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Abstract. We define an “ample canonical height” for an endomorphism
on a projective variety, which is essentially a generalization of the canonical
heights for polarized endomorphisms introduced by Call-Silverman. We for-
mulate a dynamical analogue of the Northcott finiteness theorem for ample
canonical heights as a conjecture, and prove it for endomorphisms on varieties
of small Picard numbers, abelian varieties, and surfaces. As applications, for
the endomorphisms which satisfy the conjecture, we show the non-density of
the set of preperiodic points over a fixed number field, and obtain a dynamical
Mordell-Lang type result on the intersection of two Zariski dense orbits of two
endomorphisms on a common variety.

1. Introduction.

Let X be a smooth projective variety over Q and f a polarized endomorphism, that
is, a surjective morphism from X onto X with an ample divisor H such that f*H ~ dH
for some d > 1. Let hy be a height associated to H. Then we can define the canonical
height associated to H due to Call-Silverman [CaSi93]:
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Then h H,s is considered as a new ample height on X which reflects the dynamics of f;
for example, iz ;o f = dhy.; holds and, for any point z, hg f(z) = 0 if and only if
x is f-preperiodic i.e. {z, f(z), f?(x),...} is finite. Moreover, the Northcott finiteness
theorem (Theorem 2.2) implies that the set

{z € X(K) | ha s (z) = 0}

is finite for any number field K. This result might be seen as a dynamical version of
the Northcott finiteness theorem. Eventually, it follows that the set of f-preperiodic
K-rational points is finite for any number field K. In particular, any point x € X (Q)
with lALHf(w) > 0 is not f-preperiodic.

Thus canonical height is a powerful tool to study the dynamics of polarized endo-
morphisms over number fields. So it is nice if we have such a canonical height for general

endomorphisms. But the following example shows that we should modify the definition
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of canonical heights for general endomorphisms.

EXAMPLE 1.1. Let E be an elliptic curve over Q and set X = E x E. Take two
integers a € Z>92, b € Z \ {0} and let f be an endomorphism on X defined as f(z,y) =
(az + by, ay) for (x,y) € X(Q). Then we have f™(x,y) = (a"x +na" by, a™y). Let hp,
hx be Néron-Tate heights on E, X respectively such that hx(z,y) = hg(z) + he(y).
Then hx (f"(0,y)) = hg(na" 'by) + hp(a™y) = a®*(n2a=20% + Dhg(y). If y € B(Q) is
not a torsion point, then hg(y) > 0 and so hx (f"(0,y)) grows like a**n? as n grows. In
this case, we should define the canonical height }Alf (z,y) with respect to f at (0,y) as

; _ o hx(7(0,9))
ho(0.9) = fy B

= a"2%hp(y).

The dynamical degree 07 of f (cf. Notation and Conventions below) is equal to a? (cf. The-
orem 5.5).

Taking this example into account, we will define ample canonical heights for general
endomorphisms. Silverman [Sil14, p. 649] defined the (upper) canonical heights for
rational self-maps on projective spaces as follows: let ¢ : P? -5 P4 be a rational map
with
1/n

dp = ILm (deg(e™))™ /™ > 1.

Then the upper canonical height at P € P4(Q) is

o (P) = limsup L2

logn
n—00 n 5@

where h is the natural height function on P? and

d n
l¢:inf{l>0sup eg(¢") <oo}.

n>1 nlég

Note that we may have fALq,(P) = 0o for some rational self-map ¢ and P € P4(Q).

Modifying the definition of the canonical height for a self-map on a projective space,
we define (upper/lower) canonical height for (not necessarily polarized) endomorphisms.
For a pair (X, f) of a projective variety X over Q and an endomorphism f on X, fix an
ample height hx > 1 i.e. a height associated to an ample divisor on X. Let d¢ be the
(first) dynamical degree of f (see Notation and Conventions below), and [; the minimal
non-negative integer such that the sequence {5;”n_lf hx(f™(x))}2, is upper bounded
for every z € X (Q). The existence of such I is proved by Matsuzawa [Mat16, Theorem
1.6] (cf. Theorem 2.6). We define the upper (resp. lower) ample canonical height Ef,ﬁf
as

hx (f"(x))

hy(z) = limsup

n—o00 5?”” ’
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h(x) = lim inf w

- n—00 5?nl.f

It is obvious by definition that Ef and h; take finite and non-negative values at
every point. If f is a polarized endomorphism, then Ef, hy are essentially equivalent to
the canonical height of Call-Silverman, as we will see in Section 4. So we can regard the
notion of ample canonical heights as a generalization of canonical heights for polarized
endomorphisms.

On the other hand, Kawaguchi and Silverman [KaSil6a] introduced the canonical
height h p,f associated to a nef R-Cartier R-divosor D such that D is not numerically
trivial and f*D is numerically equivalent to §;D, which we call a nef canonical height
(cf. Definition 2.6). Note that such D always exists due to Perron—Frobenius-Birkhoff
theorem (Theorem 2.4). Then the following questions naturally arise.

QUESTION 1.2. Let X be a smooth projective variety over Q and f an endomor-
phism on X with §; > 1.

(i) Whether hy < h; holds or not?
(ii) Does there exist a nef canonical height iLD’f such that Ef = ]AlD,f and ﬁf = fLD,f?

For the definition of the relation “<”, see Notation and Conventions below. We will
see that Question 1.2 has positive answers in the following cases.

e There is an ample R-divisor H such that f*H = ¢yH (Theorem 4.1 (i)).
e The Picard number of X is two and f is an automorphism (Theorem 4.2 (ii)).

e X is a Calabi-Yau threefold whose Picard number is at most three and f is an auto-
morphism (Theorem 4.5 (i)).

e X is a surface and f is an automorphism (Theorem 6.1 (i)).

But in general the relationship of these height functions is not clear at the moment.

We expect that ample canonical heights have nice properties reflecting the dynamics
of f. As an analogy with the Northcott finiteness theorem for ample heights, the set of
points at which the (lower) ample canonical height vanishes should be “small”. Indeed,
the zero set of the canonical height for a polarized endomorphism is “small” as we saw
above.

Let K C Q be any subfield. The symbol Z;(K) denotes the set of K-rational points
of X at which hy takes zero. The main objective of this article is to study the structure
of Z;(K). For that, we give the following conjecture as a dynamical analogue of the
Northcott finiteness theorem.

CONJECTURE 1.3.  Let X be a smooth projective variety over Q and f an endo-
morphism on X with 6¢ > 1. Take any number field K. Then there is an f-invariant
proper closed subset V' of X including Z;(K).
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Clearly, it is sufficient for proving Conjecture 1.3 to show the existence of such a
closed subset for any sufficiently large number field. The assumption that d; > 1 is
necessary (see Example 3.5 below).

We make a weaker conjecture, which is a generalization of a conjecture of Kawaguchi
and Silverman [KaSil6a, Conjecture 6 (d)] restricted to the endomorphism case
(cf. Proposition 3.6 (iv)).

CONJECTURE 1.4. Let X be a smooth projective variety over Q and f an endo-

morphism on X with éy > 1. For any point x € X (Q) whose f-orbit

Oy (z) = {z, f(2), f2(x),...}
is dense in Zariski topology, we have ﬁf(x) > 0.

Let f be an endomorphism on a smooth projective variety X with d; > 1 and
assume that Conjecture 1.3 holds for f. Let € X(Q) be a point such that Oy (z) is
dense. Here Oy(z) is contained in X (K) for a sufficiently large number field K C Q.
Suppose z € Z;(K). Then Oy(z) C Z;(K) since f(Z;(K)) C Z;(K) (cf. Proposition
3.6), but this contradicts Conjecture 1.3 for f. Hence x ¢ Z;(K) i.e. hy(z) > 0. Thus
Conjecture 1.3 implies Conjecture 1.4.

Our aim in this article is to show that Conjecture 1.3 holds for certain endomor-

phisms. The main result is the following.

THEOREM 1.5. Let X be a smooth projective variety and f an endomorphism on
X with 6y > 1. Then Conjecture 1.3 holds in the following situations.

(Theorem 4.1) f*H = §;H for an ample R-divisor H on X. This contains the case
when the Picard number of X is one.

(Theorem 4.2) p(X) <2 and f is an automorphism.

(Theorem 5.1) X is an abelian variety.

(Theorem 6.1 and Theorem 7.1) X is a smooth projective surface.

Let us briefly see how these results are proved. The first case is easily shown because
the ample canonical height for a polarized endomorphism is equivalent to the canonical
height due to Call-Silverman.

For the p(X) = 2 case, we can take two nef R-divisors D1 which are eigenvectors
of f*in N'(X)r and the associated canonical heights hp +.f» which help us to compute
the ample canonical height.

If X is an abelian variety and f € End(X), then {f™}32, satisfies a Q-linear recur-
rence relation in End(X)g. Then we can compute ample canonical heights with the aid
of the recurrence relation.

Surface automorphism case follows from arguments due to Kawaguchi [Kaw08] and
Kawaguchi-Silverman [KaSil4]. We take two nef canonical heights A% for f*. Then it
turns out that AT is equivalent to the ample canonical height. So the assertion follows
from results in [KawO08]. Surface endomorphism case is proved by using the results due
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to Matsuzawa, Sano, and the author in [MSS18]. In [MSS18], it is proved that any
non-automorphic endomorphism on a minimal surface which is isomorphic to neither P?
nor abelian surfaces admits a certain fibration to a curve. Then some comutation of
height on the surface is reduced to computation of a height on the curve.

REMARK 1.6. It is not clear that the above definition of ample canonical height
works for an arbitrary rational self-map f : X --+ X because we do not know whether a
non-negative integer ! which makes {6;"n’lhx(f”(x))}§°:0 bounded for every x exists
or not.

There are already various constructions of “canonical heights” for certain self-maps.
Here the term “canonical heights” means functions which are constructed from a (ample
or nef) height function and reflect some dynamical behavior of the self-map. So the
definition of canonical heights in the following references are different in general. As
mentioned above, Call and Silverman [CaSi93] defined canonical heights for polarized
endomorphisms, which includes the Néron—Tate heights on abelian varieties as a special
case. Kawaguchi [Kaw06], [Kaw13] and Lee [Leel3] constructed canonical heights for
regular polynomial automorphisms. Kawaguchi [Kaw08] constructed canonical heights
for surface automorphisms. Siverman [Sil14] defined and studied canonical heights for
rational self-maps on projective spaces. Kawaguchi and Silverman [KaSil6a] showed
that there always exists a nef canonical height, that is, a canonical height associated
to a nef R-divisor for any endomorphisms on normal projective varieties (cf. Theorem
2.4 and Theorem 2.5). Jonsson and Wulcan [JoWul2] constructed canonical heights
for plane polynomial maps of small topological degree. Jonsson and Reschke [JoRel8|
constructed canonical heights for birational self-maps on surfaces.

