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Abstract. An automorphism of an algebraic surface S is called cohomo-
logically (numerically) trivial if it acts identically on the second cohomology
group (this group modulo torsion subgroup). Extending the results of Mukai
and Namikawa to arbitrary characteristic p > 0, we prove that the group of

cohomologically trivial automorphisms Autct(S) of an Enriques surface S is
of order ≤ 2 if S is not supersingular. If p = 2 and S is supersingular, we
show that Autct(S) is a cyclic group of odd order n ∈ {1, 2, 3, 5, 7, 11} or the
quaternion group Q8 of order 8 and we describe explicitly all the exceptional

cases. If KS ̸= 0, we also prove that the group Autnt(S) of numerically trivial
automorphisms is a subgroup of a cyclic group of order ≤ 4 unless p = 2,
where Autnt(S) is a subgroup of a 2-elementary group of rank ≤ 2.

1. Introduction.

Let S be a smooth projective algebraic surface over an algebraically closed field

k of characteristic p ≥ 0. An automorphism g of S is called cohomologically triv-

ial (resp. numerically trivial) if it acts identically on the flat cohomology H2(S,Zl(1))

(resp. H2(S,Zl(1)) modulo torsion). An easy example is an automorphism isotopic to

the identity, i.e. one that belongs to the connected group of automorphisms that pre-

serves an ample divisor class. When the latter group is trivial, such an automorphism

exists very rarely. For example, over the field of complex numbers, S must be either

an elliptic surface with q = pg = 0 or with c2 = 0, or a surface of general type whose

canonical linear system has a base point or its Chern classes satisfy c21 = 2c2 or c21 = 3c2
(see [19]). In particular, a complex K3 surface does not admit non-trivial numerically

trivial automorphisms, while a complex Enriques surface could have them. The first

example of such an automorphism of an Enriques surface was constructed by Lieberman

in 1976 [14]. Later, Mukai and Namikawa were able to give a complete classification

of possible groups of cohomologically or numerically trivial automorphisms of complex

Enriques surfaces as well as the surfaces themselves on which such automorphisms could

act [16], [17].
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In the case of algebraic surfaces over a field of positive characteristic we know less.

However, we know, for example, that K3 surfaces do not admit any numerically trivial

automorphisms by work of Ogus [18], Keum [10] and Rizov [20].

This paper deals with the case when S is an Enriques surface. One of the main

tools of the Mukai–Namikawa classification is the Global Torelli Theorem for K3 covers

of Enriques surfaces. The absence of these tools in the case of characteristic p > 0

requires different methods. A paper [5] of the first author was the first attempt to

extend the work of Mukai and Namikawa to this case. Although the main result of

the paper is correct when p ̸= 2, some arguments were not complete and the analysis

of possible groups in characteristic 2 was erroneous and far from giving a classification

of possible groups. In fact, a recent work of Katsura, Kondo and the second author

that gives a complete classification of Enriques surfaces in characteristic 2 with finite

automorphism group reveals many possible groups of numerically trivial automorphisms

that were claimed to be excluded in the paper. The goal of this paper is to use some

new ideas to give a complete classification of groups of numerically and cohomologically

trivial automorphisms in characteristic two. For completeness sake, we also use the new

ideas to treat the case p ̸= 2.

We show that, if the characteristic is not equal to 2, the main assertion of Mukai

and Namikawa still holds: the group Autct(S) is of order ≤ 2 and the group Autnt(S) is

a cyclic group of order ≤ 4.

If p = 2, KS ̸= 0 (S is called a classical Enriques surface in this case) and S is not

E8-extra-special, then Autct(S) is trivial unless S is an extra-special surface of type D̃8.

In this case, the automorphism group is of order 2. The group Autnt(S) is a subgroup

of the product of two cyclic groups of order 2.

If p = 2, and S is an ordinary Enriques surface (defined by the action of the Frobenius

on its cohomology), then Autct(S) = Autnt(S) is of order less than or equal to 2.

Finally, if p = 2 and S is a supersingular Enriques surface, we prove that Autct(S) is

of order ≤ 2 unless S is “very special”: We show that the only Enriques surfaces with a

cohomologically trivial automorphism of odd order ̸= 3 or more than one cohomologically

trivial automorphism of even order are certain exceptional or extra-special surfaces with

finite automorphism group and we give some necessary conditions for a surface to have

a cohomologically trivial automorphism of order 3.

The restrictions obtained on the possible groups of cohomologically and numerically

trivial automorphisms are summarized in the following theorem.

Theorem. Let S be an Enriques surface over an algebraically closed field of char-

acteristic p ≥ 0.

1. If p ̸= 2, then |Autct(S)| ≤ 2 and Autnt(S) ∼= Z/2aZ with a ≤ 2.

2. If p = 2 and S is ordinary, then |Autct(S)| = |Autnt(S)| ≤ 2.

3. If p = 2 and S is classical and not E8-extra-special, then |Autct(S)| ≤ 2 and

Autnt(S) ∼= (Z/2Z)a with a ≤ 2.

4. If p = 2 and S is supersingular, then |Autct(S)| = |Autnt(S)| ≤ 2, unless S is one

of five types of exceptions distinguished by their dual graphs of (−2)-curves.
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Moreover, if S is unnodal, then Autct(S) = {1}.

The proof of the above results will make use of bielliptic maps, which will be recalled

in Section 5. Before this, in Sections 2–4, we give the necessary background material on

numerically trivial automorphisms, on genus one curves and on genus one fibrations of

Enriques surfaces. After explaining the classification of extra-special Enriques surfaces

in Section 6, we prove our main results in Sections 7 and 8.

Acknowledgements. The authors thank Katsura and Kondō for many interest-

ing discussions on the subject. Moreover, the second author would like to thank Kondō

and the Department of Mathematics of Nagoya University for their kind hospitality dur-

ing his stay there.

2. Generalities on numerically and cohomologically trivial automor-

phisms.

Let S be an Enriques surface. It is known that

H2
ét(S,Zl) ∼= NS(S)⊗ Zl, H2

ét(S,Zl)/torsion ∼= Num(S)⊗ Zl,

where Num(S) = NS(S)/(KS) is the group of divisor classes modulo numerical equiv-

alence and NS(S) is the Néron–Severi group that coincides with the Picard group of S

(see [3], Chapter 1, Section 2). The automorphism group Aut(S) is discrete in the sense

that the connected component of the identity of the scheme of automorphisms AutS/k
of S consists of one point, and admits natural representations

ρ : Aut(S) → Or(NS(S)), ρn : Aut(S) → Or(Num(S)),

in the group of automorphisms of the corresponding abelian groups preserving the inter-

section form. We set

Autct(S) = Ker(ρ), Autnt(S) = Ker(ρn).

