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Abstract. Categories of W*-bimodules are shown in an explicit and
algebraic way to constitute an involutive W*-bicategory.

Introduction.

As in the purely algebraic case, it is fairly obvious to extract a bicategory from

operator-algebraic bimodules provided that the relevant monoidal structure is based on

ordinary module tensor products. Although it needs an operator-algebraic modification

to have natural tensor products (see [3], [7], [9]), we know that W*-bimodules (i.e.,

Hilbert spaces with von Neumann algebras acting continuously) still supply a bicategory

of W*-algebraic nature, called a W*-bicategory (see [11], [13]). In the present notes,

we shall show that the whole construction of the bicategory in question as well as the

accompanied involution is possible in an explicit and algebraic manner without detailed

knowledge of modular theory.

The organization is as follows: Related with W*-bimodules, we introduce two W*-

bicategoriesM⋋,M⋌ and show that these are monoidally equivalent based on the unit

object property of standard W*-bimodules. We then notice the fact that the operation

of taking dual bimodules gives an anti-multiplicative equivalence betweenM⋋ andM⋌,
which is utilized to get involutions on M⋋ and M⋌ respectively so that the monoidal

equivalence between these preserves involutions as well. In this way, we have a single

W*-bicategory with involution, which recovers the one dealt with in [11].

1. Preliminaries.

1.1. Bicategories.

In this paper, a linear bicategory is simply referred to as a bicategory (see [6] for

categorical backgrounds). Thus our bicategory is a kind of categorification of linear

algebra and consists of a family of linear categories ALB indexed by a pair (A,B) of

labels with the following information:

• A special object IA (called a unit object) in ALA is assigned to each label A.

• A bivariant functor (·) ⊗ (·) : ALB × BLC → ALC is assigned to each triplet

(A,B,C) of labels.
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• Isomorphisms (called unit isomorphisms) lX : IA ⊗X → X and rX : X ⊗ IB → X

are assigned to each object X in ALB .

• An isomorphism (called associativity isomorphism) aX,Y,Z : (X ⊗ Y ) ⊗ Z → X ⊗
(Y ⊗ Z) is assigned to each triplet (X,Y, Z) which is admissible in the sense that

X ∈ ALB , Y ∈ BLC and Z ∈ CLD for some labels A,B,C,D.

These are then required to satisfy the following conditions:

(i) lX and rX are natural in X and satisfy the triangle identity in the sense that they

make the following triangular diagrams commutative.

(ii) aX,Y,Z is natural in X, Y , Z and satisfies the pentagon identity in the sense that

it makes the following pentagonal diagrams commutative.

(X ⊗ I)⊗ Y X ⊗ (I ⊗ Y )

X ⊗ Y

//
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(W ⊗X)⊗ (Y ⊗ Z)

((W ⊗X)⊗ Y )⊗ Z W ⊗ (X ⊗ (Y ⊗ Z))

(W ⊗ (X ⊗ Y ))⊗ Z W ⊗ ((X ⊗ Y )⊗ Z)
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If a bicategory consists of C*-categories (or W*-categories) and all the relevant

morphisms are unitary, it is called a C*-bicategory (or a W*-bicategory). See [4] (cf. also

[13]) for more information on operator categories.

By an involution on a bicategory L, we shall mean a family of contravariant functors

ALB → BLA, which we denote by

X 7→ X∗, Hom(X,Y ) ∋ f 7→ tf ∈ Hom(Y ∗, X∗)

for objects X, Y in ALB , together with natural families of isomorphisms {cX,Y : Y ∗ ⊗
X∗ → (X ⊗ Y )∗} (anti-multiplicativity) and {dX : X → (X∗)∗} (duality) making the

following diagrams commutative

(X∗ ⊗ Y ∗)⊗ Z∗ c⊗1−−−−→ (Y ⊗X)∗ ⊗ Z∗ c−−−−→ (Z ⊗ (Y ⊗X))∗

a

y yta

X∗ ⊗ (Y ∗ ⊗ Z∗) −−−−→
1⊗c

X∗ ⊗ (Z ⊗ Y )∗ −−−−→
c

((Z ⊗ Y )⊗X)∗

,

X ⊗ Y
d⊗d−−−−→ X∗∗ ⊗ Y ∗∗

d

y yc

(X ⊗ Y )∗∗ −−−−→
tc

(Y ∗ ⊗X∗)∗

,
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and fulfilling tdX = d−1
X∗ : X∗∗∗ → X∗. (The naturality means t(f ⊗ g)