This paper proceeds as follows. In Section 2, we recall fundamental facts on heights.
In Section 3, we define ample canonical heights again and show elementary properties
of them. Section 4 treats endomorphisms on smooth projective varieties of small Picard
numbers. Endomorphisms on smooth projective varieties of Picard number one, auto-
morphisms on smooth projective varieties of Picard number < 2, and automorphisms on
Calabi—Yau threefolds of Picard number < 3 are mainly studied. We investigate endo-
morphisms on abelian varieties in Section 5, and endomorphisms on surfaces in Section 6
and Section 7. In Section 8, we make two applications of Theorem 1.5. First, we see that
Conjecture 1.3 implies the non-density of the preperiodic points over any fixed number
field (Proposition 8.1), and then we obtain such a non-density result for endomorphisms
appearing in Theorem 1.5 (Theorem 8.2). Second, we describe the intersection of two
dense orbits Oy(z), O4(y) of endomorphisms f, g on a variety. Main results in Section 8
are stated without the notion of height.

NOTATION AND CONVENTIONS.

e Throughout this article, we work over Q, the algebraic closure of the rational number
field.

e A curve (resp. surface) simply means a smooth projective variety of dimension one
(resp. dimension two) unless otherwise stated.
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e Let X be a projective variety. An endomorphism on X means a surjective morphism
from X onto X. A non-trivial endomorphism on X means an endomorphism on X
which is not an automorphism.

e Let X be an abelian variety. End(X) denotes the set of (not necessarily surjective)
algebraic group homomorphisms from X to X. Set End(F)kx = End(E)®zK (K = Q,R
or C).

e Let X be a projective variety and f an endomorphism on X.

(i) The (forward) f-orbit of a point z € X (Q) is the set Of(z) = {x, f(x), f2(x),...}.

(ii) A point z € X(Q) is f-periodic if f"(x) = z for a positive integer n. For any
subfield K C Q, Per;(K) denotes the set of f-periodic K-rational points of X.
(iii) A point x € X(Q) is f-preperiodic if f*(x) is f-periodic for a positive integer k.
For any subfield K C Q, Preper f (K) denotes the set of f-preperiodic K-rational
points of X.
It is clear that z is f-preperiodic if and only if O¢(z) is finite. Moreover, if f is
an automorphism, then z is f-preperiodic if and only if = is f-periodic.

(iv) A closed subset V C X is f-invariant if f(V) C V, and f-periodic if it is fV-
invariant for some positive integer V.

e Let X be a smooth projective variety and f an endomorphism on X. Take an ample
divisor H on X. Then the limit

5}" — lim ((fn)*H . Hdimel)l/n
n—oo

exists and is independent of the choice of H. The invariant d; is called the (first)
dynamical degree of f.

e Let K be R or C. For a K-linear endomorphism f : V — V on a K-vector space
V, p(f) denotes the spectral radius of f, that is, the maximum of absolute values of
eigenvalues of f.

e The symbols ~ (resp. ~g, ~r) and = mean the linear equivalence (resp. Q-linear
equivalence, R-linear equivalence) and the numerical equivalence on divisors.

e For a projective variety X, N'(X) denotes the abelian group of the numerical equiv-
alence classes of Cartier divisors of X. Set N'(X)zg = N'(X) ®z R and p(X) =
dimg N1(X)g. The number p(X) is called the Picard number of X.

e Let hy, hy be non-negative functions on a same domain. We say that ho dominates hq,
denoted by hi < ho, if there is a positive constant C' such that h; < Chs. We say that
hy is equivalent to ho, denoted by hy < ho, if hy < ho and hg < h;.

e Let f, g and h be R-valued functions on a domain. The equality f = g + O(h) means
that there is a positive constant C' such that |f — g| < C|h|. In particular, the equality
f =g+ O(1) means that there is a positive constant C' such that |f — g| < C.
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e Let X be a projective variety. For an R-Cartier R-divisor D on X, a function hp :
X(Q) — R is determined up to the difference of a bounded function. hp is called the
height function associated to D. For definition and properties of height functions, see

e.g. [HiSi00, Part B] or [Lan83, Chapter 3].

e For a projective variety X, we always fix an ample height function hx, that is, a
height function associated to an ample divisor, with hx > 1. If hy, ho are ample
height functions on X with hq, he > 1, then hy < hy (cf. Lemma 2.1).

e Let X be a normal projective variety and f an endomorphism on X. Then the limit

ap(z) = lim hx(f"(z))"/"

n—oo

exists and is independent of the choice of hx for every z € X (Q) ([KaSi16b, Theorem
3 (a)]). The number ay(z) is called the arithmetic degree of f at x. For details, see
[KaSil6a] and [KaSil6b].

ACKNOWLEDGMENTS. I would like to thank Professors Osamu Fujino and Mattias
Jonsson for valuable comments. I am grateful to Kaoru Sano and Yohsuke Matsuzawa for
insightful discussions and comments, and Kenta Hashizume for answering some questions.
I appreciate the referee giving me so many important comments.

2. Basic results on heights.

In this section, we recall some basic results on heights which are used later.
LeEmMA 2.1.  Let X be a projective variety. For any R-divisor D on X, hp < hx.

PrROOF. Weset hx = hy > 1 for some ample divisor H on X. Take a sufficiently
large integer N such that NH —D is ample. Then hyy = (1/N)hyg+O(1) = (1/N)(hp+
hya-p)+O(1) > (1/N)hp + O(1). So hp < Nhgy + O(1). Since hyg > 1, we can take
a sufficiently large C' > 0 such that hp < Chy. g

THEOREM 2.2 (Northcott finiteness theorem). Let X be a projective variety over
a number field K, H an ample R-Cartier R-divisor on X, d a positive integer, and B a
positive constant. Then the set

{z € X(L) | L is a number field with [L : K] < d, hy(x) < B}
is finite.

From the Northcott finiteness theorem, we can deduce a similar result for semiample
divisors.

COROLLARY 2.3. Let X be a projective variety over a number field K, D a semi-
ample Cartier divisor on X with D « 0, d a positive integer, and B a positive constant.
Then the set

{z € X(L) | L is a number field with [L : K] <d, hp(x) < B}
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1s not dense.

Proor. Take a sufficiently large integer N such that N D is base point free. Then
there is a surjective morphism ¢ : X — Y to a projective variety Y such that ND ~ ¢*H
for some ample divisor H on Y. Then hy o = Nhp + O(1), so we can take C' > 0 such
that hH O¢ S NhD —|—C Set

S ={z e X(L)| L is anumber field with [L : K] <d, hp(z) < B},
T={yeY(L)|Lisanumber field with [L : K] <d, hg(y) < NB+C}.

Then S C ¢~}(T), and T is a finite set by Theorem 2.2. So S is contained in a proper
closed subset. O

As an application of Perron—Frobenius-Birkhoff theorem, we obtain the following
(cf. [KaSil6a, Remark 31]).

THEOREM 2.4. Let X be a projective variety and f an endomorphism on X. Then
there is a nef R-Cartier R-divisor D on X such that D #0 and f*D = §;D.

For an R-Cartier R-divisor D which is an eigenvector of f* : N}(X)g — NY(X)g,
we can define the canonical height associated to D under some assumptions.

THEOREM 2.5 ([CaSi93] and [KaSil6a, Theorem 5]). Let X be a projective va-
riety, f an endomorphism on X with 67 > 1, and D an R-Cartier R-divisor on X.

(i) Assume that f*D ~gr AD with A > 1. Then the limit

n—00 AP
exists for every x € X (Q) and satisfies lAlD,f =hp+ O(1).
(i) Assume that f*D = AD with A > /0f. Then the limit

n—o0o A
exists for every x € X(Q) and satisfies hp f = hp + O(Vhx).

DEFINITION 2.6. Let X be a projective variety and f an endomorphism on X with
0 > 1. Take a nef R-Cartier R-divisor D on X such that D # 0 and f*D = 67D by
using Theorem 2.4. Then Theorem 2.5 implies that the limit
A h n
hip s () = i 2

n—00 (5?

exists for every x € X(Q). We call lALDJv a nef canonical height for f associated to D.

To estimate the growth of heights hx (f™(x)) as n increases, the following result is
fundamental.
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THEOREM 2.7 ([Mat16, Theorem 1.6]). Let X be a projective variety with p(X) =
r and [ an endomorphism on X.

(i) If ¢ = 1, then there is a positive constant C' > 0 such that hx o f* < Cn* T2hy
for every n € Z>y.

(i) If 65 > 1, then there is a positive constant C > 0 such that hx o f* < Co}n"hx
for every n € Z>y.

Theorem 2.7 deduces the following weaker inequality. Note that the inequality is
proved for dominant rational self-maps, which is not needed in this article.

THEOREM 2.8 ([KaSil6a, Theorem 26], [Mat16, Theorem 1.4]). Let X be a
projective variety, f an endomorphism on X with oy > 1, and e > 0 any positive constant.
Then there is a positive constant C > 0 such that hx o f* < C(65 + €)"hx for every
ne Zzo.

Theorem 2.8 implies that af(x) < 6 for every point . On the other hand, any
dynamical system (X, f) has a point whose arithmetic degree attains the dynamical
degree:

THEOREM 2.9 ([MSS18, Theorem 1.6]). Let X be a smooth projective variety and

f an endomorphism on X. Then there is a point v € X(Q) such that ay(x) = 5.

3. Ample canonical heights.

In this section, we will define ample canonical heights for endomorphisms and prove
some elementary properties. In what follows, we always assume the smoothness of pro-
jective varieties for simplicity.

We define ample canonical heights as follows.

DEFINITION 3.1. Let X be a smooth projective variety and f an endomorphism
on X.

(i) Let I; be the smallest non-negative integer such that the sequence

hx (f7(2) |
5;}an o

is upper bounded for every x € X(Q). Theorem 2.7 guarantees the existence of
such .

(ii) Set

hy(x) = limsup hx (") hy(x) = liminf hx (" (@)

00 5?nlf n— o0 5;}an ’

which we call upper ample canonical height for f, lower ample canonical height for
f, respectively.
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REMARK 3.2. Ef and h; depend on the choice of hx. If E/f,h'f are upper and
lower ample canonical heights associated to another ample height h'y, then it is clear
that hy < E/f and hy =< h's. In particular, the condition that hy(x) = 0 (resp. hy(x) = 0)
is independent of the choice of hx.

DEFINITION 3.3. Let X be a smooth projective variety and f an endomorphism
on X. For any subfield K C Q, we set

Zi(K) = {x € X(K) | hy(z) = 0}.

As we saw in Remark 3.2, Z¢(K) is independent of the choice of hx. Proposition

3.6 (iii) below shows that Z;(Q) is an f-invariant subset i.e. f(Z;(Q)) C Z;(Q).