An automorphism in Ker(ρ) (resp. Ker(ρn)) is called cohomologically trivial (resp. nu-

merically trivial).

We start with the following general result that applies to any surface with discrete

scheme of automorphisms and discrete Picard scheme.

Proposition 2.1. The groups Autct(S) and Autnt(S) are finite groups.

Proof. We know that NS(S) = Pic(S) and Num(S) is the quotient of NS(S) by

its finite torsion subgroup Tors(NS(S)). Thus, the elementary theory of abelian groups

gives us

Or(NS(S)) ∼= Hom(Num(S),Tors(NS(S)))⋊Or(Num(S)).

This implies that
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Autnt(S)/Autct(S) ⊆ Tors(NS(S))⊕ρ(S). (2.1)

So, it is enough to prove that G = Autct(S) is a finite group. The group acts trivially

on Pic(S), hence leaves invariant any very ample invertible sheaf L. For any g ∈ G let

αg : g∗(L) → L be an isomorphism. Define a structure of a group on the set G̃ of pairs

(g, αg) by

(g, αg) ◦ (g′, αg′) = (g ◦ g′, αg′ ◦ g′∗(αg)).

The homomorphism (g, αg) → g defines an isomorphism G̃ ∼= k∗⋊G. The sheaf L admits

a natural G̃-linearization, and hence the group G̃ acts linearly on the space H0(S,L) and
the action defines an injective homomorphism G → Aut(P(H0(S,L))). The group of

projective transformations of S embedded by |L| is a linear algebraic group that has

finitely many connected components. We know that G is discrete. Thus, the group G is

finite. □

In our case, when S is an Enriques surface, we know that the torsion subgroup of

NS(S) is generated by the canonical class KS and 2KS = 0. Moreover, KS ̸= 0 if p ̸= 2.

Recall that, in characteristic 2, Enriques surfaces come in three types:

• classical surfaces,

• ordinary Enriques surfaces or µ2-surfaces,

• supersingular surfaces or α2-surfaces

Surfaces of the first type are characterized by the condition KS ̸= 0 if p = 2. Surfaces

of the second and the third types satisfy KS = 0. They are distinguished by the action

of the Frobenius endomorphism on the cohomology space H2(S,OS) ∼= k. It is trivial in
the third case and it is not trivial in the second case.

Applying (2.1), we obtain the following.

Corollary 2.2. The quotient group Autnt(S)/Autct(S) is a 2-elementary abelian

group.

3. Half-fibers of genus one fibrations.

Recall that an Enriques surface always admits a fibration f : S → P1 with general

fiber Sη an elliptic curve or a quasi-elliptic curve over the field K of rational functions

on P1 (i.e. a regular non-smooth irreducible curve of arithmetical genus one) (see [3],

Corollary 3.2.1). To treat both cases, we call such a fibration a genus one fibration,

specifying when needed whether it is an elliptic fibration or a quasi-elliptic fibration.

A genus one fibration is defined by a base-point-free pencil |D| of divisors of arith-
metic genus one satisfying D2 = 0. The numerical class [D] in Num(S) is always divisible

by two, so D = 2F , where [F ] is a primitive isotropic vector in the lattice Num(S). There

are two representatives F, F ′ of [F ] if p ̸= 2 or S is classical Enriques surface in char-

acteristic 2. Otherwise, there is only one representative. We call these representatives

half-fibers of |2F |, of the pencil or of the corresponding fibration.
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Conversely, let W nod
S be the group of isometries of Num(S) generated by reflections

into the classes of smooth rational curves ((−2)-curves, for short). Any primitive isotropic

vector in Num(S) can be transformed by an element of W nod
S to the numerical class of a

half-fiber. Hence, any nef divisor F such that [F ] is a primitive isotropic vector in Num(S)

defines a genus one pencil |2F | and a corresponding genus one fibration f : S → P1.

An Enriques surface is called unnodal if it does not contain (−2)-curves. In this case

W nod
S = {1} and there is a bijective correspondence between primitive isotropic vectors

in Num(S) and genus one fibrations on S.

A general fiber of an elliptic (resp. quasi-elliptic) fibration is a smooth elliptic curve

(resp. irreducible curve of arithmetic genus one with one ordinary cusp). We will use

the notation for singular fibers of elliptic fibrations (resp. reducible fibers of quasi-elliptic

fibrations)

Ã∗
0, Ãn−1, D̃n+4, Ã∗∗

0 , Ã∗
1, Ã∗

2, Ẽ8, Ẽ7, Ẽ6

from [3]. They correspond to Kodaira’s notations I1, In, I
∗
n, II, III, IV, II

∗, III∗, IV ∗.

Fibers of type In are called of multiplicative type, all others of additive type. The notation

indicates the relationship with Dynkin diagrams of affine root systems. In fact, the dual

graph of irreducible components of a reducible fiber coincides with such a diagram.

We have the following (see [3], Chapter 5. Section 7).

Proposition 3.1. Let F be a half fiber of a genus one fibration on an Enriques

surface.

• If p ̸= 2 or S is an ordinary Enriques surface in characteristic 2, then F is of

multiplicative type or a smooth elliptic curve, which is ordinary if p = 2.

• If p = 2 and KS ̸= 0, then F is of additive type or a smooth ordinary elliptic curve.

• If p = 2 and S is a supersingular Enriques surface, then F is of additive type or a

supersingular elliptic curve.

A (−2)-curve is called a special bisection of a half-fiber F or of the corresponding

pencil |2F |, or of the corresponding genus one fibration, if it intersects F with multiplic-

ity 1.

A relatively minimal model of the Jacobian variety Jη of the generic fiber Sη of an

elliptic fibration is a rational elliptic surface j : J → P1. The group Jη(η) is called the

Mordell–Weil group of the elliptic fibration. It is a finitely generated abelian group. It

acts on Sη by translation, and by the properties of a relative minimal model, the action

extends to a biregular action on S.