c∼ tg ⊗ tf and

f
d∼ t(tf).) We remark here that the operation (X 7→ X∗, f 7→ tf) together with c

satisfying anti-multiplicativity is an anti-monoidal functor and we see that f 7→ t(tf)

gives a monoidal functor with the multiplicativity

tc−1 ◦ c : X∗∗ ⊗ Y ∗∗ → (Y ∗ ⊗X∗)∗ → (X ⊗ Y )∗∗.

In literature, our involution is named in various ways; it is referred to as, for example,

having duals in [2] with extra conditions assumed in connection with unit objects, which

turns out to be redundant.

For C*-bicategories (especially for W*-bicategories), it is natural to assume the

compatibility with the *-operation on morphisms as studied in [12]; all the relevant

structural isomorphisms are assumed to be unitary and the operation f 7→ tf satisfies
t(f∗) = (tf)∗. To avoid the confusion in this situation, we have used the different symbols

X∗ and tf to denote a single functor. (Other remedy is to use tX for objects, which

looks however apparently awkward.)

1.2. Bimodules.

We here review relevant facts from [11] (cf. [1] also). Let A and B be W*-algebras.

By an AW*B bimodule X, we shall mean a Hilbert space X on which W*-algebras A and

B are normally (i.e., weak-continuously) represented in an A-B bimodule fashion. We

often write AXB to indicate the acting algebras. Given AW*B bimodules X and Y , the

Banach space of bounded A-B linear maps of AXB into AYB is denoted by Hom(X,Y ).

With these as hom-sets, we have the W*-category of AW*B bimodules, which is denoted

by AMB in what follows. We regard a left W*-A module (resp. a right W*-B module)

as an AW*B bimodule for B = C (resp. for A = C).
The so-called standard representation (space) of a W*-algebra A ([5]) is nothing

but the regular representation of A and denoted by L2(A) in this paper. Recall that

L2(A) is an AW*A bimodule, which is linearly spanned by symbols φ1/2 (φ ∈ A+
∗ )

so that the reduced left GNS space [φ]Aφ1/2 is identified with the reduced right GNS

space φ1/2A[φ] by Jφ(aφ
1/2) = (aφ1/2)♮ = φ1/2a∗ for a ∈ [φ]A[φ]. Here [φ] denotes

the support projection of φ, Jφ stands for the modular conjugation associated to the

GNS vector φ1/2 of the reduced algebra [φ]A[φ] and the canonical *-operation, which is

designated by ♮ here, is well-defined on the whole L2(A). Note that φ is faithful when

restricted to [φ]A[φ]. See [10] and [14] for further information.

For a W*-bimodule AXB, we write

A(−1/2)X = Hom(AL
2(A),AX)◦, XB(−1/2) = Hom(L2(B)B , XB)

with the obvious operations of these on X by right and left multiplications respec-

tively, which are A-B bimodules by α(afb) = ((αa)f)b and (agb)β = a(g(bβ)) for

f ∈ A(−1/2)X, g ∈ XB(−1/2), a ∈ A, b ∈ B, α ∈ L2(A) and β ∈ L2(B). (The

circle for opposite algebra is placed in the definition of A(−1/2)X to indicates that it

acts on X from the right.) Moreover, with this convention, we introduce an A-valued

inner product A[ , ] on A(−1/2)X and a B-valued inner product [ , ]B on XB(−1/2) by
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α(A[f
′, f ]) = (αf ′)f∗, ([g, g′]B)β = g∗(g′β).

Here f, f ′ ∈ A(−1/2)X and g, g′ ∈ XB(−1/2). Note that L2(B)B(−1/2) =

End(L2(B)B) is equal to B, whereas A(−1/2)L2(A) = End(AL
2(A))◦ is indetified with A

by the right action of A. Notice that A[a
′f ′, af ] = a′A[f

′, f ]a∗ and [gb, gb′]B = b∗[g, g′]Bb
′

for a, a′ ∈ A and b, b′ ∈ B.