ExXaMPLE 3.4. Let X be a smooth projective variety and f : X — X a polarized
endomorphism: f*H ~ dH for an ample divisor H and d > 1. Then it follows that
05 = d. Take a height hy associated to H as satisfying hy > 1. Then hy < hx. So

limsupd "hx(f"(z)) < nILII;O d"hg(f"(z)) = ilH,f(x)-

n—oo

This implies that [; = 0 and Ef = ]AlH’f. Similarly Qf = lAzH,f. Thus Ef,ﬁf are essentially
equivalent to the canonical height h m, associated to H. It follows that Z;(Q) is the set
of f-preperiodic points. We will show a more general result in Theorem 4.1.

ExaMpPLE 3.5. On the other hand, let X be a smooth projective variety and
f: X — X an endomorphism such that f" # idx for every n € Z~q and f*H ~ H for
an ample divisor H (e.g. automorphisms of infinite order on projective spaces). Then we
have 6y = 1. As before, take a height hy associated to H as satisfying hgy > 1. Since
hig o f=hg+ O(1), we can take C > 0 such that |hg o f —hy| < C. Then

n

|hHofn| < ZthOfk—hHofk_1|—|—hH <nC+ hyg.
k=1

Hence limsup,, n~*hy (f™(x)) < oo and so Iy < 1. On the other hand, we can take a non-
f-preperiodic point z (cf. [Amell]), and then {hgy(f™(x))}52, is not upper bounded by
the Northcott finiteness theorem. So Iy = 1.

Set X =Pland f(z:y) = (z+y:y). Then f*(z:y) = (z+ny : y). Fix a number
field K and take any point P = (x : y) € X(K). Let h be the usual height function on
X (cf. [HiSi00, B.2]). Then

h(f"(P)) = Y logmax{|lz +nyllu. [lyll.}

vEME
< Y logmax{|lzllu, [[nyllu. [lyll. }-
vEMK
Here lim,n'log|lnyll, = lim,n"'(logn + logllyll.) = 0, so hp(P) =

limsup,, n~'A(f"(P)) = 0. Since K and P are arbitrary, hy = h; = 0 and so
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Z#(Q) = X(Q). Hence Conjecture 1.3 and Conjecture 1.4 fail for f.

This example suggests that ample canonical heights do not work well for endomor-
phisms with dynamical degree one, or at least we should modify the definition of ample
canonical heights for such endomorphisms.

From now on, we will show some elementary results on ample canonical heights. The
following proposition is similar to [Sil14, Proposition 19].

PROPOSITION 3.6. Let X be a smooth projective variety and f an endomorphism
on X.

(i) hs and hy are non-negative R-valued functions.

(ii) Assume that 6y > 1 orly > 0. Then Ef(x) = 0 for any f-preperiodic point

r € X(Q).
(ii)) hyo f=0dshs, hyof=dshy.
(iv) Forz € X(Q), assume that hy(z) > 0. Then ay(z) = d;.

Proor. (i) and (ii) are clear by definition.

(iii) Take any z € X(Q). Then

- L hx (f"+(x))
hy(f(x)) = lim sup 57l
l
Y L\ hx(f*+(x))
= 5fﬁf(m).
Similarly h,(f(z)) = dphy().
(iv) We compute
. o Chx (M) hx (fM @) \"
hy(x) = hrrbn—i)lip 5?nlf — llﬂsolip (5fnlf/” .

Now it follows that

n 1/n
A ag(e)
n—00 6fnlf/” 5f

So ay(z) < §y implies that hy(z) = 0. O

LEMMA 3.7. Let X be a smooth projective variety and f an endomorphism on X.
Take a positive integer N.

(i) 5fN = (5}\[} lfN = lf.

(ii) Let K C Q be a subfield where X and f are defined. Then Z;(K) =
Ui (571 (2w (K)).
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(iii) Congecture 1.3 holds for f if and only if it holds for fV.
PrROOF. (i) Take an ample divisor H on X. Then
5fN _ nlL}II;O((an)*H . Hdimel)l/n
— lim (((an)*H . HdimX—l)l/Nn)N

n—oo

_sN
=0f .
Take any non-negative integer [. Set

= M B(l)(x) — M

5}%[ T 5;}an

A(Z)(x)

n

Then

(Nn + k) hx (fN" () E\' k0
nl 5}Vn(Nn+k)l = NJ“; 6f ANn+k(9”)-

So {Ag,l)(x)};’f:o is upper bounded if and only if {Bg)(fk (x))}22, is upper bounded for
every k € {0,1,..., N — 1}. This implies that l;n = [.

(i) Set A, (z) = Agf)(x) and B, (x) = By(ff)(x). The above calculation also shows
that h,(z) = liminf, A,(z) > 0 if and only if A~ (f*(z)) = liminf,, B,(f*(z)) > 0 for
every k € {0,1,..., N — 1}. So the assertion follows.

(iii) Let K be any number field where X and f are defined. If Conjecture 1.3 holds
for f, we can take an f-invariant proper closed subset V' C X such that Z;(K) C V(K).
Then Zynv(K) C Zp(K) C V(K) by (ii), and V is clearly f"-invariant. So Conjecture
1.3 holds for fV.

Conversely, assume that Conjecture 1.3 holds for fV. Take an fV-invariant proper
closed subset W C X such that Zyv(K) C W(K). Then Z;(K) ¢ U, (f) " (W (K))
by (ii). For z € W, we have fN=(f(z)) = fN(z) € fN(W) Cc W, so f(z) €
(N=H=L(W). For z € f~H(W) with 1 < i < N — 1, we have fi=1(f(x)) = fi(z) €
W, so f(z) € (f7)7HW). Thus (U, (f)7 W) € Uil (f) 7 (W), Hence
UﬁV:_Ol(fi)_l(W) is an f-invariant proper closed subset. O

BY (f*(x)) =

We introduce the lexicographic order on the pairs (d¢,1f).

DEFINITION 3.8. For (51,l1),((52,12) S Rzl X Zzo, (51,[1) < (52,12) if 61 < 69
holds, or 41 = d5 and I; < Iy hold.

LEMMA 3.9. Let X,Y be smooth projective varieties and f,g endomorphisms on
XY, respectively.

(1) (Ofxglrxg) = max{(d¢,l¢), (0g,1g)}
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(if)

_ Ef(x) if (85,1f) > (8¢, 1g),
hyxg(@,y) = § hy(x) + hyly) 3 (b7,15) = (3, 1),
Eg(y) if (07,15) < (0g,14)-

The lower ample canonical height hy , is similar.

(iii) Let K C Q be any subfield where X,Y, f, g are defined. Then

Zy(K) x Y(K) if (07,1r) > (dg,14),
Zpxg(K) = 4 Z(K) x Zy(K) it (07,15) = (3g,19),
X(K) x Zy(K) if (05,17) < (dg14)-

PrOOF. We may assume that (d¢,l¢) > (d4,1y) without loss of generality. Then
dfxg =max{ds,d,} = 05 by the product formula (cf. [Trul5]).

Let p: X XY = X, q: X XY — Y be the projections. Since hx op+ hy o ¢ is an
ample height on X XY, hxxy < hx op+ hy o q. Take any non-negative integer [.

hxxy ((f x9)"(x,y)  hxxy(f"(z),9"(y))

5?><gnl 5;}711
_ hx(f"(z)) (5g>n hy (9" (y))
=X ) ——

(5:}nl g 57;711

If 64 < &y, then lim, (8,/65)" hy (9" (y))/(6n') = 0 for any I, so Iy, = Iy and

Efxg(x,y) xﬁf(x).
Assume that §; = §,. Then

hxxy ((f x g)"(z,y)) ~ hx(f"(x)) " hy(g"(y))'

(5;}Xgnl 5}%1 (5_{;711

So lyxg = max{ly,l,} =1y and

7 (@) Ef(l’) if Iy > 1,
f YY) =+ - .
“ hy(x) + hy(y) if 1y = 1.

Thus (i) and (ii) hold. (iii) follows from (ii). O

LEMMA 3.10. Let X, Y be smooth projective varieties, f,g endomorphisms on X,Y,
respectively, and m : X =Y a surjective morphism such that mo f = go .

(i) (05,15) = (89 19)-

(ii) Assume that (65,15) = (84,1g). Then hgom < hy and hyom < hy. In particular, let
K C Q be any subfield where all concerned are defined, then Z¢(K) C 7= (Z4(K)).
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(iii) Assume that s finite. Then (65,1f) = (6g,1g), hgom < hy and h,om < hy. In
particular, Z;(Q) = 71 (Z,(Q)).

PROOF. Since hy o < hx (cf. Lemma 2.1), there is a positive constant C' such
that hy o™ < Chx.

(i) The product formula implies that 6 > ¢, (cf. [Trulb]). If §; > d,, then
(6¢,1f) > (84,1,). Assume that 6; = §,. Take any y € Y(Q). We can take z € 7 !(y).
Then

hy(9"(y)) _ hy(nf™(2)) _ hx(f"(2))

onnls 5}‘nlf - 5?nlf

So {hy (g"(y))/(égnlf)}oo is upper bounded and therefore [, < ly.

n=0
(ii) By assumption,

hy(g"n(2)) _ hy(nf"(2)) _ ~hx(F(2))

onnle ofnls — onls

SOEQOTFS Cﬁf and@QOﬂ' < Chf.
(iii) Since 7 is finite, we have 05 = d, and hy o7 < hx. So we can take a positive
constant C’ such that hx < C'hy ow. Then

hx(f"(x)) _ by (g"7(x))
d%nls s¢ opnls

So Iy < l,. Combining with (i), we obtain [ = l,. By the above inequality, h; < C'hjom
and hy < C’ﬁg o 7. Combining with (ii), we obtain Ef = Eg omand hy < h,om. O

The following is a version of the Chevalley—Weil theorem (see e.g. [Ser97, 4.2] and
[HiSi00, Exercise C.7]).

THEOREM 3.11 (Chevalley-Weil).  Let X,Y be normal projective varieties and ¢ :
X — Y an étale morphism which are defined over a number field K. Then there is a
finite extension L of K such that ¢~ (Y (K)) C X(L). In particular, X is potentially
dense if and only if Y is potentially dense.

LEMMA 3.12.  Let X, Y be smooth projective varieties, f,g endomorphisms on X, Y
respectively, and ¢ : X — 'Y be a finite morphism such that ¢ o f = go ¢.

(i) Congecture 1.3 holds for f if it holds for g.

(ii) Assume that ¢ is étale. Then Conjecture 1.3 holds for f if and only if it holds for
g.

PrOOF. Let K be any number field where all concerned are defined. Take any
positive integer d.