The type of a singular fiber Jt of j : J → P1 coincides with the type of the fiber

St (see [3], Theorem 5.3.1 and [15], Theorem 6.6). Similarly, if the fibration is quasi-

elliptic, the Jacobian variety Jη of its general fiber is a unipotent group scheme, a non-

trivial inseparable form of the additive group scheme. Its Mordell–Weil group is a finite

p-elementary abelian group. The theory of minimal models of surfaces allows us to

construct a rational surface with a quasi-elliptic fibration whose generic fiber with the

singular point deleted is isomorphic to Jη.
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An ordered sequence (f1, . . . , fn) of isotropic vectors in Num(S) with fi ·fj = 1−δij
and fi · h > 0 for the class of an ample divisor h can always be transformed by an

element w ∈ W nod
S to a sequence where f1 + · · ·+ fn is the class of a nef divisor. A lift

(F1, . . . , Fn) of such a sequence to NS(S) is called a U[n]-sequence. After reordering, we

may assume that F1 is a half-fiber of a genus one fibration and either Fi+1 = Fi + R,

where R is a (−2)-curve with R · Fi = 1 or Fi+1 is a half-fiber of a genus one fibration.

A U[n]-sequence is called c-degenerate, if it contains exactly c half-fibers. If c = n, it

is called non-degenerate. We say that a U[m]-sequence A extends a U[n]-sequence B if,

after reordering, A contains B. For a given Enriques surface S, the maximal length of

a non-degenerate U[n]-sequence is denoted by nd(S) and is called the non-degeneracy

invariant of S.

Remark 3.2. Note that, by definition, the Ri that occur in a U[n+1]-sequence of

the form (F1, F1 +R1, . . . , F1 +
∑n

i=1 Ri) form a Dynkin diagram of type An and the Ri

with i ≥ 2 are contained in fibers of |2F1|.

For the following Proposition, see [3] Corollary 3.3.1.

Proposition 3.3. Let n ≤ 8. Then, any c-degenerate U[n]-sequence can be ex-

tended to a c′-degenerate U[10]-sequence with c′ ≥ c.

It is a much more difficult question whether a non-degenerate U[n]-sequence can be

extended to a non-degenerate U[m]-sequence (see e.g. Section 5). However, the following

is known (see [2], Theorem 3.5).

Theorem 3.4. Suppose p ̸= 2 or S is an ordinary Enriques surface. Then, any

half-fiber can be extended to a non-degenerate U[3]-sequence. In particular, nd(S) ≥ 3.

Lemma 3.5. Let F1, F2 form a non-degenerate U[2]-pair. Then, F1 and F2 do not

have common irreducible components.

Proof. We use that a fiber F1 is numerically 2-connected, i.e. if we write F1 as

a sum of two proper effective divisors F1 = D1 + D2, then D1 · D2 ≥ 2. To see this,

we use that D2
1 < 0, D2

2 < 0 and F 2
1 = F1 · D1 = F1 · D2 = 0. Now, if D1 is the

maximal effective divisor with D1 ≤ F1 and D1 ≤ F2 and if we let F1 = D1 + D2 and

F2 = D1 +D′
2 be decompositions into effective divisors, we have D2 ·D′

2 ≥ 0. Therefore

1 = F1 ·F2 = (D1 +D2) ·F2 = D2 ·F2 = D2 ·D1 +D2 ·D′
2 ≥ D2 ·D1, where we use that

D1 · F2 = 0. Hence, D1 = 0. □

Let (F1, F2) be a non-degenerate U[2]-sequence. Since F1 · F2 = 1, by the previous

lemma, F1 ∩ F2 consists of one point.

Lemma 3.6. Let (F1, F2, F3) be a non-degenerate U[3]-sequence. Suppose that |F2+

F3 − F1 +KS | = ∅. Then, F1 ∩ F2 ∩ F3 = ∅.

Proof. Consider the natural exact sequence coming from restriction of the sheaf

OS(F1 − F2) to F3:
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0 → OS(F1 − F2 − F3) → OS(F1 − F2) → OF3(F1 − F2) → 0.

We have (F1 − F2 − F3) · F1 = −2. Since F1 is nef, the divisor class F1 − F2 − F3 is not

effective. Thus, by Riemann-Roch and Serre’s Duality, h1(OS(F1 − F2 − F3)) = 0 since

h0(OS(KS + F3 + F2 − F1)) = 0 by assumption. Now, h0(OS(F1 − F2)) = 0, because

(F1 − F2).F1 = −1 and F1 is nef. Suppose F1 ∩ F2 ∩ F3 ̸= ∅, then OF3(F1 − F2) ∼= OF3

and h0(OF3(F1−F2)) = 1. It remains to consider the exact sequence of cohomology and

get a contradiction. □

Remark 3.7. Note that for any D ∈ |F2 + F3 − F1 +KS |, we have D2 = −2 and

D · F2 = D · F3 = 0, so D consists of (−2)-curves contained in fibers of |2F2| and |2F3|.

4. Automorphisms of genus one curves.

Let us recall some known results about automorphism groups of elliptic curves over

algebraically closed fields which we will use frequently. The proof of the following result

can be found in [21], III, Section 10 and Appendix A.

Proposition 4.1. Let E be an elliptic curve over an algebraically closed field with

automorphism group G and absolute invariant j. For g ∈ G, let Eg be the set of fixed

points of g.

1. If p ̸= 2, 3

j G ord(g) |Eg|
̸= 0, 1 Z/2Z 2 4

1 Z/4Z

{
2

4

{
4

2

0 Z/6Z


2

3

6


4

3

1

2. If p = 3

j G ord(g) |Eg|
̸= 0 Z/2Z 2 4

0 Z/3Z ⋊ Z/4Z


2

3

4


4

1

2
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3. If p = 2

j G ord(g) |Eg|
̸= 0 Z/2Z 2 2

0 Q8 ⋊ Z/3Z

{
2, 4

3

{
1

3

5. Bielliptic maps and bielliptic involutions.

Let (F1, F2) be a non-degenerate U[2]-pair of half-fibers. The linear system |2F1+2F2|
defines a morphism of degree 2 from S to a surface D of degree 4 in P4 (it is called a

superelliptic map in [3], renamed as a bielliptic map in [4]). The surface D is an anti-

canonical model of a unique (up to isomorphism) weak del Pezzo surface of degree 4

obtained by blowing up 5 points p1, . . . , p5 in the projective plane P2.