Remark 1. The notation such as XB(−1/2) can be explained as follows: When

B admits a faithful normal state φ, there is a one-to-one correspondence between x ∈
Hom(L2(B)B , XB) and a φ-bounded element ξ ∈ XB by the relation x(φ1/2) = ξ, which

suggests the formal expression x = ξφ−1/2.

Given index sets I, J , we introduce a matrix extension of a W*-algebra N by

MI,J(N) = Hom(ℓ2(J)⊗ L2(N)N , ℓ2(I)⊗ L2(N)N ), which is identified with a subspace

of bounded N -valued matricial sequences in N I×J and each (xi,j) ∈ MI,J(N) is ap-

proximated by its finitely supported cuts in any weaker operator topology. Note that

MI(N) = MI,I(N) is a von Neumann algebra on ℓ2(I) ⊗ L2(N) and weaker operator

topologies are well-defined on MI,J(N) as a corner subspace of MI⊔J(N).

The L2-version of matrix extension is introduced analogously: A matrix extension

(a Hilbert-Schmidt extension) of a W*-bimodule AXB is defined by

IXJ = {(ξi,j); ξi,j ∈ X,
∑

i∈I,j∈J

∥ξi,j∥2 <∞},

which is an MI(A)W*MJ (B) bimodule in an obvious way. Recall that unilateral W*-

modules are projective in the sense that we can find an index set I and a projection e ∈
MI(A) so that AX ∼= AL

2(A)I e or XA
∼= e IL2(A)A. This is nothing but a paraphrase

of the Dixmier’s structure theorem on normal *-homomorphisms between von Neumann

algebras. We refer to this as a projective module realization of X in what follows.

When X is an A-B bimodule, the isomorphism End(AL
2(A)Ie)◦ ∼= eMI(A)e gives rise

to a normal *-homomorphism B → eMI(A)e. Similarly for a B-A bimodule X and a

realization XA
∼= eIL2(A)A.

2. W*-bicategories of W*-bimodules.

As observed in [11] from the view point of modular algebras, W*-bimodules con-

stitute an involutive W*-bicategory, which we shall reconstruct here based on operator-

valued inner products. According to two possibilities of them, there are two ways of

forming tensor product bimodules, which are discriminatingly denoted by

X ⋋ Y = XB(−1/2)⊗B Y , X ⋌ Y = X ⊗B B(−1/2)Y .

Here algebraic module tensor products XB(−1/2)⊗B Y and X ⊗B B(−1/2)Y are pre-

Hilbert spaces with their inner products defined by

(x⊗B η|x′ ⊗B η′) = (η|[x, x′]Bη
′), (ξ ⊗B y|ξ′ ⊗B y′) = (ξ|ξ′B [y′, y])
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respectively and the bar denotes the Hilbert space completion.

Given morphisms f : AXB → AX
′
B and g : BYC → BY

′
C , bounded A-C linear maps

f ⋋ g : X ⋋ Y → X ′ ⋋ Y ′ and f ⋌ g : X ⋌ Y → X ′ ⋌ Y ′ are well-defined by

(f ⋋ g)(x⊗B η) = (fx)⊗B (gη), (f ⋌ g)(ξ ⊗B y) = (fξ)⊗B (gy).

Here gy ∈ B(−1/2)Y is defined by β(gy) = g(βy) (β ∈ L2(B)). Unit isomorphisms are

defined by

l⋋A,B : L2(A)⋋X = A⊗A X ∋ a⊗A ξ 7→ aξ ∈ X,

r⋋A,B : X ⋋ L2(B) = XB(−1/2)⊗B L2(B) ∋ x⊗B β 7→ xβ ∈ X

and

l⋌A,B : L2(A)⋌X = L2(A)⊗A A(−1/2)X ∋ α⊗A x 7→ αx ∈ X,

r⋌A,B : X ⋌ L2(B) = X ⊗B B ∋ ξ ⊗B b 7→ ξb ∈ X.

