
σ(h),q = k

(i)
h,p + ce(e

′)k
(i)
j,p. (3.4)

Using fi ∈ A(Γ, α,∇), (i.e., equation (2.4) holds), Lemma 2.7 and Lemma 2.13, we have

Ne(fi(p))− fi(q) = −fi(p)eNe(c(Γ,α,∇)(e)) (3.5)

for all i = 1, . . . , ℓ. Since e = ej,p, we have fi(p)e = k
(i)
j,p (see (3.3)). Therefore, equation

(3.5) implies that 
k
(i)
σ−1(1),p

...

k
(i)
σ−1(m),p

−


k
(i)
1,q
...

k
(i)
m,q

 = −k
(i)
j,p

 ce(eσ−1(1),p)
...

ce(eσ−1(m),p)

 .

This shows that

k
(i)
h,p − k

(i)
σ(h),q = −k

(i)
j,pce(eh,p).
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Since e′ = eh,p, this equation establishes equation (3.4).

Consequently, α̃ is an extended axial function of α. □

This establishes (2) ⇒ (1) in Theorem 3.1. Together with Section 3.1, we obtain

Theorem 3.1.

Remark 3.5. Lemma 3.4 tells us that from an element of A(Γ, α,∇) we can

construct an extension of (Γ, α,∇). In fact, by similar arguments, we see that A(Γ, α,∇)

contains every extension of (Γ, α,∇), i.e., every extension of (Γ, α,∇) corresponds to an

element of A(Γ, α,∇). Furthermore, it is not so difficult to show that every axial function

on Γ whose connection is ∇ can be constructed by an element of A(Γ, α,∇). This is the

reason why we call A(Γ, α,∇) a group of axial functions.

As a corollary, we have the following fact.

Corollary 3.6. Let (Γ, α,∇) be an (m,n)-type GKM graph. If one of the follow-

ing cases hold, then there are no extensions of (Γ, α,∇):

1. m = n ;

2. rk A(Γ, α,∇) = n.

Example 3.7. By Corollary 3.6 and the computation in Example 2.14, the GKM

graphs in Figure 1 have no extensions, i.e., they are the maximal GKM graphs.

4. Applications to geometry.

Guillemin–Zara studied GKM graphs as a combinatorial counter part to GKM man-

ifolds, and they built a bridge between the geometry (in particular, symplectic) of GKM

manifolds and the combinatorics of GKM graphs. In this and the next sections, we give

a new application of GKM graphs to study the geometry of GKM manifolds. More pre-

cisely, we apply our main result to study the maximal torus actions of GKM manifolds.

4.1. GKM manifold and its GKM graph.

We first briefly recall the relation between GKM manifolds and GKM graphs (see

[11] for details). Let M be a 2m-dimensional, compact, connected smooth manifold with

an effective n-dimensional torus Tn-action, where 1 ≤ n ≤ m. We often denote such a

manifold by (M,T ) or (M,T, φ) if we emphasize the action φ : T ×M → M . Denote by

M1 ⊂ M the set of elements x ∈ M such that the orbit T (x) = {x} (a fixed point) or

T (x) ≃ S1, i.e.,

M1 = {x ∈ M | dimT (x) ≤ 1}.

The set M1 is called the one-skeleton of (M,T ).

A 2m-dimensional manifold with an n-dimensional torus action (M,T ) is said to be

a GKM manifold or an (m,n)-type GKM manifold if the following three conditions hold:

1. MT ̸= ∅;
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2. the manifold M has a T -invariant almost complex structure;

3. the one-skeleton of M has the structure of an abstract (connected) graph ΓM such

that its vertices V (ΓM ) are the fixed points and its edges E(ΓM ) are embedded

2-spheres connecting two fixed points.

Remark 4.1. The third condition implies that the orbit space of the one-skeleton

is one-dimensional. Therefore, together with condition (1), the set of fixed points MT

is always isolated. Moreover, by definition of the (m,n)-type GKM manifold M , if

dimT (= n) = 1 then M is equivariantly diffeomorphic to CP 1 with a non-trivial S1-

action. So, in this paper, we often assume 2 ≤ n ≤ m for an (m,n)-type GKM manifold.