If KS ̸= 0, the point p3 is infinitely near to p2 and p5 is infinitely near to p4. The

points p1, p2, p3 and p1, p4, p5 lie on lines ℓ1 and ℓ′1. The proper inverse transform of

the pencil of lines through p1 and the pencil of conics through p2, p3, p4, p5 on P2 are

pencils of conics on D. The exceptional curves over p3 and p5 (resp. the line passing

through p2, p4 and the exceptional curve over p1) are the four lines L1, L
′
1 (resp. L2, L

′
2)

on D. The proper inverse transforms of the two pencils of conics on D are the genus one

pencils |2F1| and |2F2| of S. The half-fibers F1, F
′
1 (resp. F2, F

′
2) are the proper inverse

transforms of the lines L1, L
′
1 (resp. L2, L

′
2). One can choose projective coordinates in

P4 so that D is given by equations

x2
0 + x1x2 = x2

0 + x3x4 = 0. (5.1)

The pencils of conics that give rise to the pencils |2F1| and |2F2| are cut out by the linear

pencils of planes

ax2 + bx3 = ax4 + bx1 = 0, ax2 + bx4 = ax3 + bx1 = 0. (5.2)

The lines are given by equations x0 = xi = xj = 0, i ∈ {1, 2}, j ∈ {3, 4}. They correspond

to the parameters (a : b) = (1 : 0) and (0 : 1).

IfKS = 0 and S is ordinary (resp. supersingular), the surface D has a unique singular

point, which is a rational double of type D1
4 (resp. D0

4) in the notation of Artin [1]. The

surface is again an anti-canonical model of a unique (up to isomorphism) weak del Pezzo

surface of degree 4, which is the blow-up of 5 points p1, . . . , p5 in P2, where p5 is infinitely

near to p4, p4 is infinitely near to p3 and p3 is infinitely near to p2. The points p1, p2
and p3 lie on a line l, but p4 and p5 are not on l. The surface D, obtained by contracting

the proper inverse transform of l and the exceptional curves over p2, p3 and p4, contains

only two lines, which are the exceptional curves over p1 and p5. Their proper inverse

transforms on S are the half-fibers of the genus one fibrations |2F1| and |2F2|. The

fibrations themselves are defined by the pencils of conics on D obtained from the pencil

of lines through p1 and the pencil of conics through the points p2, p3, p4, p5. The surface

D is isomorphic to a surface given by equations
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x2
0 + x1x2 = x1x3 + x4(ex0 + x2 + x4) = 0, (5.3)

where e = 1 if S is ordinary, and e = 0 if S is supersingular. The pencils of conics that

give rise to our pencils are given by the equations

ax3+ b(ex0+x2+x4) = ax4+ bx1 = 0, a(ex0+x2+x4)+ bx1 = ax3+ bx4 = 0. (5.4)

If the map ϕ is separable, the birational automorphism of S defined by the degree

two separable extension of the fields of rational functions k(S)/ϕ∗k(D) extends to a

biregular automorphism of S which we call a bielliptic involution of S.

The group of automorphisms of the surface D is a subgroup of projective transfor-

mations of P4 that leaves the surface D invariant. The following proposition describes

the group of automorphisms of the quartic surface D and we leave the computations to

the reader.1

Proposition 5.1. Let D1,D2,D3 be the image of a bielliptic map defined by the

linear system |2F1+2F2|, where KS ̸= 0, S is ordinary, or S is supersingular, respectively.

Then

• Aut(D1) ∼= G2
m ⋊D8 ;

• Aut(D2) ∼= G2
a ⋊ Z/2Z ;

• Aut(D3) ∼= (G2
a ⋊Gm)⋊ Z/2Z.

Here, Gm (resp. Ga ) denotes the multiplicative (resp. additive) one-dimensional alge-

braic group over k and D8 denotes the dihedral group of order 8.

Remark 5.2. Note that the connected component Aut(D)0 of Aut(D) is the group

of automorphisms preserving each line on D. Using equations (5.1) and (5.3), we can

write the action of Aut(D)0 explicitly as follows, with λ, µ ∈ Gm and α, β ∈ Ga:

• Action of Aut(D1)
0 :

(x0 : x1 : x2 : x3 : x4) 7→ (x0 : λx1 : λ−1x2 : µx3 : µ−1x4)

• Action of Aut(D2)
0 :

(x0 : x1 : x2 : x3 : x4) 7→ (x0 + αx1 : x1 : α2x1 + x2 : βx0 + (αβ + α2β + β2)x1

+ βx2 + x3 + (α+ α2)x4 : βx1 + x4)

• Action of Aut(D3)
0 :

(x0 : x1 : x2 : x3 : x4) 7→ (x0 + αx1 : x1 : α2x1 + x2 : (α2β + β2)x1

+ βx2 + x3 + α2x4, βx1 + x4)

(x0 : x1 : x2 : x3 : x4) 7→ (x0 : λ−1x1 : λx2 : λ3x3, λx4)

1The computation of these groups in the cases of surfaces D2,D3 in [3] is erroneous. The correct
computation can be found in [4].
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Moreover, we can compute the group of automorphism fixing the pencils given by

equations (5.2) (resp. (5.4)) on D. They are obtained by setting λ = µ ∈ {1,−1}
(resp. α ∈ {0, 1}, β = 0, resp. α = β = 0, λ = 1).

The known information about the automorphism group of the surfaces D allows us

to give a criterion for an automorphism to be a bielliptic involution.

Corollary 5.3. Let (F1, F2) be a non-degenerate U[2]-sequence and let g be a

non-trivial automorphism of S. Assume that g preserves F1, F2 and a (−2)-curve E

with E ·F1 = E ·F2 = 0, which is not a component of one of the half-fibers F1, F2, F
′
1, F

′
2.

If S is supersingular, assume additionally that g has order 2n. Then, g is the bielliptic

involution associated to the linear system |2F1 + 2F2|.

Proof. Let ϕ : S → D be a bielliptic map defined by the linear system |2F1+2F2|.
Since g leaves |2F1+2F2| invariant, it descends to an automorphism of P4 = |2F1+2F2|∗
that leaves D invariant. Moreover, the induced automorphism preserves the lines on D
by assumption. Recall that E · F1 = E · F2 = 0, hence ϕ(E) is a point P . Since E is not

a component of one of the half-fibers, P does not lie on any of the lines of D. If D = D1,

this means that P is not on the hypersurface x0 = 0 and if D ∈ {D2,D3}, it means that

P is not on the hypersurface x1 = 0.