Note that, in view of projective module realizations of X, correspondences for r⋋A,B and

l⋌A,B are reduced to B⊗B L2(B) ∋ b⊗β 7→ bβ ∈ L2(B) and L2(A)⊗AA ∋ α⊗ a 7→ αa ∈
L2(A) respectively, which reveals the unitarity of these.

To introduce associativity isomorphisms, we remark that the algebraic module tensor

product XB(−1/2)⊗B Y C(−1/2) is canonically embedded into (X⋋Y )C(−1/2) in such

a way that (XB(−1/2)⊗B Y C(−1/2))⊗CZ is dense in (X⋋Y )C(−1/2)⊗CZ. Likewise,

we have a canonical embedding B(−1/2)Y ⊗C C(−1/2)Z ⊂ B(−1/2)(Y ⋌ Z) so that

X⊗B B(−1/2)Y ⊗C C(−1/2)Z is dense in X⋌ (Y ⋌Z). Associativity isomorphisms are

now defined by

a⋋X,Y,Z : (X ⋋ Y )⋋ Z ∋ (x⊗B y)⊗C ζ 7→ x⊗B (y ⊗C ζ) ∈ X ⋋ (Y ⋋ Z)

for x ∈ XB(−1/2), y ∈ Y C(−1/2) and ζ ∈ Z.

a⋌X,Y,Z : (X ⋌ Y )⋌ Z ∋ (ξ ⊗B y)⊗C z 7→ ξ ⊗B (y ⊗C z) ∈ X ⋌ (Y ⋌ Z)

for ξ ∈ X, y ∈ B(−1/2)Y and z ∈ C(−1/2)Z. The pentagon identity on a quadru-

ple product W ⋋ X ⋋ Y ⋋ Z then follows from that on WA(−1/2) ⊗A XB(−1/2) ⊗B

Y C(−1/2)⊗C Z. Similarly for the ⋌ product.

The triangle identities for unit isomorphisms are also witnessed on dense subspaces.

For X ⋋ L2(B)⋋ Y , this is reduced to the commutativity of the diagram

XB(−1/2)⊗B B ⊗B Y −−−−→ X ⋋ (L2(B)⋋ Y )y y
(X ⋋ L2(B))⋋ Y −−−−→ X ⋋ Y

,

which is traced by



476(128)

476 Y. Sawada and S. Yamagami

x⊗B b⊗B η −−−−→ x⊗B (b⊗B η)y y
(x⊗B b)⊗B η −−−−→ xb⊗B η = x⊗B bη

for x ∈ XB(−1/2), b ∈ B and η ∈ Y .

In summary, we have two W*-bicategories of W*-bimodules, which are denoted by

M⋋ andM⋌ from here on.

Remark 2. In [8], the associativity isomorphism is captured as (X ⋋ Y ) ⋌ Z ∼=
X ⋋ (Y ⋌ Z) in our notation. Although X ⋋ Y ∼= X ⋌ Y in a canonical way (see below,

cf. [3], [7] also), the existence of these isomorphisms does not automatically mean the

coherence for quadruple tensor products.

3. Canonical Equivalence.

Two W*-bicategories of W*-bimodules are now shown to be canonically equivalent.

This is recognized in [11] through natural identifications in modular tensor products.

Here we shall establish this by constructing an explicit functor of equivalence.

We first observe how tensor products behave under matrix extensions. Consider W*-

bimodules AXB, BYC and their column and row extensions IXB and BY
J by index sets

I, J . Then (IX)⋋ (Y J) and (IX)⋌ (Y J ) are naturally identified with Hilbert-Schmidt

extensions I(X ⋋ Y )J and I(X ⋌ Y )J of X ⋋ Y and X ⋌ Y respectively. Note that

algebraic sums ⊕IXB(−1/2) and B(−1/2)Y ⊕J are weakly dense in (IX)B(−1/2) and

B(−1/2)(Y J) respectively.

When this observation is applied to the standard bimodule L2(B), the unit isomor-

phisms l⋋ = r⋋ : L2(B) ⋋ L2(B) → L2(B) and l⋌ = r⋌ : L2(B) ⋌ L2(B) → L2(B) are

enhanced to MI(B)-MJ(B) linear unitary maps

m⊙ : (IL2(B))⊙ (L2(B)J)→ I(L2(B)⊙ L2(B))J → IL2(B)J ,

where ⊙ = ⋋ or ⋌. We set

ImJ = (m⋌)∗m⋋ : (IL2(B))⋋ (L2(B)J)→ (IL2(B))⋌ (L2(B)J ),

which is a unitary isomorphism in MI(B)MMJ (B).