We also do not assume the equivariant formality because we do not use the equivariant

cohomolgy of GKM manifolds.

Due to [11], the GKM manifold M defines the GKM graph (ΓM , αM ,∇M ) by using

its one-skeleton and the tangential representations. In this paper, such a GKM graph

(ΓM , αM ) (or (ΓM , αM ,∇M )) is called an induced GKM graph from M .

Example 4.2. In Figure 1, the left GKM graph is the GKM graph induced from

the standard T 2-action on CP 2 and the right one is that induced from T 3-action on CP 3.

The middle GKM graph is induced from the T 2-action on S6 = G2/SU(3), where G2 is

the exceptional Lie group, see [9, Section 5.2].

4.2. Extensions of torus actions.

The definition of an extension of GKM graphs in Section 2.1 is motivated by an

extension of a torus action on a GKM manifold. We explain it more precisely in this

section.

Let (M,Tn, φ) be a manifold with an effective n-dimensional torus action φ : Tn ×
M → M (not necessarily a GKM manifold). If there exists an effective ℓ-dimensional

torus action (M,T ℓ, φ′) (for n < ℓ) and an injective homomorphism ι : Tn → T ℓ such

that the following diagram commutes:

T ℓ ×M
φ′

##H
HH

HH
HH

HH

Tn ×M

ι×id

OO

φ // M

then (M,T ℓ, φ′) is called an extension of (M,Tn, φ). We prove the following fact:

Proposition 4.3. If (M2m, T ℓ) is an extension of an (m,n)-type GKM manifold

(M2m, Tn) (for n < ℓ ≤ m) and the T ℓ-action preserves the almost complex structure of

M , then (M2m, T ℓ) is an (m, ℓ)-type GKM manifold.

Furthermore, the induced (m, ℓ)-type GKM graph (Γ̃M , α̃M , ∇̃M ) from (M,T ℓ) is an

extension of the induced (m,n)-type GKM graph (ΓM , αM ,∇M ) from (M,Tn).

Proof. Since the T ℓ-action preserves the almost complex structure of M , it is

enough to check that its one-skeleton has the structure of a graph. We note that for all
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p ∈ M two orbits of p of these actions satisfy Tn(p) ⊂ T ℓ(p), because the T ℓ-action is

an extension of Tn-action.

We first claim that MTn

= MT ℓ

. Because Tn(p) ⊂ T ℓ(p) for all p ∈ M , we

have that MTn ⊃ MT ℓ

. Assume that there exists a fixed point p ∈ MTn

such that

T ℓ(p) ̸= {p}. As is well-known, there is a decomposition TpM = TpT
ℓ(p) ⊕ NpT

ℓ(p),

where TpT
ℓ(p)( ̸= {0}) is the tangent space and NpT

ℓ(p) is the normal space of T ℓ(p) on

p. By using the differentiable slice theorem, the isotropy subgroup T ℓ
p (of the T ℓ-action

on p) acts on TpT
ℓ(p) trivially. This shows that Tn(⊂ T ℓ

p) also acts on TpT
ℓ(p) trivially.

However, by the definition of GKM manifolds, for the restricted action (TpM,Tn), there

is another decomposition TpM =
⊕m

i=1 V (ai) such that each representation ai : T
n → S1

is non-trivial. This contradicts that Tn acts on ({0} ≠)TpT
ℓ(p) ⊂ TpM trivially. Hence,

MTn

= MT ℓ

.

Take p ∈ M such that Tn(p) ≃ S1. Since we assume that the one-skeleton of (M,Tn)

has the structure of a connected graph, we have that p is an element in an invariant 2-

sphere S2 of (M,Tn). As MTn

= MT ℓ

, by considering the tangential representation

around fixed points on this Tn-invariant S2(∋ p), there exists a representation ρ : T ℓ →
S1 which may be regarded as the extension of the Tn-action on this S2. Therefore, every

Tn-invariant S2 is also a T ℓ-invariant S2, i.e., if Tn(p) ≃ S1 then T ℓ(p) ≃ S1. Together

with Tn(p) ⊂ T ℓ(p) for all p ∈ M , this implies that the two one-skeletons of (M2m, Tn)

and (M2m, T ℓ) are the same.