If D = D1, the x0 coordinate x0(P ) of P is non-zero, hence so are all xi(P ) by

Equation (5.1). By Remark 5.2, there is no automorphism of D1 fixing P and preserving

the lines except the identity. Therefore, g coincides with the covering involution of ϕ.

If D ∈ {D2,D3}, we have x1(P ) ̸= 0. Again, by Remark 5.2, there is no automor-

phism of D2 fixing P and preserving the lines except the identity. For D3, we use the

additional assumption to exclude the case that g acts on D3 via Gm. □

Remark 5.4. In fact, the failure of this criterion without the additional assumption

in the supersingular case leads to the existence of cohomologically trivial automorphisms

of odd order (see Section 7).

Lemma 5.5. Let τ be the bielliptic involution associated to a linear system |2F1 +

2F2|. Suppose τ is numerically trivial. Then, Num(S)Q is spanned by the numerical

classes [F1], [F2] and eight smooth rational curves that are contained in fibers of both

|2F1| and |2F2|.

Proof. We have a finite degree 2 cover S′ = S − E → D′ = D − P , where

E is spanned by (-2)-curves blown down to a finite set of points P on D. We have

Pic(D′)Q = Pic(D)Q and Pic(S′)gQ (the invariant part) = f∗(Pic(D′)Q) is spanned by

the restriction of F1, F2 to S′. Since Pic(S) is spanned by Pic(S′) and the classes of

components of E, we can write any invariant divisor class as a linear combination of

[F1], [F2] and invariant components of E. In our case all divisors classes are invariant.

Since dim(Pic(S)Q)− dim(⟨F1, F2⟩Q) = 8, E consists of eight (−2)-curves. □

Denote the number of irreducible components of a fiber D of |2F | by mD. Since

rank(Pic(S)) = 10, we have
∑

D∈|2F |(mD − 1) ≤ 8, and, by the Shioda–Tate formula,
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the Jacobian of |2F | has finite Mordell–Weil group if and only if equality holds. In the

latter case, |2F | is called extremal.

Corollary 5.6. Let (F1, F2) be a U[2]-pair of half-fibers such that the bielliptic

involution τ associated to |2F1 + 2F2| is numerically trivial. Then, |2F1| and |2F2| are
extremal.

Moreover, the following hold :

1. For every fiber D of |2F1|, all but one component C of D is contained in fibers of

|2F2|.

2. C has multiplicity at most 2.

3. Neither |2F1| nor |2F2| have a multiplicative fiber with more than two components.

Proof. By the previous lemma, there are eight (−2)-curves contained in fibers

of both |2F1| and |2F2|. Since a fiber of |2F1| cannot contain a full fiber of |2F2|, this
implies 8 ≤

∑
D∈|2Fi|(mD−1) ≤ 8 for i ∈ {1, 2}. Hence, |2F1| is extremal and so is |2F2|.

Moreover, if, for some fiber D of |2F1|, two components of D are not contained in fibers

of |2F2|, then, by the same formula, |2F1| and |2F2| share less than eight (−2)-curves.

This contradicts Lemma 5.5.

For (2), note that the remaining component C of multiplicity m in D satisfies

2 = D · F2 = mC · F2. Since C · F2 > 0, this yields (2).

As for (3), assume that D is multiplicative with more than 2 components. Note that

C meets distinct points on distinct components of D. The connected divisor D′ = D−C

satisfies D′ ·(2F1+2F2) = 0, hence it is contained in the exceptional locus of the bielliptic

map ϕ. Since τ preserves the components of D′, ϕ(C) is an irreducible curve with a node.

But C is contained in the pencil of conics induced by |2F1|. This is a contradiction. □

6. Extra-special Enriques surfaces.

When trying to apply our knowledge of bielliptic maps and the geometry of the

surfaces D to the study of automorphisms of an Enriques surface S, we first have to

make sure that S admits such a bielliptic map. This is guaranteed by nd(S) > 1. On

the other hand, even if S admits a bielliptic map, it might be the case that the (−2)-

curves on S are in a very special position relative to this map and we will need to be

able to choose a different bielliptic map with better properties, e.g. to be able to apply

Corollary 5.3. It turns out that, with our method, surfaces with nd(S) ≥ 3 can be treated

in a very uniform way whereas extra-special Enriques surfaces, i.e. those with nd(S) ≤ 2,

which only exist in characteristic 2 by Theorem 3.4, show special behaviour (see Table 2).

Fortunately, these extra-special surfaces can be classified and we recall the classification

in this section.

It is claimed in [3], Theorem 3.5.1 that Theorem 3.4 is true in any characteristic

unless the surface is extra-special with finitely many (−2)-curves with the dual graph

defined by one of the diagrams from the following Table 1. The surfaces of type Ẽ8, Ẽ
1
7

and D̃8 are called E8, E7 and D8-extra-special, respectively. However, the surface of type

Ẽ2
7 was erroneously asserted to have nd(S) = 2, although, in fact, it is not extra-special
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and has nd(S) = 3, as can be checked by computing the intersection numbers of the fibers

of the three genus 1 fibrations of this surface (see [6]).2 Also, the proof of the claim is too

long (occupies more than 30 pages of case-by-case arguments) and it is difficult to verify

that the authors have not omitted some possible cases. We refer the reader to [6] for a

different proof due to the second author of the classification of extra-special surfaces and

collect the results we need in the context of numerically trivial automorphisms in this

section.

Table 1. E8,E7 and D8-extra-special surfaces and the Ẽ2
7 surface.

Type Configuration

Ẽ8
• • • • • • • • •

•

Ẽ1
7

• •• • • • • • • •

•

Ẽ2
7

• •• • • • • • • •

•

D̃8
• • • • • • •

•

•

•

Theorem 6.1. Assume that S is not E8-extra-special. Then, any half-fiber can be

extended to a non-degenerate U[2]-sequence. In particular, nd(S) ≥ 2.

Theorem 6.2. Assume that S is not E8,E7 or D8-extra-special. Then, nd(S) ≥ 3.

Remark 6.3. In [9], the cohomologically trivial and numerically trivial automor-

phism groups of extra-special surfaces have been calculated. For their examples, the

groups are given in Table 2.

Table 2. Numerically trivial automorphisms of extra-special surfaces.