(i) By assumption, there is a g-invariant proper closed subset W C Y such that
Zy(K) C W(K). Then Z;(K) C ¢ *(Z4(K)) C ¢ '(W(K)) by Lemma 3.10 (ii) and
¢~ (W) is an f-invariant proper closed subset of X.
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(ii) Assume that Conjecture 1.3 holds for f. By Theorem 3.11, there is a finite
extension L of K such that ¢=1(Y (K)) C X(L). We can take an f-invariant proper closed
subset V' C X satisfying Z;(L) C V. Take any y € Z,(K). Then we can take z € X (L)
such that ¢(z) = y. Lemma 3.10 (iii) implies that z € Z;(Q) N X(L) = Zy(L) C V.
Soy = ¢(z) € ¢(V). Thus Z,(K) C ¢(V). Clearly ¢(V) is a g-invariant proper closed
subset of Y. O

For an endomorphism f with §; > 1 and {; = 0, the following holds.

THEOREM 3.13. Let X be a smooth projective variety and f an endomorphism on
X with 6y > 1 and Iy = 0. Then X(Q)\ Z;(Q) is dense in X.

ProOF. The proof is almost same as the proof of [MSS18, Theorem 1.6].
Using Theorem 2.4, take a nef R-divisor D on X such that D # 0 and f*D = 6;D.
Since hp < hx, we can take My > 0 such that hp < Mihx. Then

h h
th— lim po [ < lim inf M xof"

! f

== Mlhf'

So hy(xz) > 0 if hp ¢(z) > 0.

Take any proper closed subset V' C X and a very ample divisor H on X. By
[KaSil6a, Lemma 20, it follows that (D - H4mX~1) > 0. Take Hy, ..., Hgim x—1 € |H]|
such that C = HyN---N Hgjm x—1 is a smooth curve with C' ¢ V. Since iLD,f(x) =hp+
O(v/hx), we can take Mo > 0 such that IA1D7f > hp—Mav/hx. Now hp|c, hx|c are ample
heights and hx|c > 1, so we can take M3, My, M5 > 0 such that hp|c > Mshe — My,
hx|c > Mshe. Then

hp.tle > Mahe — My — Man/Mshe = \/he(May/he — Mar/Ms) — My,

So, by the Northcott finiteness theorem, there are mﬁmtely many points on C at which
hp.; has positive value. Take # € C'\ V such that hp f(z) > 0. Then z ¢ V and

Finally, we prove that §; and the pair (0f,ls) are characterized in terms of ample
canonical heights.

DEFINITION 3.14. Let X be a smooth projective variety, f an endomorphism on

X, and (4,1) € R>1 X Z>o. We set

Ef’g’l(x) - hmsupwa ﬁf&l(ﬁﬂ) = hmlnfw

n—o00 onnl ” n—oo onnl

THEOREM 3.15. Let X be a smooth projective variety and f an endomorphism on
X. Then

§p=min{6 € R>1 | hy e 0(x) < oo for any € > 0 and z € X(Q)}.

Proor. By Theorem 2.8, Ef,5f+e,0 < oo for every ¢ > 0.
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Take any § € R>; such that Ef,(prg,o < oo for every € > 0. By Theorem 2.9, there

is a point € X(Q) such that ay(x) = é¢. Take any ¢ > 0. Then there is a positive
constant C' such that hx (f"(x)) < C(d + €)™ for all n since hy 51 0(z) < 00. So

§; = ay(x) = lim hx(f"(z)" < lim CY"(0+e)=0+e.

n—oo n—oo

Since ¢ is arbitrary, 6 < 6. O

THEOREM 3.16. Let X be a smooth projective variety and f an endomorphism on
X. Then

(5f,lf) = min{(&,l) S R21 X ZZO | Eﬁ(s,l(m) < oo for any = € X(@)}

PROOF. By definition, hys, 1, = hy < co.

Take any (8,1) € R>q X Zxg such that hfs; < oo. Then hysco < oo for any € > 0.
So §; < § by Theorem 3.15. If §; < §, then (6y,1f) < (6,1). If 6y =6, then iy < [ by
definition of I;. Eventually, (65,17) < (4,1). O

4. Varieties with small Picard numbers.

This section treats ample canonical heights for endomorphisms on smooth projective
varieties with small Picard numbers.

If X is a smooth projective variety with p(X) = 1 and f is an endomorphism with
dr > 1, we can take an ample divisor H such that f*H = d;H. So the following includes
the case when p(X) = 1.

THEOREM 4.1. Let X be a smooth projective variety and f an endomorphism on
X with 5 > 1. Assume that there is an ample R-divisor H on X such that f*H = 6¢H.

(i) We have lf =0 and hy < h; =< B .

(ii) We have Z;(Q) = Preper;(Q), and Preper;(K) is finite for any number field K.

PrOOF. (i) Take hy as satisfying hy > 1. Then hx < hpy, so Iy = 0 and
Efahf = iLHJ.

(ii) By Proposition 3.6 (ii), Z;(Q) contains all f-preperiodic points. Conversely,
take any non-f-preperiodic point x. Since fALHyf = hy + O(vVhy), we can take C > 0
such that

hirg > hg — CvVhg = Vi (Vhe — O).

Therefore iLHf( f¥(z)) > 0 for some k by the Northcott finiteness theorem. Then
ﬁHf(x) > 0 since BHf(fk(x)) = 5’;ﬁHf(x) So hy(z) > 0 because hy < iLHf Thus
7;(@) = Preper(@).

Let K be any number field. The inequality hg s > vAg(vhg — C) implies that
Vhi(z)(\/hu(z) — C) < 0 for any € Z¢(Q). So the Northcott finiteness theorem
implies that Preper;(K) = Z;(K) is finite. O
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Next, we consider the case when p(X) < 2.

THEOREM 4.2. Let X be a smooth projective variety with p(X) < 2 and [ an
endomorphism on X with o5 > 1.

(i) We have Iy =0.

(ii) Assume that f is an automorphism. Then there is a nef canonical height iAzD,f such
that hy < h; < hp y. Moreover, we have Zs(Q) = Per;(Q), and Pery(K) is finite
for any number field K.

To prove Theorem 4.2, we use the following lemma.

LEMMA 4.3.  Let X be a smooth projective variety and f an endomorphism on X
with 67 > 1.

(i) We have
VG
n—00 an

f

for every x € X(Q).
(ii) Let D be an R-divisor on X such that f*D = XD with 0 < A < dy. Then

L (@)

=0

for every x € X(Q).

PROOF. (i) Take € > 0 such that 65 +¢ < 5]%. By Theorem 2.8, there is a positive
constant C' such that hx o f* < C(6y + ¢)"hx for all n. Then

n/2
VIxo T _ \/W_@<5f+€> Jim.

n — 2
0% i )

So the assertion follows.
(ii) Set ¢ = hp o f — Ahp. Since ¢ = O(v/hx), there is a positive constant C’ such
that ¢ < C'v/hx. Then

n

hpof* =3 X"*(hpo f¥ = Nhpo fF7) + X"hp

k=1
— ZA”*% o f* 1 4 Nhp.
k=1

So

n

hp o f1 <Y A" Flgo 71 4+ A hp
k=1
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<Y XEC'Vhx o fEL 4 A hp)
k=1

<Y XTRC[C (55 + €)F1hx + A" hp
k=1

<CVCY ARG +e)E N2 hx + XM b

k=1

< C'VCnp"'hx + A"|hpl,

where p = max{\, /05 + ¢} < ;. So lim, hp(f"(z))/d} = 0 for every . O

PROOF OF THEOREM 4.2. If p(X) = 1, the assertion follows from Theorem 4.1.
So we may assume p(X) = 2. By the Perron—Frobenius—Birkhoff theorem (Theorem 2.4),
we have a nef R-divisor D # 0 such that f*D = 6¢D. If D is ample, then the proof is
reduced to Theorem 4.1. So we may assume that D is not ample. Then the numerical
class of D is on one of two edges of the nef cone of X. Take a nef R-divisor D’ # 0
whose numerical class is on the other edge of the nef cone. Then f*D’ = AD’ for some
0 < A <y since f* is an automorphism which preserves the boundary of the nef cone.
Since A = D+ D' is ample, taking hp, hpr, hy as satisfying hy = hp +hp: > 1, we have
hX = hA.

(i) Since hy = ;LDJ + hpr + O(vVha), we can take C' > 0 such that hy < iLD’f +
hpr + Cyv/h4. Then

haof SilDf+hD/Of +C\/hAof.
of ' of of

Take any point z € X(Q). If A < dy, then {hp/(f"(x))/0}}n converges to 0 by Lemma
4.3 (ii). If A = dy, then {hp/(f"(x))/0% }n converges to hpr ¢(z). So {hp (f™(2))/0%}n
converges in any case. Furthermore, {\/ha(f™(z))/0%}, converges to 0 by Lemma 4.3
(i). Therefore {ha(f"(x))/d}}n is upper bounded. So it follows that [y = 0.

(ii) Since f is an automorphism, the inverse of f* : N'(X) — NY(X) is (f~1)* :
N'(X) = NY(X). So 6;A = |det(f*)] = 1 and therefore A\ = §;'. Now we have
ha= fALD’f + fALD/7f—1 + O(\/H) Set ¢ =ha — iLD’f — }ALD/,f—l. Then

haof® . hpr p1 n
A =g M 05 E
f f !

So lim,, 6;”hA o fm"= fzp,f by Lemn}a 4.3. ?ince ha =< hx, we have Ef,ﬁf = flp,f.
We can take C" > 0 such that hp ¢ + hpr p-1 > ha — C'Vha = Vha(vVha — C).
Take any non- f-preperiodic point z. Then

{hp, s (F"(2)) + hpr g1 (" (2)) 020 = {6Fhp, s (@) + 65" hpr g1 (2) 1020
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is not upper bounded by the Northcott finiteness theorem. So h p,f(x) must be positive.
Since h; < hp,f, we obtain hg(z) > 0. Therefore Z(Q) = Preperf(@) = Per;(Q).

By the same argument for f~!, we obtain Z;-1(Q) = Per;-1(Q). Clearly Per;(Q) =
Per;-1(Q), so we have {f—l(@) = ?f(@) A

Take any = € Z;(Q). Then hp y(z) = 0 since hp,y < h;. Moreover, since z €
Z;-1(Q) and ]/:LD/,f—l = hy-1, we have iAzD/fol(x) = 0. Then the inequality iAzD7f +

/AzD/7f1 > Vha(Vha — C') implies that \/ha(z)(y/ha(z) —C") < 0 for x € Z;(Q) =

Per;(Q). So the Northcott finiteness theorem deduces that Z;(K) = Pery(K) is finite
for any number field K. g

At last, we consider a Calabi—Yau threefold with Picard number < 3 and an auto-
morphism on it. The arguments here is based on [LOP17] and [LOP18]. To obtain a
result, we need the following conjecture.

CONJECTURE 4.4 (The abundance conjecture for Ricci flat manifolds, [LOP18,
Conjecture 4.8]).  Let X be a smooth projective variety with Kx ~ 0 and H'(X,Ox) =
0. Then any nef Cartier divisor on X is semiample.