We next prove the final statement. By arguments similar to the above, we have

Γ̃M = ΓM . Moreover, because the extended T ℓ-action preserves the Tn-invariant almost

complex structure, the splitting
⊕m

i=1 Li, of the restriction of the tangent bundle to such

as S2, by the Tn-action is also preserved by the extended T ℓ-action. This implies that

the two connections on the induced GKM graphs ∇M from the Tn-action and ∇̃M from

the extended T ℓ-action are the same. Finally, put the induced homomorphism from the

inclusion ι : Tn → T ℓ as π : H2(BT ℓ) → H2(BTn). Then by considering the tangential

representations (of both Tn and T ℓ-actions) around fixed points, it is easy to check that

there is the following commutative diagram:

H2(BT ℓ)

π

��
E(ΓM )

α̃M

99ssssssssss
αM // H2(BTn) .

This establishes the final statement. □

Therefore, by using Theorem 3.1 (or Theorem 1.2) and Proposition 4.3, we have

Corollary 1.3.

4.3. Maximal torus action on S6 = G2/SU(3).

As we mentioned in Example 4.2, the (3, 2)-type GKM graph in Figure 1 is the

induced GKM graph of the GKM manifold (G2/SU(3), T 2), where T 2 acts on G2 as its
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maximal torus subgroup (e.g. see [9]). We also note that G2/SU(3) ≃ S6 (diffeomor-

phic). Therefore, by using Corollary 1.3 and Example 2.14, the following well-known fact

can be proved (see also [3]):

Corollary 4.4. The T 2-action on G2/SU(3) ≃ S6 is the maximal torus action.

In other words, there are no extended T 3-actions on S6 of this T 2-action, which preserves

the almost complex structure induced from the homogeneous space G2/SU(3).

Remark 4.5. Note that there is the T 3-action on S6 ⊂ C3 ⊕ R defined by the

standard T 3-action on C3 (see e.g. [15]). However, from Corollary 4.4, this action is not

the extended action of the T 2-action on S6 = G2/SU(3).

In the next section, we shall apply our results for more complicated GKM manifolds.

5. Maximal torus action on the complex Grassmannian G2(Cn+2).

The (complex ) Grassmannian (of 2-planes in Cn+2), denoted by G2(Cn+2), is defined

by the set of all complex 2-dimensional vector spaces in Cn+2. Namely,

G2(Cn+2) := {V ⊂ Cn+2 | dimC V = 2}. (5.1)

The GrassmannianG2(Cn+2) has the natural transitive SU(n+2)-action which is induced

from the standard SU(n+2)-action on Cn+2. Since its isotropy group is S(U(2)×U(n)),

G2(Cn+2) is diffeomorphic to the homogeneous space SU(n + 2)/S(U(2) × U(n)) (also

see [13]). In particular, this shows that

dimG2(Cn+2) = dimSU(n+ 2)/S(U(2)× U(n)) = 4n.

Since a maximal torus of SU(n + 2) is isomorphic to Tn+1, there is a restricted

Tn+1-action on G2(Cn+2) and its one-skeleton has the structure of a graph (see [9]).

We denote this action by (SU(n + 2)/S(U(2) × U(n)), Tn+1). Note that the action

(SU(n+ 2)/S(U(2)×U(n)), Tn+1) is not effective because there is the non-trivial center

in SU(n+ 2) (isomorphic to Z/(n+ 2)Z); therefore, the GKM graph obtained from this

action does not satisfy condition (4) in Section 2, i.e., the axial function is not an effective

axial function. So, in this paper, we define the Tn+1-action on G2(Cn+2) by the induced

action from the standard Tn+1-action on the first (n+1)-coordinates in Cn+2 (see (5.1)).

We denote this action as (G2(Cn+2), Tn+1). It is easy to check that (G2(Cn+2), Tn+1)

is effective and preserves the complex structure of G2(Cn+2) induced from that of Cn+2.

For example, when n = 1, (G2(C3), T 2) is equivariantly diffeomorphic to the complex

projective space CP 2 with the standard T 2-action, i.e., the toric manifold. Note that,

for n ≥ 2, (G2(Cn+2), Tn+1) is not a toric manifold.