Type Autct(S) Autnt(S)

classical Ẽ8 {1} {1}
supersingular Ẽ8 Z/11Z Z/11Z

classical D̃8 Z/2Z Z/2Z
supersingular D̃8 Q8 Q8

classical Ẽ1
7 {1} Z/2Z

However, it is not known whether there are more surfaces of these types than the

ones given in [9]. Note that the calculation of these groups in the case where S is classical

of type D̃8 or Ẽ1
7 only depends on the dual graph of (−2)-curves.

2So far, this is the only known example of an Enriques surface with nd(S) = 3.
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7. Cohomologically trivial automorphisms.

Now that we have treated the necessary background material, we can proceed to the

heart of our paper. In this section, we prove our main results on cohomologically trivial

automorphisms.

7.1. Cohomologically trivial automorphisms of even order.

Theorem 7.1. Let S be an Enriques surface which is not extra-special.

1. If S is classical or ordinary, then |Autct(S)| ≤ 2. If S is also unnodal, then

Autct = {1}.

2. If S is supersingular, then the statements of (1) hold for the 2-Sylow subgroup G of

Autct(S).

Moreover, if a non-trivial g ∈ Autct (resp. G) exists, then g is a bielliptic involution.

Proof. Let g ∈ Autct(S) and assume that g has order 2n if S is supersingular.

Note that, by definition, g preserves all half-fibers on S. We will show that there is

a U[2]-pair such that g satisfies the conditions of Corollary 5.3. Note that g preserves

all half-fibers and (−2)-curves, since it is cohomologically trivial, so it suffices to find

a (−2)-curve, which is contained in two simple fibers of genus one fibrations forming a

U[2]-pair.

Take a c-degenerate U[10]-sequence on S with c maximal, i.e. c = nd(S). Since we

assumed that S is not extra-special, we have c = nd(S) ≥ 3 by definition. If c ≤ 9, then

there is a (−2)-curve R in this sequence such that Fi ·R = 0 for at least 3 half-fibers F1, F2

and F3 in the sequence (see Remark 3.2). Now, Lemma 3.5 shows that R is contained

in at most one of the half-fibers F1, F2 and F3. Therefore, without loss of generality, R

is contained in a simple fiber of the two pencils |2F1| and |2F2|. Since g preserves R, g

is the bielliptic involution associated to |2F1 + 2F2| by Corollary 5.3. In particular, g is

unique.

If c = 10, assume that one of the half-fibers, say F1, is reducible. Then, by

Lemma 3.5, for every Fi in the sequence, all but one component of F1 is contained

in simple fibers of |2Fi|. Hence, we find some component R with R · Fi = 0 for at least

3 half-fibers and the same argument as before applies.

If |Fi+Fj−Fk| ̸= ∅ or |Fi+Fj−Fk+KS | ̸= ∅ for some half-fibers Fi, Fj , Fk occurring

in the sequence, by Remark 3.7, there is an effective divisor D with D · Fi = D · Fj = 0

and D2 = −2. Since Fi and Fj can be assumed to be irreducible, D contains a (−2)-curve

which is contained in a simple fiber of both |2Fi| and |2Fj |. Again, Corollary 5.3 applies.

Therefore, we can assume that all half-fibers are irreducible and Fi ∩Fj ∩Fk = ∅ by

Lemma 3.6, so g has at least 9 distinct smooth fixed points on every half-fiber. Since a

non-trivial automorphism of a nodal or cuspidal plane cubic has at most 2 smooth fixed

points and a non-trivial automorphism of an elliptic curve has at most 4 fixed points by

Proposition 4.1, g fixes all Fi pointwise, hence it is trivial, as can be seen by applying

the same Proposition to a general fiber of, say, |2F1|. If S is unnodal, then all half-fibers

of genus 1 fibrations on S are irreducible and no three half-fibers in a U[n]-sequence

intersect in a common point by Remark 3.7, so the argument of this paragraph shows

that Autct(S) (resp. G) is trivial if S is unnodal. □
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In the case of classical Enriques surface in characteristic 2, we can say more, using

the classification of Enriques surfaces with finite automorphism group.

Corollary 7.2. Let S be a classical Enriques surface in characteristic 2 which is

not E8-extra-special. Then, Autct(S) ∼= Z/2Z if and only if S is D8-extra-special.

Proof. Let F1 be a half-fiber on S. By Theorem 6.1, we can extend F1 to a non-

degenerate U[2]-sequence. Assume that there exists a non-trivial g ∈ Autct(S). Then,

g acts on D1 via its action on |2F1 + 2F2|∗. By Proposition 5.1, g acts via G2
m on

D1. But g has order 2 by Theorem 7.1, hence it acts trivially on D1. Therefore, g is

the covering involution of the bielliptic map and by Corollary 5.6, |2F1| is extremal.

Therefore, every genus one fibration on S is extremal. In particular, by [9] Section 12,

S has finite automorphism group. The groups Autct(S) of these surfaces have been

calculated in [9] and the only surfaces for which the calculation of the groups depends

on the specific example given in [9] are the ones of type Ẽ8 and D̃4+ D̃4 (see Remark 6.3

and Remark 8.4). In the latter case, there is a U[2]-pair of fibrations with simple D̃8

fibers, which share only 7 components. By Corollary 5.6, the corresponding bielliptic

involution is not cohomologically trivial. Therefore, the calculation of the groups in [9]

shows that the D8-extra-special surface is the only classical Enriques surface which is

not E8-extra-special and has a non-trivial cohomologically trivial automorphism. □

Remark 7.3. Using Theorem 7.1 and Corollary 5.6 may lead to an explicit classi-

fication of Enriques surfaces S with non-trivial Autnt(S). For example, in characteristic

p ̸= 2, one can show that the surface must contain (−2)-curves with one of the following

dual graphs:

• •

•
•

•
•

•

•
• •
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(c)

In the case k = C this is an assertion from [11, Theorem (1.7)]. We hope to address

this problem in another paper.

7.2. Cohomologically trivial automorphisms of odd order.

Before we start with the treatment of cohomologically trivial automorphisms of

odd order of supersingular Enriques surfaces, let us collect the known examples. These

surfaces have finite automorphism groups and a detailed study can be found in [9]. In

Table 3, we give the group of cohomologically trivial automorphisms of these examples.

Again, it is not known whether there are more examples of these surfaces than the ones

given in [9].
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Table 3. Examples of cohomologically trivial automorphisms of odd order.