For AXB and BYC , a unitary isomorphism mX,Y : X ⋋ Y → X ⋌ Y is defined, with

the help of projective-module realizations u : XB → p IL2(B)B and v : BY → BL
2(B)J q

as B-modules, by the commutativity of the diagram

X ⋋ Y
u⋋v−−−−→ p

(
(IL2(B))⋋ (L2(B)J)

)
q

mX,Y

y yImJ

X ⋌ Y −−−−→
u⋌v

p
(
(IL2(B))⋌ (L2(B)J)

)
q

.

Note here that (p IL2(B))⊙ (L2(B)J q) = p
(
(IL2(B))⊙ (L2(B)J)

)
q for ⊙ = ⋋ or ⋌.



477(129)

bicategory of bimodules 477

By the bimodule linearity of ImJ , mX,Y is A-C linear and independent of the choice

of projective-module realizations. Furthermore, mX,Y is natural in X and Y as well: For

f ∈ Hom(X,X ′) and g ∈ Hom(Y, Y ′), the diagram

X ⋋ Y
f⋋g−−−−→ X ′ ⋋ Y ′

mX,Y

y ymX′,Y ′

X ⋌ Y
f⋌g−−−−→ X ′ ⋌ Y ′

is commutative. The following is then immediate from the definition of mX,Y .

Lemma 3.1. Let X = AXB be a W*-bimodule. Then the following diagrams com-

mute.

L2(A)⋋X L2(A)⋌X

X

mL2(A),X //

l⋋X

��?
??

??
??

??
??

??
?

l⋌X

����
��
��
��
��
��
��

, X ⋋ L2(B) X ⋌ L2(B)

X

mX,L2(B) //

r⋋X

��?
??

??
??

??
??

??
?

r⋌X

����
��
��
��
��
��
��

.

Theorem 3.2. The identity functor gives a monoidal equivalence betweenM⋋ and

M⋌ with respect to the multiplicativity isomorphisms {mX,Y }, i.e., the diagram

(X ⋋ Y )⋋ Z
mX,Y ⋋1−−−−−−→ (X ⋌ Y )⋋ Z

mX⋋Y,Z−−−−−→ (X ⋌ Y )⋌ Z

a⋋
y ya⋌

X ⋋ (Y ⋋ Z) −−−−−→
1⋋mY,Z

X ⋋ (Y ⋌ Z) −−−−−−→
mX,Y ⋌Z

X ⋌ (Y ⋌ Z)

is commutative for any composable triplets X,Y, Z of W*-bimodules.

Proof. By projective-module realizations ofX and Z together with the naturality

of relevant morphisms, the problem is reduced to the case X = L2(B) and Z = L2(C)

with Y = BYC , whose validity can be seen from the following division of the diagram
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(IB ⋋ Y )⋋ IC

IB ⋋ (Y ⋋ IC) IB ⋋ (Y ⋌ IC) IB ⋌ (Y ⋌ IC),

(IB ⋌ Y )⋋ IC (IB ⋌ Y )⋌ IC

IB ⋋ Y IB ⋌ Y

Y ⋌ ICY ⋋ IC

Y

1⃝
2⃝

2⃝

3⃝

3⃝

1⃝
2⃝

2⃝

3⃝

3⃝

//

���� ////

//

//%%LL
LLL

LLL
LLL

LL

99rrrrrrrrrrrrr

%%LL
LLL

LLL
LLL

LL

99rrrrrrrrrrrrr

yyrrr
rrr

rrr
rrr

r

eeLLLLLLLLLLLLL

DD�����������������������

55lllllllllllll //

iiRRRRRRRRRRRRR

))RRR
RRRR

RRRR
RR ZZ66666666666666666666666

uullll
llll

llll
l

where diagrams around 1⃝ commute by the triangle identity for unit isomorphisms, dia-

grams around 2⃝ commute by the naturality of unit isomorphisms and diagrams around
3⃝ commute by Lemma 3.1. □