Remark 5.1. GKM graphs obtained from the non-effective torus actions for flag

manifolds are studied by Tymoczko in [20] Fukukawa–Ishida–Masuda in [6] etc.

In the next subsection, we compute the GKM graph of (G2(Cn+2), Tn+1). For

simplicity, we put
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Mn = G2(Cn+2)

from the next subsection.

Remark 5.2. The following computation of the GKM graph of (G2(Cn+2), Tn+1)

is not new. In [9], the computation of GKM graphs of more general homogeneous spaces

are treated. However, for convenience, we give a precise computation here.

5.1. The GKM graph of (G2(Cn+2), Tn+1).

Let (Γn, αn,∇n) be the induced GKM graph from (Mn, T
n+1). Note that Γn =

(V (Γn), E(Γn)) is a 2n-valent graph, because the real dimension of Mn is 4n, where

n ≥ 1.

We first consider the fixed points of (Mn, T
n+1). By definition, the Grassmannian

Mn may be identified with the following set:

{[v1, v2] | v1, v2 are linearly independent in Cn+2},

where the symbol [v1, v2] represents the equivalence class such that [v1, v2] is identified

with [w1, w2] if two pairs of vectors {v1, v2} and {w1, w2} span the same 2-dimensional

complex vector space in Cn+2. Under this identification, the element t ∈ Tn+1 acts on

[v1, v2] ∈ Mn by

t · [v1, v2] 7→ [tv1, tv2],

where t ∈ Tn+1 acts on v ∈ Cn+2 by the standard coordinatewise multiplication on the

first (n+ 1)-coordinates. Then, the fixed points can be denoted by

MT
n := {[ei, ej ] | i ̸= j, i, j = 1, . . . , n+ 2},

where e1, . . . , en+2 are the standard basis in Cn+2. By identifying the element [ei, ej ] ∈
MT

n as the subset {i, j} in [n+ 2] := {1, 2, . . . , n+ 2}, we may regard the set of vertices

V (Γn) as

V (Γn) = {{i, j} ⊂ [n+ 2] | i ̸= j}.

We also have that

|V (Γn)| =
(
n+ 2

2

)
=

(n+ 2)(n+ 1)

2
.

We next consider the invariant 2-spheres in (Mn, T
n+1). Fix {i, j} ⊂ [n + 2]. Now

the following subsets are Tn+1-invariant sets in Mn which contain [ei, ej ]:

Si,k
i,j = {[ei, vjk] ∈ Mn | vjk = ajej + akek, (aj , ak) ∈ C2 \ {0}};

Sj,k
i,j = {[vik, ej ] ∈ Mn | vik = aiei + akek, (ai, ak) ∈ C2 \ {0}},

for all k ∈ [n+ 2] \ {i, j}.
As [ei, vjk] and [ei, λvjk] (for all λ ∈ C∗) are the same element in Mn, we have that
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Si,k
i,j is diffeomorphic to CP 1. Similarly, Sj,k

i,j is also diffeomorphic to CP 1. Moreover,

[ei, ej ], [ei, ek] ∈ Si,k
i,j and [ei, ej ], [ek, ej ] ∈ Sj,k

i,j . This shows that if {i, j}∩{k, l} ̸= ∅ then

the fixed points [ei, ej ] and [ek, el] are on the same invariant 2-sphere. Namely, the pair of

two distinct sets {i, j} and {k, l} such that {i, j}∩{k, l} ≠ ∅ may be regarded as an edge

of the GKM graph, i.e., an element in E(Γn). We call the edge corresponding to Si,k
i,j

(resp. Sj,k
i,j ) as E

i,k
i,j ∈ E(Γn) (resp. E

j,k
i,j ∈ E(Γn)). Note that for all k ∈ [n + 2] \ {i, j},

Ei,k
i,j and Ej,k

i,j are out-going edges from {i, j}. Since dimMn = 4n, the number of out-

going edges from {i, j} is 2n. Hence, the set of all out-going edges from {i, j} can be

denoted by

E{i,j}(Γn) = {Ei,k
i,j , E

j,k
i,j | k ∈ [n+ 2] \ {i, j}}.

Figure 4 shows the one-skeleton induced from G2(C4).