Type Autct(S)

Ẽ8 Z/11Z
Ẽ2

7 Z/7Z or {1}
Ẽ6 Z/5Z

Remark 7.4. The dual graph of (−2)-curves on a surface of type Ẽ6 is as follows:

• •

•

•

•
•

•

•
•
•

•
•

•
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This surface is also called an exceptional Enriques surface of type Ẽ6. For more details,

see [7], [4], and [9].

Lemma 7.5. Let S be a supersingular Enriques surface which is not E8-extra-special

and let G ⊆ Autct(S) be a non-trivial subgroup of odd order. Then, G is cyclic and acts

non-trivially on the base of every genus one fibration of S.

Proof. Take any half-fiber F1 and extend it to a non-degenerate U[2]-sequence

(F1, F2) on S. Since G has odd order, it acts on D3 via a finite subgroup of Gm, hence G

is cyclic. By Remark 5.2, a generator g of G acts on the image D3 of the bielliptic map

as

(x0 : x1 : x2 : x3 : x4) 7→ (x0 : λ−1x1 : λx2 : λ3x3, λx4).

Such an automorphism acts non-trivially on the pencils of conics given by Equation (5.4),

hence g acts non-trivially on |2F1|. □

Lemma 7.6. Let F be a fiber of a genus one fibration and let g be a tame auto-

morphism of finite order that fixes the irreducible components of F . Then, the Lefschetz

fixed-point formula

e(F g) =
2∑

i=0

(−1)iTr(g∗|Hi
ét(F,Ql)).

holds for F . If F is reducible and not of type Ã1, then e(F g) = e(F ). If F is of type Ã1,

then e(F g) = e(F ) = 2 or e(F g) = 4. The latter case can only occur if g has even order.

Proof. In the case the order is equal to 2, this is proven in [5] by a case-by-case

direct verification. The proof uses only the fact that a tame non-trivial automorphism
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of finite order of P1 has two fixed points. Also note that the verification in case F is of

type Ã1 and g interchanges the two singular points of F was missed, but it still agrees

with the Lefschetz formula. □

Proposition 7.7. Let g ∈ Autct(S) be a non-trivial automorphism of odd order.

Then, every genus one pencil |D| of S has one of the following combinations of singular

fibers

D̃4 + D̃4, D̃8 + Ã∗∗
0 , Ẽ6 + Ã∗

2, Ẽ7 + Ã∗
1, Ẽ8 + Ã∗∗

0 , Ã8 + Ã0 + Ã0 + Ã0, D̃7, Ẽ7 (7.1)

The last three configurations can only occur if g has order 3.

Proof. The claim is clear if S is E8-extra-special, hence we can apply Lemma 7.5

and find that g acts non-trivially on all genus one pencils. Since the order of g is prime

to p, it fixes two members F1, F2 of the pencil, one of which is a double fiber. Since all

other fibers are moved, the set of fixed points Sg is contained in F1 ∪ F2. Applying the

Lefschetz fixed-point formula, we obtain

e(S) = 12 = e(Sg) = e(F g
1 ) + e(F g

2 ), (7.2)

where e() denotes the l-adic topological Euler–Poincaré characteristic.

If one of the fibers, say F1 is smooth, then, since g has odd order and e(F g
2 ) ≤ 10, σ

acts as an automorphism of order 3 on F1. Hence, by Proposition 4.1, g has three fixed

points on F1. Therefore, F2 is of type Ã8, D̃7 or Ẽ7 and g has order 3. By [12], we get

the last three configurations of the Proposition.

If both fibers or the corresponding half-fibers are singular curves, then e(Fi) = e(F g
i ).

Indeed, for irreducible and singular curves, this follows from e(F g
2 ) ≤ 10 and for reducible

fibers, this is Lemma 7.6 for automorphisms of odd order. The formula for the Euler–

Poincaré characteristic of an elliptic surface from [3], Proposition 5.1.6 implies that F1

and F2 are the only singular fibers of |D|. In this case, denoting the number of irreducible

components of Fi by mi, we have m1 +m2 ≥ 8, hence |2F | is extremal and both fibers

are of additive type. The classification of singular fibers of extremal rational genus one

fibrations is known [12], [13], [8]. Since the types of singular fibers of a genus one

fibration and of its Jacobian fibration are the same, it is straightforward to check that

the list given in the Proposition is complete. □

Corollary 7.8. If S admits an automorphism g ∈ Autct(S) of odd order at least

5, then S is one of the surfaces in Table 3.

Proof. By Proposition 7.7, every genus one fibration on S is extremal. It is

shown in [9] Section 12, that such an Enriques surface has finite automorphism group.

Using the list of Proposition 7.7, the claim follows from the classification of supersingular

Enriques surfaces with finite automorphism group. □

Proposition 7.9. Assume that S is not one of the surfaces in Table 3. If S

admits an automorphism g ∈ Autct(S) of order 3, then S contains the following diagram

of (−2)-curves
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• • • • •
•

•
•

• •

•

ooo
ooo

o
OOOOOOO

N

N1

N2

In this case, Autct(S) = Z/3Z.

Proof. If every special genus one fibration on S is extremal, then S has finite

automorphism group by [9] Section 12. Therefore, we observe that, by Proposition 7.7,

S has to admit a special genus one fibration with special bisection N such that g fixes

two fibers F1 and F2, where F1 is a smooth supersingular elliptic curve and F2 is of type

Ẽ7 or D̃7. If F1 is a simple fiber, then N meets two distinct points of F1, since g does

not fix the tangent line at any point of F1. But then, g fixes three points on N , hence it

fixes N pointwise, which contradicts Lemma 7.5.

Therefore, F1 is a double fiber and an argument similar to the above also shows

that N meets a component of multiplicity 2 of F2. Now, depending on the intersection

behaviour of N with F2, we see that N and components of F2 form a half-fiber of some

other genus one fibration of type D̃4 or D̃5 if F2 is of type D̃7 and of type D̃6 or Ẽ6 if

F2 is of type Ẽ7. Using the list of Proposition 7.7, we see that only the first and the last

case is possible. In the last case, however, one can easily check that the resulting surface

will be an exceptional Enriques surface of type Ẽ6 (see also [7, Theorem A]). Since we

assumed that S is not one of the surfaces in Table 3, we conclude that F2 is of type D̃7

and N intersects F2 as follows:

• • • • •

•

• •

•

The five leftmost vertices form a diagram of type D̃4. By Proposition 7.7, this

diagram is a half-fiber of a fibration with singular fibers D̃4 and D̃4. Adding the second

fiber to the diagram, we arrive at the diagram of the Proposition.