4. Unitary Involutions.

Given a W*-bimodule AXB , the dual Hilbert space X
∗ is naturally a BW*A bimod-

ule so that the operation of taking duals gives a contravariant functor AMB → BMA

with the operation on morphisms given by taking the transposed tf : Y ∗ → X∗

of f ∈ Hom(X,Y ). With the notation ξ∗ (ξ ∈ X) to stand for a linear form

X ∋ ξ′ 7→ (ξ|ξ′) (the inner product being linear in the second variable), tf is de-

scribed by ⟨tfη∗, ξ⟩ = (η|fξ). The operation is then involutive (so-called self-duality

on Hilbert spaces) in the sense that, if we denote the canonical isomorphism (X∗)∗ ∼= X

by dX : X ∋ ξ 7→ ξ∗∗ = (ξ∗)∗ ∈ X∗∗, it is natural in X, satisfies tdX = d−1
X∗ and gives an

equivalence between the iterated involution and the identity functor.

As to the monoidal structures in M, the dualizing functor gives an anti-

multiplicative equivalence between M⋋ and M⋌. To see this, we begin with some

preparatory discussions. For x ∈ XB(−1/2) = Hom(L2(B)B , XB) with X = AXB a

W*-bimodule in AMB , define its conjugate x ∈ Hom(BL
2(B),BX

∗) by x(β) = (x(β♮))∗

and set

x⋆ = x◦ ∈ B(−1/2)X∗ = Hom(BL
2(B),BX

∗)◦.

Recall that β♮ denotes the natural *-operation on L2(B). Then the correspondence x 7→
x⋆ gives a conjugate-linear isometric isomorphism between XB(−1/2) and B(−1/2)X∗

in such a way that (axb)⋆ = b∗x⋆a∗ and [x′, x]∗B = B[x
⋆, (x′)⋆] for a ∈ A, b ∈ B and

x, x′ ∈ XB(−1/2).
We now introduce a natural (covariant) family of unitary morphisms cX,Y : Y ∗ ⋌

X∗ → (X ⋋ Y )∗ in CMA (Y = BYC) by cX,Y (η
∗ ⊗B x⋆) = (x ⊗B η)∗ (x ∈ XB(−1/2),

η ∈ Y ). Note that the unitarity of cX,Y is ensured by the fact that cX,Y has a dense

range and the equality

∥η∗ ⊗B x⋆∥2 = (η∗|η∗B [x⋆, x⋆]) = (η∗|η∗[x, x]∗B) = ∥x⊗B η∥2.
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We claim that cX,Y is anti-multiplicative in the sense that the following hexagon diagram

commutes.

(Z∗ ⋌ Y ∗)⋌X∗ c⊗1−−−−→ (Y ⋋ Z)∗ ⋌X∗ c−−−−→ (X ⋋ (Y ⋋ Z))∗

a

y yta

Z∗ ⋌ (Y ∗ ⋌X∗) −−−−→
1⊗c

Z∗ ⋌ (X ⋋ Y )∗ −−−−→
c

((X ⋋ Y )⋋ Z)∗

.

To see this, let x ∈ XB(−1/2), y ∈ Y C(−1/2) and ζ ∈ Z. Then the above diagram is

traced by

(ζ∗ ⊗C y⋆)⊗B x⋆ c⊗1−−−−→ (y ⊗C ζ)∗ ⊗B x⋆ c−−−−→ (x⊗B (y ⊗C ζ))∗

a

y yta

ζ∗ ⊗C (y⋆ ⊗B x⋆) −−−−→ ζ∗ ⊗C (x⊗B y)⋆ −−−−→
c

((x⊗B y)⊗C ζ)∗

and the hexagonal commutativity is reduced to the equality (x ⊗B y)⋆ = y⋆ ⊗B x⋆ in

((X ⋋ Y )C(−1/2))⋆, which is in turn checked by

γ(x⊗ y)⋆ = ((x⊗ y)(γ∗))∗ 7→ y(γ∗)∗ ⊗ x⋆ = γ(y⋆ ⊗ x⋆) for γ ∈ L2(C).