{2, 4}

{1, 2}

{2, 3}

{1, 3}

{3, 4}

{1, 4}

E1,4
1,2

E1,2
1,4

Figure 4. The vertices and edges of the one-skeleton of the Grassmannian
G2(C4).

Next we consider the tangential representations around fixed points. To do that, we

use the following notations:

• the symbol E(η) represents the total space of the fibre bundle η over Mn;

• the symbol ηp is the restriction of η onto p ∈ Mn;

Recall the structure of the tangent bundle τ of Mn. Let ϵn+2
C be the trivial bundle

E(ϵn+2
C ) = Mn ×Cn+2 → Mn. Then, the tautological vector bundle γ over Mn is defined

as follows:

E(γ) = {(V, x) ∈ Mn × Cn+2 | x ∈ V } → Mn,
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where the projection of the bundle is just the projection onto the 1st factor. Note

that γ is a complex 2-dimensional vector bundle over Mn and the diagonal Tn+1-action

on Mn × Cn+2 induces the Tn+1-action on E(γ); thus we may regard γ as the Tn+1-

equivariant vector bundle. Let γ⊥ be the normal bundle of γ in ϵn+2
C (we define the

inner product on Cn+2 as the standard Hermitian inner product). Since γ is a complex

2-dimensional vector bundle, γ⊥ is a complex n-dimensional vector bundle. Moreover,

since the Tn+1-action on Cn+2 preserves the standard Hermitian inner product, the

diagonal Tn+1-action on Mn × Cn+2 induces the Tn+1-action on γ⊥.

Similar to the case of the real Grassmannian (see [18, Section 5 or proof of Theorem

14.10]), the tangent bundle τ of Mn is isomorphic to the complex 2n-dimensional vector

bundle Hom(γ, γ⊥). Therefore, the tangent space around [ei, ej ] ∈ MT
n may be regarded

as

τ[ei,ej ] ≡ Hom(γ[ei,ej ], γ
⊥
[ei,ej ]

).

Since the total space of γ[ei,ej ] is Vij := {Aiei + Ajej | (Ai, Aj) ∈ C2}, its normal space

in Cn+2 consists of

V ⊥
ij =

{ ∑
k∈[n+2]\{i,j}

Bkek

∣∣∣∣∣ Bk ∈ C

}
.

Therefore, φ ∈ Hom(Vij , V
⊥
ij ) can be denoted by

φ(Aiei +Ajej) =
∑

k∈[n+2]\{i,j}

fk(Ai, Aj)ek

for some linear map fk : C2 → C, i.e., fk(Ai, Aj) = Aiℓik+Ajℓjk for some (ℓik, ℓjk) ∈ C2

(we will identify fk as (ℓik, ℓjk)). Then, we may regard φ = (fk)k∈[n+2]\{i,j} ∈ M(2, n;C)
as the complex (2×n)-matrix. Now the Tn+1-actions on γ and γ⊥ induce the Tn+1-action

on Hom(γ, γ⊥) as follows: for φ ∈ Hom(γx, γ
⊥
x ) (x ∈ Mn) and t ∈ Tn+1,

t · φ = t ◦ φ ◦ t−1 : γtx
t−1

−→ γx
φ−→ γ⊥

x
t−→ γ⊥

tx.

Therefore, on x = [ei, ej ], we have t · fk = (t−1
i tkℓik t−1

j tkℓjk) for fk = (ℓik ℓjk), φ =

(fk) ∈ M(2, n;C) and t = (t1, . . . , tn+1, 1) ∈ Tn+2, i.e., tn+2 = 1. Hence, on the fixed

point [ei, ej ] ∈ MT
n , we have the tangential representation as follows:

Hom(γ[ei,ej ], γ
⊥
[ei,ej ]

) ≃
⊕

k∈[n+2]\{i,j}

V (−ai + ak)⊕ V (−aj + ak), (5.2)

where a1, . . . , an+1 are the (dual) basis of the dual of Lie algebra t∗ of Tn+1 and we put

an+2 = 0. It is easy to check that the factor V (−ai+ak) (resp. V (−aj+ak)) in (5.2) may

be regarded as the tangent space on [ei, ej ] of the invariant 2-sphere Sj,k
i,j (resp. Si,k

i,j ).