For an automorphism on a Calabi—Yau threefold with Picard number < 3, a precise
description of Z; is not obtained at the moment, but we can prove Conjecture 1.4 if we
assume Conjecture 4.4.

THEOREM 4.5. Let X be a Calabi—Yau threefold (i.e. a projective threefold with
Kx ~0 and m(X) =0) with p(X) <3 and f an automorphism on X with éy > 1.

(i) We have ly = 0, and there is a nef canonical height iLD+7f such that hy < hy =
hoe .

ii) Assume Conjecture 4.4. Then Conjecture 1.4 holds for f.

ii) A Conj 4.4. Then Conj 1.4 holds for f

REMARK 4.6. As we will see in the proof, p(X) is automatically equal to 3 under
the assumption of Theorem 4.5. However the author does not know any example of
(X, f) in the theorem at the moment.

PROOF OF THEOREM 4.5. Since f is an automorphism, f* : N}(X) — NY(X)
has the inverse (f~!)* : N}(X) — N!Y(X) and so |det(f*)] = 1. Now we have
p(f*) = 6y > 1, so f* has an eigenvalue whose absolute value is in (0,1). Hence
Sp-r = p((f7H)*) = p((f*)~') > 1. We can take nef R-divisors D", D~ on X such
that DY, D~ #g 0 and f*D* ~g 6;DF, (f~1)*D~ ~g d;-1D~. Note that we have
these in R-linear equivalence, not numerical equivalence, since ¢(X) = 0. Since f is of
infinite order as an element of Aut(X), Aut(X) is an infinite group. Then it follows that
e = c2(X) #0in Ny (X)r (cf. [LOP17]). Here fica = ¢ and f* is the adjoint of f,, so
there is an R-divisor Dy such that Dy «g 0 and f*Dgy ~r Dyg.

Eventually, we have three eigenvectors DT, D™, Dy of f* with three different eigen-
values 6.f75f_}1?17 respectively. Then p(X) = 3 since DT, D™, Dy are linearly indepen-
dent. Since |det(f*)| = 1, we have d;—1 = dy. Now DT, D~ are in the nef cone of X.
So, replacing Dy by a non-zero multiple, we may assume that D = D" + D™ + D is
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ample. Taking hp+,hp- 7hDO and hD as satisfying hp = hp+ + hp- +hp, > 1, we have
hx =< hp. Moreover, hp = hD+ f+hD St +hD0 +O( )
()Setqb hD—hD+f—hD jl_hDO Then

h n . }AL o h n n
D(;Lf _ thf T D52’7{ 1 + D%Z f ¢7 5nf )
f f f

So lim,, 5f_"hD o fmr = }ALDJr’f by Lemma 4.3. Since hp =< hx, we have Iy = 0 and
Ef7hf = }ALDJr’f.

(i) Since (Dt -cy) = (D1 - fuca) = (f*DT -c2) = 6¢(DT - ¢2), we have (DT -¢2) = 0.
Similarly (D~ - c3) = 0. Let ¢ C N'(X)g be the subspace of N'(X)g consisting
of the elements whose intersection with cy is zero. Then cg is a 2-dimensional rational
subspace generated by DT, D™. So R-gD%+R.qD~ contains rational points. Therefore
B = aD" +bD™ is a nef Cartier divisor for some a,b > 0. Applying Conjecture 4.4 to
B, it follows that B is semiample.

Take any dense f-orbit Oy(z). By Corollary 2.3, {hp(f™(z))}3%, is upper un-
bounded. Since hp = ahpt +bhp- + O(1) = ahp+ ; +bhp- ;1 + O(1),

{ahps 1 (f"(@)) + bhp- g1 (f" (@)} olo = {adFhp+ ¢ (2) + b0 hp- j-1(x) 1ol

is also upper unbounded. Therefore iLD+7f(:L‘) must be positive. Since h; < IA1D+7f7 we
obtain h;(z) > 0. O

5. Abelian varieties.

For an abelian group G, Gior denotes the set of torsion elements of G. The main
result in this section is the following.

THEOREM 5.1.  Let X be an abelian variety and f an endomorphism (which is not
necessarily an isogeny) on X with 65 > 1. Then there is a proper abelian subvariety
B C X and a point Py € X(Q) such that B+ Py is f-invariant and Z§(Q) = B(Q) +
Py + X(Q)tor. Moreover, Congjecture 1.3 holds for f.

PROOF.  Step 1: First we assume that f € End(X). It is well-known that End(X)g
is a finite-dimensional Q-vector space (cf. [Mum70, Chapter IV, Section 19, Theorem 3]).
So the subspace generated by idx, f, f2,... also has finite dimension. Hence we can take
a positive integer m and ¢y, ¢, ..., ¢m € Qsuch that f™ = ¢ f™ 1 +cof™ 24 -+¢p in
End(X)g. Let A = (ai ;)i,; be an m x m-matrix defined by a; ;41 =1for 1 <i<m—1,
Qm,j = Cm—j+1 for 1 < j <m, and a; ; = 0 otherwise. Then we have

flc fk+1
fk+1 fk+2

A . =
fk—',-.m—l fk;&-m

for every k € Z>q. So, setting
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idy
f
- 2

& =(1,0,0,...,0)and f= | I |,

frrifl

we have [ = ¢ A" f Take a complex invertible m x m-matrix P such that A = P~ AP
is a Jordan normal form of A. Then f" = é’lPA”P_lf. Therefore f™ is represented
as f" = Zi\; Nenlig;, where \; € C, l; € Z>q, and g; € (Zi"!ol(Cfi) \ {0} with
(1M, 0) > (A2l l2) > -+ > (JAwn], In) with respect to the lexicographic order.

Let hx = (-,-) be a Néron-Tate height on X. Set M = X(Q)/X(Q)or. Then
(-,+) is reduced to a Z-bilinear form on M x M. Set Vx = M 9 K (K = Q,R or C).
Then (-,-) (and so h x) Is extended to a positive definite hermitian form on V¢ x V¢ by
(z,ay) = alz,y) = (@z,y) for 2,y € M and a € C (cf. [HiSi00, Proposition B.5.3]).
Take any = € Vg. Then

(fn = (Z )\nnl gz )
= |)\1|2"n2l1hX(g1(:c)) +o0 (|/\1|2"n211) (n — o).

Write g1 = ¢ 4+ v/—1% with ¢,9 € End(X)g. Then g(z) = é(z) + v—1¢(x) with
¢(x),9p(r) € V. So, for any = € Vg, ¢g1(x) = 0 if and only if ¢(x) = ¢(z) = 0. We use
the following lemma due to Kawaguchi and Silverman.

LEMMA 5.2 ([KaSil6b, Lemma 30]). Let V,W be Q-vector spaces, D C
Homg(V, W) a Q-vector subspace, and o € Dg. Then there are some fBi,...,08m € D
such that a(v) =0 if and only if B1(v) = -+ = B (v) =0 for any v € V.

By this lemma, we can take fi,..., 0, € End(X)g such that ¢(z) = 0 if and only
if B1(x) = --- = Br(z) =0 for any = € V. Replacing §; by a multiple, we may assume
that 8; € End(X). Similarly we can take 71,...,v € End(X) such that ¢(x) = 0 if
and only if y1(x) = --- = y(x) = 0 for any = € V. Each member of End(X) has a
kernel as an algebraic subgroup of X, so there is an abelian subvariety B C X such that
{x € X(Q) | g1(x) = 0in Vg } = B(Q) + X(Q)tor- Here B is a proper abelian subvariety
since g1 # 0.

Using Theorem 3.16, we obtain (|A1]2,2l1) = (§¢,1s). Eventually we have hy(z) =<
hf(j”) = hxigl(x)) for every x € X(Q). Hence Z;(Q) = {z € X(Q) | g1(x) =0in V¢} =
B(Q) + X (Q)tor- Since Z§(Q) is f-invariant, B is also f-invariant.

Step 2: Let us consider the general case. Set f = 7p o ¢, where 7p is the translation
by P and ¢ € End(X).
We use the following lemma due to Silverman (cf. [Sil17, Proof of Theorem 2]).

LEMMA 5.3.  Let X be an abelian variety and ¢ € End(X). Then there are abelian
subvarieties X1, Xo C X such that
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o The addition X : X1 x Xo = X, AM(z1,22) = x1 + 22 is an isogeny.
* ¢(Xi) CXi (i=1,2). Set i =9

o (idx, —¢1)(X1) = X1.

X;-

° 5¢2 =1.

Take P; € X; such that P = P, + P> and set f; = 7p, o ¢; (i = 1,2). Then
Afi(@1), fa(z2)) = d1(x1) + P14 ¢a2(z2) + Po = d(21 + 22) + P = f(A(21,22)). Thus
Ao (f1 X f2) = fo A Since translation maps induce the identity map on N!(X)g, we
have 64 = 0y > 1, 6y, = 6y, and 4, = 0y, = 1. So dy, > 1 = 6y,. By Lemma 3.9 and
Lemma 3.10, we have hy o A< hy 4, < hy and so Zy = MZy, x Xa).

Since (idx, —¢1)(X1) = X1, there is a point Py € X;(Q) such that Py—¢1(Py) = Py.
Then (f1 0 7p,)(z1) = ¢1(x1 + o) + P1 = ¢1(21) + ¢1(Fo) + P = ¢1(21) + Py =
(7P, © ¢1)(21). Thus fi o 7p, = 7p, 0 ¢1. By Lemma 3.10 (iii), hy o 7p, = hy, and so
Zp = 1p,(Z4,) = Zg, + Po. By Step 1, there is a proper abelian subvariety By of X3
such that Z,, = By + (X1)tor- As a consequence, we have

Ly = Zy + Xo
=2y, + P+ X2
= B1 + (X1)tor + Po + X2
= (B1 + X2) + Po + (X1)tor + (X2)tor
= B+ Py + Xtor,

where we set B = By + X5. Then B is a proper abelian subvariety of X. We compute

f(B+Py)=¢(B1+Xo+ FPy)+ P
= ¢1(B1) + ¢p2(X2) + 01 (Fy) + P
C By +X2+¢1(P0)+P
=B+ (Xo + P2) + (¢1(Po) + P1)
=Bi+Xo+ P
=B+ PF,.

Thus B + Py is f-invariant.

Step 3: Finally we prove that Conjecture 1.3 holds for f. By Step 2, we have

Z;(Q) = B(Q) + X(Q)tor + Py for a proper abelian subvariety B C X and a point
Py € X(Q) such that f(B+ Py) C B + P,.