Now, observe that the fibration we started with has three (−2)-curves as bisections.

They are the curves N,N1, N2 in the diagram from the assertion of the proposition. All

of them are fixed pointwise by any cohomologically trivial automorphism of order 2, since

such an automorphism fixes their intersection with F1 and F2. Hence, no such automor-

phism can exist by Proposition 4.1 applied to a general fiber of the fibration. Since no

cohomologically trivial automorphisms of higher order can occur on S by Corollary 7.8

and Autct(S) is cyclic by Lemma 7.5, we obtain Autct(S) = Z/3Z. □

Remark 7.10. In fact, one can show that the only genus one fibrations on the su-

persingular Enriques surface of Proposition 7.9 are quasi-elliptic fibrations with singular

fibers of types D̃4 and D̃4 or elliptic fibrations with a unique singular fiber of type D̃7.



1198(172)

1198 I. Dolgachev and G. Martin

Theorem 7.11. Assume that the automorphism groups of surfaces of type Ẽ8, D̃8,

Ẽ2
7 and Ẽ6, are as in Table 2 and Table 3. Then, for any supersingular Enriques surface

S in characteristic 2, we have Autct(S) ∈ {1,Z/2Z,Z/3Z,Z/5Z,Z/7Z,Z/11Z, Q8}.

8. Numerically trivial automorphisms.

If KS = 0, Autnt(S) = Autct(S), so we only have to treat the case that KS ̸= 0,

i.e. S is classical.

By definition, any g ∈ Autnt(S) leaves invariant any genus one fibration, however,

it may act non-trivially on its base, or equivalently, it may act non-trivially on the

corresponding pencil |D|. Also, by definition, any g ∈ Autct(S) fixes the half-fibers of

a genus one fibration (their difference in NS(S) is equal to KS). The following lemma

proves the converse.

Lemma 8.1. A numerically trivial automorphism g that fixes all half-fibers on S

is cohomologically trivial.

Proof. Since g is numerically trivial, it fixes any smooth rational curve, because

they are the unique representatives in NS(S) of their classes in Num(S). By assumption,

it fixes the linear equivalence class of all irreducible genus one curves. Applying Enriques

Reducibility Lemma from [3], Corollary 3.2.3 we obtain that g fixes the linear equivalence

classes of all curves on S. □

Lemma 8.2. Let G be a finite, tame group of automorphisms of an irreducible

curve C fixing a nonsingular point x. Then, G is cyclic.

Proof. Since G is finite and tame, one can linearize the action in the formal

neighborhood of the point x. It follows that the action of G on the tangent space of C at

x is faithful. Since x is nonsingular, the tangent space is one-dimensional and therefore

the group is cyclic. □

Theorem 8.3. Let S be an Enriques surface and assume that p ̸= 2. Then,

Autnt(S) ∼= Z/2aZ with a ≤ 2. Moreover, if S is unnodal, then Autnt(S) = {1}.

Proof. By Theorem 7.1 and Lemma 8.1, any non-trivial g ∈ Autnt(S) has order

2 or 4, so it suffices to show that Autnt(S) is cyclic. Since Autnt(S) is tame, every

numerically trivial automorphism has smooth fixed locus.

Assume that there is some g ∈ Autnt(S) \Autct(S). Then, g switches the half-fibers

of some elliptic fibration |2F1| on S by Lemma 8.1. The argument with the Euler–

Poincaré characteristics from the proof of Proposition 7.7 applies and shows that one of

the two fibers F ′, F ′′ of |2F1| fixed by g, say F ′, has at least 5 components. Hence, if S

is unnodal, then Autnt(S) = {1} by Theorem 7.1.

If F ′ is additive, then it has some component R, which is fixed pointwise by Autnt(S),

because it is adjacent to at least three other components. Since the fixed loci are smooth,

any automorphism fixing a (−2)-curve adjacent to R is trivial. Hence, the claim follows

from Lemma 8.2.
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If F ′ is multiplicative, the fixed point formula shows that F ′ is of type Ã7 and g has

four fixed points on F ′′. Extend F1 to a non-degenerate U[2]-sequence (F1, F2). Since

F ′.F2 = 2, F ′ contains a cycle of 3 (−2)-curves contained in a fiber D of |2F2|. Now, as

in the additive case, we find a (−2)-curve, which is fixed pointwise by Autnt(S). Indeed,

if D is additive, we use the same argument as before and if D is multiplicative, then

some component of D meets a component of F ′ exactly once in a nonsingular point of

F ′. This component is fixed pointwise by Autnt(S). □

Remark 8.4. The previous Theorem is not true if p = 2. Indeed, there is an

Enriques surface S of type D̃4 + D̃4 with the dual graph of (−2) curves

• • • • •

•

•

•

•

•

•

•

that satisfies Autnt(S) = (Z/2Z)2 (see [9]). Moreover, we have seen in the proof of

Corollary 7.2 that Autct(S) = {1}.

If p = 2, even though we still have the same bound on the size of Autnt(S), the

cyclic group of order 4 can not occur.

Theorem 8.5. Let S be a classical Enriques surface in characteristic 2 which is

not E8-extra-special. Then, Autnt(S) ∼= (Z/2Z)b with b ≤ 2.

Proof. By Corollary 7.2, Autct(S) ̸= {1} if and only if S is D8-extra-special

and for such a surface we have Autnt(S) = Autct(S) = Z/2Z. Hence, we can assume

Autct(S) = {1}. By Lemma 8.1, we have Autnt(S) = (Z/2Z)b and we have to show b ≤ 2.

Suppose that b ≥ 3 and take some half-fiber F1. By Theorem 6.1, we can extend F1 to a

non-degenerate U[2]-sequence (F1, F2). Since |Autnt(S)| > 4, there is some numerically

trivial involution g that preserves F1 and F2. By Remark 5.2, such an automorphism

acts trivially on D1, hence it has to coincide with the bielliptic involution associated to

|2F1 + 2F2|. Both fibrations have a unique reducible fiber F (resp. F ′) which has to be

simple, since there is some numerically trivial involution which does not preserve Fi. By

Corollary 5.6, F and F ′ are additive and share 8 components. This is only possible if

they are of type D̃8 or Ẽ8. Note that F ·F ′ = 4 is impossible if both of them are of type

D̃8. In the remaining cases, it is easy to check that the surface is D8-extra-special. We

have already treated this surface. □
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