Therefore, the axial function αn : E(Γn) → H2(BTn+1) ≃ t∗Z is defined as follows:

αn(E
i,k
i,j ) = −aj + ak, αn(E

j,k
i,j ) = −ai + ak. (5.3)
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By the definition of edges, the reversed orientation edge satisfies Ei,k
i,j = Ei,j

i,k (resp.

Ej,k
i,j = Ei,j

j,k). Therefore, by the definition of the axial function the following equation

holds:

αn(E
i,j
i,k) = −ak + aj = −αn(E

i,k
i,j ) (resp. αn(E

i,j
j,k) = −ak + ai = −αn(E

j,k
i,j )).

We finally compute a connection on (Γn, αn). Put the connection on the edge Ei,k
i,j

as (∇n)Ei,k
i,j

= (∇n)
i,k
i,j . Namely,

(∇n)
i,k
i,j : E{i,j}(Γn) → E{i,k}(Γn),

where

E{i,j}(Γn) := {Ei,l
i,j , E

j,l
i,j | l ∈ [n+ 2] \ {i, j}},

E{i,k}(Γn) := {Ei,l
i,k, E

k,l
i,k | l ∈ [n+ 2] \ {i, k}}.

Note that the set of the weights {−ai + ak,−aj + ak | k ∈ [n + 2] \ {i, j}} are 3-

independent for all {i, j} ⊂ [n+2] (see (5.3)). Therefore, it follows from Lemma 2.3 that

the connection ∇n on (Γn, αn) is unique. This implies that the bijection (∇n)
i,k
i,j which

satisfies the congruence relation (2.1) is unique. Hence, by computing the congruence

relation (2.1) of (Γn, αn), the connection must be defined as follows:

(∇n)
i,k
i,j (E

i,k
i,j ) = Ei,k

i,j = Ei,j
i,k,

(∇n)
i,k
i,j (E

i,l
i,j) = Ei,l

i,k for l ∈ [n+ 2] \ {i, j, k},

(∇n)
i,k
i,j (E

j,l
i,j) = Ek,l

i,k for l ∈ [n+ 2] \ {i, j, k},

(∇n)
i,k
i,j (E

j,k
i,j ) = Ej,k

i,k .

In addition, we also have that

αn(E
i,l
i,k)− αn(E

i,l
i,j) = ci,ki,j (E

i,l
i,j)αn(E

i,k
i,j ),

−ak + al − (−aj + al) = ci,ki,j (E
i,l
i,j)(−aj + ak)

and

αn(E
k,l
i,k)− αn(E

j,l
i,j) = ci,ki,j (E

j,l
i,j)αn(E

i,k
i,j ),

−ai + al − (−ai + al) = ci,ki,j (E
j,l
i,j)(−aj + ak),

for l ∈ [n+ 2] \ {i, j, k} and

αn(E
j,k
i,k )− αn(E

j,k
i,j ) = ci,ki,j (E

j,k
i,j )αn(E

i,k
i,j ),

−ai + aj − (−ai + ak) = ci,ki,j (E
j,k
i,j )(−aj + ak),

for some integers (congruence coefficients) ci,ki,j (E
i,l
i,j), c

i,k
i,j (E

j,l
i,j). Therefore, together with

506(158)



Upper bounds for the dimension of tori acting on GKM manifolds 507

Lemma 2.4, the congruence coefficients are

ci,ki,j (E
i,k
i,j ) = −2,

ci,ki,j (E
i,l
i,j) = −1 for l ∈ [n+ 2] \ {i, j, k},

ci,ki,j (E
j,l
i,j) = 0 for l ∈ [n+ 2] \ {i, j, k},

ci,ki,j (E
j,k
i,j ) = −1.

In summary we have that

Proposition 5.3. Let Γn = (V (Γn), E(Γn)) be the abstract graph defined by

• the set of vertices V (Γn) consists of all {i, j} in [n+ 2] for i ̸= j ;

• the set of edges E(Γn) consists of all pairs of distinct vertices {i, j}, {k, l} such

that {i, j} ∩ {k, l} ̸= ∅.