Let 7 : X — Y = X/B be the quotient map. Take a number field K where XY, x
are defined and Py € X(K). Take any z € Z;(K). Then z — Py € B(Q) + X(Q)tor, s0
m(x—Py) € Y(K)tor. Let N be the order of the finite group Y (K )tor, then n(N(z—Fp)) =
Nr(z—Py) =0 and so N(z — Py) € B(K). Therefore Z¢(K) C [N]"*(B(K))+ Fy. The
Chevalley—Weil theorem (Theorem 3.11) implies that there is a finite extension L D K

such that [N]™*(B(K)) C B(L). So we have Z¢(K) C B(L) + P,. O
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If f is a self-isogeny on a power of an elliptic curve, we can compute ¢y and Iy from
the matrix representation of f.

DEFINITION 5.4. Take A € M, (C), a complex 7 X r-matrix. Let A=A; @---® Ay
be the Jordan normal form of A, where A; is a Jordan block of size (I; + 1) x (I; + 1)
with eigenvalue A;. Then we define [(A) as I(A) = max{l; | || = p(4)}.

THEOREM 5.5. Let E be an elliptic curve, X = E", and f € End(X) a self-
isogeny. Represent f as f(x1,...,x:) = (30 a1;25,..., 2 ; arjz;), where A = (a;5) €
M, (End(E)). Then we have §; = p(A)? and Iy = 2I(A).

PROOF. It is well-known that End(E)g = Q(v/—d) for some d € Z>q. Set w =
V—=d. Let hg(z) = (z,2) be a Néron-Tate height on E. For z = (21,...,2,),y =
Wis--oyr) € X(Q), set (w,y)x = Y@ yi)p, hx(z) = (@, 2)x = Yy he(wi)
Clearly hx is a Néron-Tate height on X. Set M = E(Q)/E(Q)tor- Then (-,-)g is
reduced to a Z-bilinear form on M x M. Set Vk = M @ K (K=Q, R or C).

Take P € GL,(C) such that A = PAP~! is a Jordan normal form. Set A =
Ay @ - @ A4, where A; is a Jordan block of size (I; + 1) x (I; + 1) with eigenvalue A;.
Set p; = |Ail, p = p(A), I = I(A). We may assume that, in the lexicographic order,
(pisli) = (p,1) for 1 <4 < s and (p;,l;) < (p,1) for s +1 < i < ¢. We will prove the
theorem in the cases when w = 0 and w # 0, respectively.

e The w = 0 case.
This is the case when End(E)g = Q. We extend (-,-)g to a hermitian form on
Ve as (z,ay)p = olz,y)p = (azx,y)g for 2,y € M, o € C. Then ﬁE,<-,-)X,ﬁX are
also extended and (-, ) g, (-,-) x are positive definite hermitian forms. We define C-linear
maps F,G,® : V' — V¥ as F(z) = Az, G(z) = Az and ®(x) = Pz. Then ®oF = Go ®.
Take any y = (y1,...,y:) € V&, where y; = (¥i,0,---,¥i,1.), ¥i,; € V. Then

Gn(y) = (A?yla s aA?yt)a
APy = (o (DA i 520 (O ikt Xlis,).

So

: n\ 1\ o, — K
= </€) </€/> P? </\z kyi,k+j7 )‘i 4§ yi,k’+j>E

This implies that
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lim hx(G(y) ZhE (i)

n— o0 p2nn2l llp
We prepare the following easy lemma.

LEMMA 5.6.  Let {-,-),{-,-)’ be positive definite hermitian (resp. quadratic) forms
on a finite dimensional C-vector space (resp. R-vector space) W. Set f(z) = (z,z),

g(x) = (z,z)". Then f=g.

PROOF. Introduce a norm || - || on W and let S be the subset of W consisting
of the elements of norm 1. Since f/g is a non-vanishing continuous function on the
compact space S, we can take A, B > 0 such that A < f(z)/g(x) < B for x € S. Here

flax)/g(azx) = f(x)/g(z) for x € W\ {0} and a # 0. So Ag(zx) < f(z) < Bg(zx) for
xz € W. Thus f < g. O

Fix a number field K where all concerned are defined. Since ﬁx,ﬁx o ® ! are
positive definite hermitian forms on the finite dimensional C-vector space X (K)c, we
can take Cy,Cs > 0 such that Cihx < hyx o ®! < Cohx on X(K)c by Lemma 5.6.
Take any x € X (K). Then f"(z) = F"(x) = @~ 1G"®(z). So

hx(Gme(2)) _ hx(f"(x)) <c ﬁx(G"@(x)).

> 2
an,rLQI p2nn2l annQZ

Cy

Set }AL}} = hx + 1, then h% = hx. Represent ®(x) as

O(z) = (Pro(x),..., P1sy (), ., Pro(x),..., Py, ().

By the above calculation, we have

Ci X(f"( )
g Y hE(®i(z)) < liminf —=5—22
(I'h) ; m

n—00 p2nn2l

and

il+ n S
lim sup X(Qf (21 S 2X:hE il (
pen

n—oo

Now ®;; : V& — V¢ is not identically zero for each 7 since ® : V& — V{ is an automor-
phism. Hence };_, hg o ®;; is not identically zero on X (Q). So Theorem 3.16 implies
that (67,0) = (p®,21) and hy < hy <37 hgo ®y.

e The w =0 case.

This is the case when E has complex multiplication. We extend (-, ) g to a quadratic
form on Vi as (z,ay)p = a(z,y)p = (ax,y)p for z,y € M, o € R. Then hg, (-, -)x, hx
are also extended and (-, ) g, (-, -) x are positive definite quadratic forms. Since Q(w) acts
on Vg and Q(w) ®g R = R(w) = C, Vi already has a structure of C-vector space. We
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define C-linear maps F, G, ® : V§ — V¥ as F(z) = Az, G(z) = Az and ®(z) = Pz. Here

we will make some lemmas.

LEMMA 5.7.  Let W be a smooth projective variety, f,g endomorphisms on W with
07,0 >1 and fog=go f. Let D be an R-divisor on W such that D #0, f*D = aD,

g*D = BD for some o> /6 and B> /3. Then hp.; = hp.,.

PROOF.  Since hpof = hp+O(vhw), we can take C' > 0 such that |hpo f—hp| <
CvVhw. Take € > 0 such that 6y +¢ < 5]2c and 0, + & < 53, and use Theorem 2.8 to take
C’" > 0 such that hy o f* < C'(6f + )" hw and hy o g" < C'(d4 + €)"hw for every n.
We compute

hpof* hpoft!

- oo

o ok —1 ok
< cver Yt
k/2
< Vo (5f “) N
So we obtain
hpo fn n hp o fk hp o fkfl
’an B ’“3’ = T

k=1

<C\@Z (5f+5> /QW
< C"JTV,

where " = CV/C" Y32, ((65 +¢)/a?)*/?, and

hDOangn_hDogn <O//\/hWOgn
anﬂn Bn - 571
<" C/((Sg + 6)nhW
< 3n
. / 69 +e n/2
= VO (2 V.
So
i i oo f"og" . hpog" 4
D,fog = nl—)ngo O(”ﬁn o n1—>Holo — "Dy
Similarly fzpﬁfog = iLD’f. So we obtain ]A“LD’f = fALD’g. O

LEMMA 5.8. Let ¢ € End(E) be an isogeny with 64 > 1. Then hgo¢= 5¢iLE.

PROOF. Let H be a symmetric ample divisor on E. Then [2]*H ~ 4H and f*H =
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deg(f)H = 6yH. Since f is a group homomorphism, f o [2] = [2] o f. So hg = lAzH’[Q] =
h.; by Lemma 5.7 and hence hg o f = hgrpo f =08;h = dshp. O

LEMMA 5.9.  We have (az,ay)r = |a|*(z,y)r for z,y € Vg, a € C.

PROOF. We can take a positive integer m such that ¢ = mw € End(F). Then
¢? = [-m?2d], so deg(¢) = \/deg(#?) = Vmid? = m?d. By Lemma 5.8, hgo¢ = m?dhg.

For any =,y € E(Q),

(6(@). o) = 5 (he(6(x) + 6(0) — he(6(@) — he(6(w)))
= % (mZdiALE(x +y) — m?dhp(z) — deiLE(y))
=m?d(z,y)p.

By linearity, (¢(z),¢(y))r = m?d(z,y)r holds for z,y € Vg. Then (wr,wy)p =

m=*(¢(z), $(y)) g = d(z,y)p for 2,y € Vk.
Take any o € C. Set a = a1 + asw, ay,as € R. Then

(az,ay)p = (12, 1Y) £ + (012, cowy) g + (ewz, 1Y) B + (cwe, aswy) e
= OZ%<IE, y>E + 041042<a:,wy>E + a1042<wzay>E + a§d<$7y>E

= |a*(z,y) e + 12 (@, wy) B + (Wz,y) B).

Here <xawy>E = d71<wx7w2y>E = d71<wx77dy>E = 7<wxay>E7 SO <aa:,ay>E =
a*(z,y)E. O

Take y € Vg. We use the notation as in the w = 0 case. Using Lemma 5.9, we
compute

t U li—j
o X o
hx(GM(y)=>_> hg ( <k) Al k%)kH)
‘ —
t i li—Jg n n
- <k) <k/> pzzn<>\i_kyi,k+j7 )\Z_k yi,k/+j>E

s 2
n n—2l7 n
= <l P> hp(yig) + o(p* ') (n — o00).

This implies that

. hx(G"(y)) 1
nlgﬂgo 2l (upl)gghE(yi,l)'

Then we obtain (J7,1¢) = (p?,2l) as in the w = 0 case. O
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6. Automorphisms on surfaces.

In this section, we study automorphisms on surfaces. Kawaguchi [Kaw08] con-
structed nef canonical heights for an automorphism and its inverse, and proved that the
zero set of the sum of those heights is the union of the periodic curves and the periodic
points ([Kaw08, Theorem 5.2]). The arithmetic degrees for automorphisms on surfaces
are well understood by Kawaguchi-Silverman [KaSil14]. We compute the ample canon-
ical heights for automorphisms on surfaces in this section. However, most of the compu-
tations here are essentially contained in Kawaguchi [Kaw08] and Kawaguchi-Silverman
[KaSi14].

As a related result, Jonsson-Reschke [JoRe18] proved that a nef canonical height
for a birational surface self-map converges at every point with well-defined forward orbit.
As we will see in Theorem 6.1 below, such a nef canonical height is equivalent to the
upper and lower ample canonical heights if the self-map is an automorphism.

Our aim in this section is to prove the following (cf. [Kaw08, Theorem 5.2] and
[KaSil4, Theorem 9, 10]).

THEOREM 6.1.  Let X be a surface and f an automorphism on X with o5 > 1.

i e have [y = 0, and there is a nef canonica eigtA such that hy < hy < h'.
i) Weh ly=0 d th f I height h+ h that hy < hy ht

(ii) Take x € X(Q). Then the following are equivalent.

Moreover, if ay(x) < &y, then ay(x) = 1.