Being prepared, we define anti-multiplicativity isomorphisms c⋌X,Y : Y ∗ ⋌ X∗ →
(X ⋌ Y )∗ in M⋌ to be the composition c⋌X,Y = tm−1

X,Y cX,Y , which together with the

duality isomorphisms {dX} constitute a unitary involution on M⋌: As a composition

of anti-multiplicative cX,Y and multiplicative tm−1
X,Y , c

⋌
X,Y is anti-multicative, i.e., the

hexagon identity holds. For the commutativity of

X ⋌ Y
d⋌d−−−−→ X∗∗ ⋌ Y ∗∗

d

y yc⋌

(X ⋌ Y )∗∗ −−−−→
tc⋌

(Y ∗ ⋌X∗)∗

,

we first describe c⋌ in terms of standard spaces. Given a projective-module realization

u : pIL2(B)B ∼= XB, its transposed map is composed with the row-vector extension

of the canonical isomorphism L2(B)∗ ∼= L2(B) to get the accompanied isomorphim v :

BX
∗ ∼= BL

2(B)Ip. These are then combined with cX,Y and tmX,Y to form a commutative

diagram

Y ∗ ⋌X∗ cX,Y−−−−→ (X ⋋ Y )∗
tmX,Y←−−−− (X ⋌ Y )∗y y y

Y ∗ ⋌ L2(B)Ip −−−−→ (pIL2(B)⋋ Y )∗ ←−−−− (pI(L2(B)⋌ Y ))∗

,

where the bottom line is described by the correspondences
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η∗ ⊗B (b∗i )p←→ (p(bi)⊗B η)∗ ←→ (p(βi ⊗B y))∗

with the relation p(biη) = p(βiy) in IY assumed at the second one. Thus, replacing

η∗⊗B (b∗i )p with (
∑

i y
⋆β♮

i ⊗B 1i)p, c
⋌
X,Y is specified by the commutativity of the diagram

Y ∗ ⋌X∗ c⋌X,Y−−−−→ (X ⋌ Y )∗

1⋌v

y yt(u⋌1)

Y ∗ ⋌ L2(B)Ip −−−−→ (pIL2(B)⋌ Y )∗

with the bottom line given by
(∑

i y
⋆β♮

i ⊗ 1i

)
p 7→ (p(βi) ⊗B y)∗. Here y ∈ B(−1/2)Y ,

βi ∈ L2(B) and 1i = δi ∈ BI = B(−1/2)L2(B)I denotes the canonical row basis.

By symmetry, c⋌X,Y is also described in terms of a projective-module realization

BY ∼= BL
2(B)Jq by the correspondence

qJL2(B)⋌X∗ ∋ q(β♮
j)⊗B x⋆ 7→ (

∑
j

(xβj ⊗ 1j)q)
∗ ∈ ((X ⋌ L2(B))Jq)∗.

Now the square identity for duality isomorphisms takes the form

pIL2(B)⋌ Y
1⋌d−−−−→ pIL2(B)⋌ Y ∗∗

d

y yc⋌

(pIL2(B)⋌ Y )∗∗ −−−−→
tc⋌

(Y ∗ ⋌ L2(B)Ip)∗

.

Here canonical isomorphisms

(pIL2(B))∗∗ ∼= pIL2(B), (pIL2(B))∗ ∼= L2(B)Ip

are used at the right corners with c⋌ and tc⋌ modified accordingly. The diagram is then

traced by

p(βi)⊗B y −−−−→ p(βi)⊗B y⋆⋆y y
(p(βi)⊗B y)∗∗ −−−−→ ((y⋆β♮

i ⊗B 1)p)∗

and the commutativity holds.

In this way, we have checked that {c⋌X,Y } defines a unitary involution onM⋌. Like-
wise c⋋X,Y = cX,Y mY ∗,X∗ gives a unitary involution onM⋋ so that {mX,Y } intertwines
these. As a conclusion, we have

Theorem 4.1. Anti-multiplicativity isomorphisms {c⋋X,Y } and {c⋌X,Y } define uni-

tary involutions on M⋋ and M⋌ respectively so that they are equivalent through the

monoidal equivalence {mX,Y }.
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