Define its axial function as αn : E(Γn) → H2(BTn+1) in (5.3). Then, the connection

∇n is uniquely determined (as above) and the triple (Γn, αn,∇n) is the (2n, n+ 1)-type

GKM graph.

Remark 5.4. The graph in Proposition 5.3 is known as the Johnson graph

J(n+ 2, 2). The first GKM graph in Figure 1 shows the case when n = 1, i.e., the

Johnson graph J(3, 2), and the GKM graph in Figure 5 shows the case when n = 2, i.e.,

{2, 4}

{1, 2}

{2, 3}

{1, 3}

{3, 4}

{1, 4}

−a1−a1 + a3

−a2 + a3

a3

−a2 + a3

−a2 + a1−a2 + a1

−a1 a2

a2

a3

−a1 + a3

Figure 5. The GKM graph (Γ2, α2,∇2) of (G2(C4), T 3).
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the Johnson graph J(4, 2). It is known that the one-skeleton of the general Grassmannian

Gk(Cn+k) (for k ≥ 1) is the Johnson graph J(n+ k, k) (see [1]).

5.2. The second main result.

Since we fix the axial function αn on Γn and its connection ∇n is unique, we may

write the GKM graph (Γn, αn,∇n) of (Mn, T
n+1) as Γn for simplicity; therefore, we

denote the group of axial functions A(Γn, αn,∇n) as A(Γn). This final section is devoted

to the proof of the following theorem:

Theorem 5.5. The group of axial functions A(Γn) is isomorphic to Zn+1.

When n = 1, the GKM graph Γ1 is the (2, 2)-type GKM graph (which is the first

GKM graph in Figure 1). Therefore, by Theorem 3.1, we have that A(Γ1) ≃ Z2. Hence,

we may assume that n ≥ 2.

To prove Theorem 5.5, we first choose an order on E{i,j}(Γn) for i, j ∈ [n + 2] as

follows (see Figure 6 for n = 2):

• Ei,k
i,j ≺ Ej,l

i,j if i < j, where k, l ∈ [n+ 2] \ {i, j};

• Ei,k
i,j ≺ Ei,l

i,j if k < l, where k, l ∈ [n+ 2] \ {i, j}.

{2, 4}

{1, 2}

{2, 3}

{1, 3}

{3, 4}

{1, 4}

(1)

(3)

(2)

(4)

(4)

(2)

(3)

(1)

(3)

(1)

(4)

(2)

(3)

(4)

(2)

(1)

(1) (3)

(4)(2)

(3)(1)

(4)

(2)

Figure 6. The order of out-going edges on each vertex of Γ2. For example,
around the vertex {1, 3}, Figure shows that E1,2

1,3 ≺ E1,4
1,3 ≺ E2,3

1,3 ≺ E3,4
1,3 .

Take f ∈ A(Γn) and put
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f({n+ 1, n+ 2}) =

 x1

...

x2n


with respect to the order on E{n+1,n+2}(Γn) defined as before, i.e.,

E1,n+1
n+1,n+2 ≺ · · · ≺ En,n+1

n+1,n+2 ≺ E1,n+2
n+1,n+2 ≺ · · · ≺ En,n+2

n+1,n+2.

More precisely, using the notation f(p)e defined in Section 2.3 for p ∈ V (Γn) and e ∈
Ep(Γn), we define the following correspondence between edges and integers (variables):

E1,n+1
n+1,n+2 7→ f({n+ 1, n+ 2})E1,n+1

n+1,n+2
= x1;

...

En,n+1
n+1,n+2 7→ f({n+ 1, n+ 2})En,n+1

n+1,n+2
= xn;

E1,n+2
n+1,n+2 7→ f({n+ 1, n+ 2})E1,n+2

n+1,n+2
= xn+1;

...

En,n+2
n+1,n+2 7→ f({n+ 1, n+ 2})En,n+2

n+1,n+2
= x2n.

Then by the connectedness of Γn and the definition of A(Γn), the vector f({i, j}) is

denoted by the variables x1, . . . , x2n for all {i, j}’s in V (Γn). This shows that rk A(Γn) ≤
2n (this is also known from Theorem 3.1 and the fact that Γn is a (2n, n+1)-type GKM

graph). By Theorem 3.1, we also have rk A(Γn) ≥ n + 1. Therefore, in order to prove

Theorem 5.5, it is enough to prove that the variables xn+2, . . . , x2n can be denoted by

the other variables x1, . . . , xn+1. We shall prove that the following lemma holds.