(iii) Let C = {C;} be the set of f-periodic irreducible curves on X. Then Z¢(Q) =
Per;(Q) U, Ci(Q), and Per¢(K) \ U, Ci(K) is finite for any number field K.

First, we prepare some lemmas. The following lemma follows from the Hodge index
theorem (cf. [Kaw08, Lemma 1.2 (3)]).

LEMMA 6.2. Let X be a surface and vi,v2 € NY(X)r \ {0} be nef classes which
are linearly independent. Then vy + v is nef and big.

DEFINITION 6.3. Let X be a surface and v € N'(X)r a class on X. We set
Z(v) ={C | C is an irreducible curve on X with (C -v) = 0}.

LEMMA 6.4 ([Kaw08, Proposition 1.3]). Let X be a surface and v € NY(X)r a
nef and big class on X.

(i) Z(v) is a finite set.

(i) There is an effective divisor Z on X such that Supp Z = Uce 7(,) C and v —€Z is
ample for sufficiently small € > 0.



626 T. SHIBATA

LEMMA 6.5. Let X be a surface and f an automorphism on X. Then §;-1 = 0y.

Proor. Take an ample divisor H on X. Then ;-1 = lim,, oo ((f~")*H-H)Y/™ =
limy, o0 ((f™) o H - H)Y™ = limy, o0 (H - (f7)*H)Y/™ = §5. O

LEMMA 6.6. Let X be a surface, f an automorphism on X with 6y > 1, and
D%, D~ be nef R-divisors such that DY, D~ # 0 and f*DT = §;D*, (f~1)*D~ =4;D".
Set D = DT + D~. Then D is nef and big and, for any irreducible curve C on X,
C € Z(D) if and only if C is f-periodic.

PROOF. DT, D~ are linearly independent in N!(X)g since they are eigenvectors
with different eigenvalues. So D is nef and big by Lemma 6.2.

Let C be any irreducible curve on X. Note that (C'-D) = 0 if and only if (C'-DT) =
(C- D7) =0. Assume that C € Z(D). Then (D* - f(C)) = (Dt - f.C) = (f*D*-C) =
§¢(Dt - C) = 0. Similarly (D~ - f(C)) =0, so f(C) € Z(D). Lemma 6.4 implies that
Z(D) is finite. Since C, f(C), f2(C), ... € Z(D), it follows that f*(C) = f!(C) for some
k < 1. Then C = f'=%(C) since f is an automorphism. Thus C' is f-periodic.

Conversely, assume that C is f-periodic. Then f¥(C) = C for some N € Z~(. So
(DT -C) = (D - (fN).0) = (fN)*D*-C) = §{/(D* - C). Since 65 > 1, (D*-C) must
be zero. Similarly (D~ -C) =0, so C € Z(D). O

PROOF OF THEOREM 6.1. (i) Take nef R-divisors D*, D~ on X such that
DY, D= #£ 0, f*D* = §;DT and (f~')*D~ = §;D~. Set D = D* + D~. Lemma
6.6 implies that C = Z(D). By Lemma 6.4, C is a finite set and we can take a; > 0 for
each C; € C such that, setting £ = 3. a;C;, A = D — E is ample. Set ht = le+,f,
h = ]AIDf’ffl. Take a height h, associated to A as satisfying hy > 1. Then
ha = hp —hg +O(1) = ht + h™ — hg + O(Vha). Set ¢ = ha —ht —h™ + hp.
We have

haoft htoft h=of" hgof" $of"

o o o o o
! f f

Lemma 4.3 (i) implies that lim,, 6, "¢(f"(z)) = 0 for every z. Since every irreducible
component of E is f-periodic, (fN)*E ~ E for some N € Z~q. So, applying Lemma 4.3
(i), lim, 6;N"hE(fN"(a:)) = 0 for every . This implies that lim, §;"hg(f"(x)) = 0 for
every x. Therefore lim,, 0;"ha o f" = h*. So lf =0 and Ef,hf = ht.

(ii) Assume (1). Take C > 0 such that hy < ht +h~ — hg + Cyv/h4. Then

Vha(f1 @) (Vha(f (@) = C) < I (f"(@) + b (f(2) — he(f"(x))
< OPhT(x) + 6, "h (x) — hp(f" ().

So {5;}5"’ (x)—i—d;"fl_ (x)—hpe(f™(x))}22, is upper unbounded by the Northcott finiteness
theorem. Since Of(x) is dense, the set Of(x) N Supp E is finite due to the dynamical
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Mordell-Lang theorem for étale endomorphisms (cf. [BGT10, Corollary 1.4]). Moreover,
—hg is upper bounded on X \ Supp E. Therefore {—hg(f™(x))}22, is upper bounded.
Then At () must be positive. So uf(z) > 0 since hy = ht.

(2) is equivalent to (3) because hy < h.

(3) implies (4) by Proposition 3.6 (iv).

Finally, assume that Of(x) is not dense and we show that af(z) = 1. Let Z be the
Zariski closure of Oy (z). If dim Z = 0, then z is f-preperiodic and so af(x) = 1. Assume
that dim Z = 1. We have f(Z) = Z since f(Z) C Z and f is an automorphism. So f|z
is an automorphism on Z. Replacing f by a power, we may assume that f(Z;) = Z;
for every irreducible component Z; of Z. So we may assume that Z is irreducible. Take
the normalization C' of Z and let v : C' — X be the induced morphism. Then f|z
induces an automorphism g on C' such that v o g = f ov. Since v is finite, hg < hx ov.
So, taking g € v~1(z), we have ay(x) = lim, hx (f"(z))/" = lim, hx (vg"(zo))}/™ =
lim,, he (g™ (w0))Y™ = ay(w0) < 6, = 1, where &, = 1 because g is an automorphism on
a curve. Therefore af(z) = 1.

(iii) By Proposition 3.6 (ii), Per;(Q) = Preper;(Q) C Z;(Q). For any = € |, Ci(Q),
we have Of(z) C |J;Ci(Q) and so it is not dense. Then h;(x) = 0 by (ii). Thus
U, Ci(Q) € Z#(Q). Conversely, take any x € Z;(Q). Then O(z) is not dense by
(ii). Let W be the closure of O¢(z). Then dimW < 1 and f(W) C W. So each
irreducible component of W is an f-periodic curve or an f-periodic point, which implies
that = € W/(Q) € Per;(Q@) UU, C:(Q). Thus Z;(Q) = Pers(@) LU, C:(Q).

Take M > 0 such that —hg < M on X \ SuppFE = X \ |J,C;. Take any z €
Pers(Q) \ U; Ci(Q). Then z is also f~!-periodic since f is an automorphism. Moreover,
we have Oy (z) N (U; C;(Q)) = 0 since x & | J, C; and {C;}; are the whole of f~*-periodic
curves. So the inequality v/2a(v/ha—C) < ht+h~ —hg implies that \/ha(z)(y/ha(z)—
C) < M for z € Pery(Q) \ U, C;(Q). Then the Northcott finiteness theorem shows that
Per;(K) \ U, Ci(K) is finite for any number field K. O

7. Non-trivial endomorphisms on surfaces.

The aim in this section is to prove the following.

THEOREM 7.1. Let X be a surface and f a non-trivial endomorphism on X with
07 > 1. Then Conjecture 1.3 holds for f. Moreover, if X is not birational to an abelian
surface, then Iy = 0.

To prove it, we will give some lemmas.

LEMMA 7.2 ([MSS18, Lemma 3.3]). Let X,Y be smooth projective varieties, f :
X --»Y a birational map, and U C X an open subset of X such that ply : U — u(U)
is an isomorphism. Then hx|y =< (hy o p)|u-

LEMMA 7.3. Let X be a surface, E a (—=1)-curve on X, u: X — 'Y the contraction
of E, f an endomorphism on X with f(E) = E, and g an endomorphism on'Y such that

pof=gopu.
(i) (b5:15) = (3g,1g)-
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(ii) Let K C Q be any subfield where all concerned are defined. Then Z§(K) C
pH(Zg(K)).

Proor. (i) It follows from the product formula (cf. [Trul5]) that §; = d,. If C
is an irreducible curve on X such that f(C) = E = f(FE), then f.C = af.F for some
a > 0. Now we have the equation f, o f* = deg(f)idn1(x),. This implies that f* and
f. are automorphisms on N'(X)g. So C = aF since f, is injective. Hence f*E = dE
for some 0 < d < dy. Take an ample divisor Hy on Y. Then p*Hy is nef and big, and
Hx = p*Hy — bE is ample for some b > 0. Take any non-negative integer [. Then

J?nl 5?711 5gnl 5}%1

By Lemma 4.3 (ii), limsup,, 6, "|hp(f"(x))| < oo for every x. So Iy =,.

(ii) Take any x € Z;(K). If Of(x)NE # 0, then p(x) is g-preperiodic and so p(x) €
Zy(K). Assume that Oy(xz) N E = (). By Lemma 7.2, we have hx|x\g =< (hy o p)|x\ -
So hy(x) = 0 implies h,(p(2)) = 0 by (i). Thus Z;(K) C 7~ '(Z,(K)). O

LEMMA 7.4 ([Nak02, Proposition 10]). Let X be a surface and f a non-trivial
endomorphism on X. Then there is a positive integer N such that fN(C) = C for every
irreducible curve C' on X with negative self-intersection.

As a result of [MSS18], we have the following.

THEOREM 7.5 ([MSS18]). Let X be a surface and f a non-trivial endomorphism
on X with 8y > 1. Assume that X has no (—1)-curve and isomorphic to neither P? nor
abelian surfaces. Consider the following two operations to (X, f).

(a): X' is a surface, [’ is an endomorphism on X', and ¢ : X' — X is an étale
morphism such that ¢ o f' = f o ¢. Replace (X, f) by (X', f').

(b): Replace (X, f) by (X, fN) for a positive integer N.

After applying (a) and (b) to (X, f) finite times, (X, f) falls into one of the following
two types.

(I): There are a curve C and a surjective morphism 7 : X — C such that wo f = 7.

NS

C

II): There are a curve C, an endomorphism g on C with 6, = d¢, and a surjective
g f
morphism m: X — C such that mo f =gom.

x—tox
c—2s0
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More precisely, under the assumption, X is isomorphic to a P'-bundle, a bielliptic
surface, or a properly elliptic surface (a minimal surface of Kodaira dimension one), and

o Pl-bundles over a curve of genus > 2 and properly elliptic surfaces fall into type

(D).

o Hirzebruch surfaces, P -bundles over elliptic curves, and bielliptic surfaces fall into
type (11).

Lemma 7.6 and Lemma 7.7 below treat the type (I) and (II), respectively.

LEMMA 7.6. Let X be a surface and f an endomorphism on X such that 6 > 1.
Let C be a curve and m: X — C' a surjective morphism such that mo f = m. Thenly = 0.