Lemma 5.6. For j = 0, . . . , n− 2 (n ≥ 2), the following equation holds :

x2n−j = −x1 + xn−j + xn+1.

Proof. Recall the definition of the connection ∇n in Section 5.1. There is the

triangle GKM subgraph in Γn (i.e., a subgraph closed under the connection) which is

spanned by the vertices {n+1, n+2}, {1, n+1}, {1, n+2} (see Figure 7). We first show

the variables corresponding to the edges in this triangle is as in Figure 7.

{1, n+ 1} {1, n+ 2}

{n+ 1, n+ 2}

xn+1 − x1

−x1

x1 − xn+1

−xn+1

xn+1x1

Figure 7. The triangle GKM subgraph with corresponding variables on
edges.
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We assumed f({n+1, n+2})E1,n+1
n+1,n+2

= x1 (and f({n+1, n+2})E1,n+2
n+1,n+2

= xn+1).

So, by Lemma 2.13,

f({1, n+ 1})En+1,n+2
1,n+1

= −x1.

Moreover, the connection satisfies

(∇n)
1,n+1
n+1,n+2(E

1,n+2
n+1,n+2) = E1,n+2

1,n+1

and the congruence coefficient satisfies

c1,n+1
n+1,n+2(E

1,n+2
n+1,n+2) = −1.

Therefore, we have the following equation by the definition of f ∈ A(Γn):

xn+1 − f({1, n+ 1})E1,n+2
1,n+1

= (−1)× (−x1).

Hence, we have f({1, n + 1})E1,n+2
1,n+1

= xn+1 − x1, i.e., the correspondence E1,n+2
1,n+1 7→

xn+1 − x1. Together with Lemma 2.13 we also have the correspondence

E1,n+1
1,n+2 7→ x1 − xn+1.

This establishes the variables in Figure 7.

We next consider the subgraph drawn in Figure 8 and compute the corresponding

variables on edges in this subgraph as in Figure 8.

{n− j, n+ 2}

{1, n− j}

{n− j, n+ 1}

{1, n+ 1}

{n+ 1, n+ 2}

{1, n+ 2}

x2n−j

x1 xn+1

x2n−jxn−j

xn−j

Figure 8. The subgraph with corresponding variables on edges.
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We assumed f({n+1, n+2})En−j,n+2
n+1,n+2

= x2n−j (and f({n+1, n+2})En−j,n+1
n+1,n+2

= xn−j)

for 0 ≤ j ≤ n− 2. As (∇n)
1,n+1
n+1,n+2(E

n−j,n+2
n+1,n+2) = E1,n−j

1,n+1 and c1,n+1
n+1,n+2(E

n−j,n+2
n+1,n+2) = 0, we

have the correspondence

E1,n−j
1,n+1 7→ x2n−j .

Similarly, because (∇n)
1,n+2
n+1,n+2(E

n−j,n+1
n+1,n+2) = E1,n−j

1,n+2 and c1,n+2
n+1,n+2(E

n−j,n+2
n+1,n+2) = 0, we

have the correspondence

E1,n−j
1,n+2 7→ xn−j .

This establishes the variables in Figure 8.

By Figure 7 and Figure 8, we have the triangle GKM subgraph with variables as in

Figure 9.

{1, n− j}

{1, n+ 1} {1, n+ 2}

x2n−j xn−j

x1 − xn+1xn+1 − x1

Figure 9. The triangle GKM subgraph with corresponding variables on
edges.

In Figure 9, (∇n)
1,n+2
1,n+1(E

1,n−j
1,n+1) = E1,n−j

1,n+2 and c1,n+2
1,n+1(E

1,n−j
1,n+1) = −1. Therefore, by

definition of f ∈ A(Γn), we have the equation

x2n−j − xn−j = −1(x1 − xn+1).

This establishes that x2n−j = −x1 + xn−j + xn+1. □

Consequently, this shows Theorem 5.5. Therefore, by Corollary 1.3, we have Propo-

sition 1.5.
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