PrROOF. Take any v € X(Q) and set F = 7~ !(m(z)). Since f|r permutes the
irreducible components of F', replacing f by a power, we may assume that f preserves
any irreducible components of F. So O¢(x) C F for some irreducible component F; of
F. Take the normalization Z of F; and let v : Z — X be the induced morphism. Take
o € v 1(z). f|p, : F1 — F1 induces an endomorphism g on Z such that vog = fowv.
Take an ample divisor H on X. Then we can take M > 0 such that (v.Z-D) < M(H-D)
for any nef R-divisor D. So

5, = lim deg(g™v*H)Y™ = lim (v, Z - f**H)Y™
n— oo n—oo

< lim (M(H - f™ H))Y/"™ = §;.

n—00

We have hx ov < hyz since v is finite. Hence

Ef,6f70(x) = hm sup w
n—oo f
= lim sup M
n—o00 i

= lim sup 6—g M < 00.
n— 00 5f 55

Note that g is an endomorphism on a curve and so [, = 0 if 645 > 1 due to Theorem 4.1.
Then it follows that {; = 0. O

LEMMA 7.7.  Let X be a surface and f an endomorphism on X such that 6 > 1.
Let C be a curve, g an endomorphism on C, and w : X — C' a surjective morphism such
that mo f = gom. Assume that (07,17) = (4,14). Then Conjecture 1.3 holds for f.

ProOOF. Take a number field K where all concerned are defined. It follows from
Lemma 3.10 (ii) that Z;(K) C 7~ '(Z,(K)). Applying Theorem 4.1 to g, it follows
that Z,(K) = Preper,(K) and S = Preper, (K) is finite. So Z;(K) is contained in the
f-invariant proper closed subset 771(9). O
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PROOF OF THEOREM 7.1. Assume that X has a (—1)-curve E. By Lemma 7.4,
fN(E) = E for some N € Z~q. Using Lemma 3.7, we may assume that f(E) = E by
replacing f by fV. Let u: X — Y be the contraction of £. Then an endomorphism ¢
on Y satisfying po f = gop is induced. Lemma 7.3 implies that Z;(K) C 7= *(Z,(K))
for any sufficiently large number field K. Assume that Z,(K) C W(K) for a g-invariant
proper closed subset W C Y. Then V = 7~1(W) is an f-invariant proper closed subset
of X satisfying Z;(K) C V(K). This argument shows that the proof of the theorem for
f is reduced to that for g.

Continuing this reduction process, we may assume that X has no (—1)-curve. By
Lemma 3.7 and Lemma 3.12, it is sufficient to apply operations (a) and (b) in Theorem
7.5 to (X, f) and prove the assertion for the replaced ones.

o If X =P? then Iy = 0 and Conjecture 1.3 holds for f by Theorem 4.1.
e If X is a Pl-bundle, then p(X) =2 and so Iy = 0 by Theorem 4.2 (i).

— If X is a P'-bundle over a curve of genus > 2, then X is not potentially dense,
and so Conjecture 1.3 trivially holds.

— If X is a Hirzebruch surface or a P!-bundle over an elliptic curve, then (X, f) is
reduced into type (IT) by Theorem 7.5. So there is an endomorphism g on a curve
C with 6, = 6 and a surjective morphism 7 : X — C such that 7o f = go .
Since Iy = 0 and ¢y = dg, it follows from Lemma 3.10 (i) that {; <1y = 0. Then
Lemma 7.7 implies that Conjecture 1.3 holds for f.

e If X is an abelian surface, the claim is a special case of Theorem 5.1.

e If X is a bielliptic surface, p(X) < h''(X) = 2 and so Iy = 0 by Theorem 4.2 (i).
By Theorem 7.5, (X, f) is reduced into type (II). So there is an endomorphism g on a
curve C' with §; = 0 and a surjective morphism 7 : X — C such that 7o f = gom.
Since Iy = 0 and 05 = dg, it follows from Lemma 3.10 (i) that l[; < Iy = 0. Then
Lemma 7.7 implies that Conjecture 1.3 holds for f.

e If X is a properly elliptic surface, then it follows from [Fuj02, Theorem 3.2] that there
is an elliptic curve F and a curve C of genus > 2 such that £ x C is an étale cover of
X. Here E x C is not potentially dense (if £ x C' is potentially dense, then C' is also
potentially dense, but this contradicts Faltings’s theorem). So X is not potentially
dense due to Theorem 3.11. Hence Conjecture 1.3 trivially holds for f. Moreover,
Theorem 7.5 and Lemma 7.6 show that [y = 0.

Eventually, [y = 0 if X is not birational to an abelian variety, and Conjecture 1.3
holds for f in any case. O

8. Applications.

In this section, we obtain two applications of ample canonical heights.

As we saw in the introduction, the Call-Silverman canonical height for a polarized
endomorphism is used to show that the number of preperiodic points over any fixed
number field is finite. For general endomorphisms, our main conjecture (Conjecture 1.3)
implies the non-density of preperiodic points over any fixed number fields:
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PROPOSITION 8.1.  Let X be a smooth projective variety and f an endomorphism
on X with §y > 1. Assume that Conjecture 1.3 holds for f. Then Preper;(K) is not
Zariski dense for any number field K.

PROOF. It is clear that Preper;(K) C Z;(K) for any subfield K C Q. So the
assertion follows. O

Therefore Theorem 1.5 deduces the following.

THEOREM 8.2. Let X be a smooth projective variety and f an endomorphism on
X with 65 > 1. Assume that (X, f) satisfies one of the following conditions.

o f*H =4;H for an ample R-divisor H on X.

e p(X) <2 and f is an automorphism.

e X is an abelian variety.

e X is a smooth projective surface.

Then Preper;(K) is not Zariski dense for any number field K.

REMARK 8.3. (i) As we saw in Section 4, Preper ;(K) is finite for any number field
K in the first two cases.

(i) We can also prove the abelian variety case by using the nef canonical height
(cf. [KaSil6b, Theorem 1]).

Let us see another application of ample canonical heights. Using ample canonical
heights, we can investigate the intersection Of(2)NOg4(y) of two dense orbits Oy (z), O4(y)
of two endomorphisms on a variety. The results and arguments in this section are based
on the argument appearing in [BGT16, Theorem 5.11.0.1].

THEOREM 8.4. Let X be a smooth projective variety and f,g endomorphisms on
X such that 6y = 64 > 1 and ly = 1,. Assume that Conjecture 1.4 holds for f and g.
Take a dense f-orbit Of(x) and a dense g-orbit Oy(y). Then the set {|n —m| | n,m €
Z>o, f™(z) =9¢™(y)} is upper bounded.

REMARK 8.5. The proof of Theorem 8.4 is similar to the proof of [BGT16, The-
orem 5.11.0.1], where polarized endomorphisms are treated.

PROOF OF THEOREM 8.4. Set (4,1) = (dy,1y). Since Conjecture 1.4 holds for f,
we have h;(x) > 0. So there is € > 0 such that S " thx (f*(x)) > € for every n € Z>o.
Moreover, since hy(y) < oo, there is C' > 0 such that 6 "n~'hx(g"(x)) < C for every
n € Z>q. Take n,m € Z>o such that n > m and f"(z) = ¢"(y). Then we have

nem . — sn-mx(f"(x)) _ hx(g™(y) (m\!
< = — ) < C.
ress onnl dmml (n ) <0
So n —m < logs(C/e). Similarly, for n,m € Z>¢ such that n < m and f"(z) = ¢"™(y),
m — n is upper bounded. Hence the claim follows. O
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We need the following dynamical Mordell-Lang theorem for étale endomorphisms
due to Bell-Ghioca—Tucker.

THEOREM 8.6 (The dynamical Mordell-Lang theorem for étale maps, [BGT10,
Theorem 1.3]). Let X be a projective variety, f an étale endomorphism on X, and V
a closed subvariety of X. Then the set {n € Z>¢o | f*(x) € V} is a finite union of sets
of the form {kn + i}, for some k,i € Z>o.

Using this theorem, we can obtain a sharper description of the intersection Oy (x) N
O,4(y) if we assume that f, g are étale.

THEOREM 8.7. Let X be a smooth projective variety and f, g étale endomorphisms
on X such that 6y =04 > 1 and ly = 1;. Assume that Conjecture 1.4 holds for f and g.
Take a dense f-orbit Of(x) and a dense g-orbit Oy4(y). Then the set {(n,m) € (Z>0)?* |
f™(x) = g™ (y)} is a finite union of sets of the form {(kn + i,kn + §)}5%, for some
k,i,7 € Zzo.

REMARK 8.8. Theorem 8.7 essentially says that the intersection of two orbits
with same height growth has a nice form. Sano [San18, Theorem 1.2] proved that the
intersection of two orbits has a nice form under a weaker assumption on height growth
of the orbits.

PROOF OF THEOREM 8.7. Theorem 8.4 implies that N = max{|n —m/| | n,m €
Zso, f"(z) = g™(y)} < oo. Fix 1l € {0,1,...,N}. For n € Zsq, f"(x) = g"(y) if
and only if (f x ¢)"((f'(z),y)) € A, where A C X x X is the diagonal set. Moreover,
f x g is an étale endomorphism on X x X. So Theorem 8.6 implies that {(n+1,n) | n €
Zso, f"(z) = g™(y)} is a finite union of sets of the form {(kn + i + [, kn + i)}, for
some k,i € Z>o. Similarly, {(n,n+1) | n € Z>o, f*(z) = g"*(y)} is a finite union of
sets of the form {(kn + i, kn +i+1)}52, for some k,i € Z>¢. Therefore

{

n,m) € (Zxo)* | f™"(z) = g™ (y)}

—~

{(n+1,n) | n€Zso, f"(x)=g"(y)}

C =

Il
=)

N
UJ{n+1) [ n € Zso, fM(x) =g ()}
1=0
is a finite union of sets of the form {(kn + ¢, kn + j)}22, for some k,i,j € Z>o. O

Applying Theorem 8.4 and Theorem 8.7 to the endomorphisms on the varieties which
we have considered, we obtain the following as an application of Theorem 1.5.

THEOREM 8.9. Let X be a smooth projective variety and f,g endomorphisms on
X such that 0y = 6, > 1 and ly =1,. We assume one of the following:

o f*H=6;H and g*H' = §,H’ for some ample R-divisors H,H' on X,

o p(X) <2 and f,g are automorphisms,



Ample canonical heights for endomorphisms 633

e X is an abelian variety, or

e X is a smooth projective surface.

Take a dense f-orbit Of(x) and a dense g-orbit Oy4(y). Then the set {|n —m| | n,m €
Z>o, [™(z) =g™(y)} is upper bounded. Furthermore, if both f and g are étale, then the
set {(n,m) € (Z>0)* | f*(z) = g™(y)} is a finite union of sets of the form {(kn+i,kn+
1S for some k,i,j € Z>o.
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