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Abstract. In this article, we establish the notion of strong (r, k, a, b)-
stability related to closed hypersurfaces immersed in the hyperbolic space

Hn+1, where r and k are nonnegative integers satisfying the inequality
0 ≤ k < r ≤ n − 2 and a and b are real numbers (at least one nonzero).
In this setting, considering some appropriate restrictions on the constants a

and b, we show that geodesic spheres are strongly (r, k, a, b)-stable. After-
wards, under a suitable restriction on the higher order mean curvatures Hr+1

and Hk+1, we prove that if a closed hypersurface into the hyperbolic space
Hn+1 is strongly (r, k, a, b)-stable, then it must be a geodesic sphere, provided

that the image of its Gauss mapping is contained in the chronological future
(or past) of an equator of the de Sitter space.

1. Introduction.

The notion of stability concerning hypersurfaces of constant mean curvature in

Riemannian ambient spaces was first studied by Barbosa and Do Carmo in [6], and

Barbosa, Do Carmo and Eschenburg in [7], where they proved that spheres are the

only stable critical points of the area functional for volume-preserving variations. In [2],

Alencar, Do Carmo and Colares extended to hypersurfaces with constant scalar curvature

the above stability result on constant mean curvature.

The natural generalization of mean and scalar curvatures for an n-dimensional hy-

persurface are the higher order mean curvatures Hr, r ∈ {1, . . . , n}. In fact, H1 is just

the mean curvature H, and H2 defines a geometric quantity which is directly related to

the scalar curvature. In a space form, first Alencar, Do Carmo and Rosenberg in [3] and

shortly after Barbosa and Colares [5] studied closed hypersurfaces with constant hight

order mean curvature Hr+1 and established the concept of r-stability. In this context,

they showed that such hypersurfaces are r-stable if and only if they are geodesic spheres.

Moreover, the first two authors of this paper together with De Sousa in [15] have stud-

ied the notion of (r, s)-stability concerning closed hypersurfaces with higher order mean

curvatures linearly related in a space form, showing that, if such a hypersurface Σn is

contained either in an open hemisphere of the Euclidean sphere Sn+1 or in the hyperbolic
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space Hn+1, then Σn is (r, s)-stable if and only if Σn is a geodesic sphere. In [10], the first

two authors and Da Silva, through the development of a different technique, managed to

complete this characterization of (r, s)-stable hypersurfaces in the Euclidean space Rn+1.

More recently, the first two authors and De Sousa in [11] have established the notion

of strong stability (that is, stability with respect to not necessarily volume-preserving

variations) related to closed hypersurfaces satisfying na0H + n(n + 1)a1H2 = constant,

where a0 and a1 are nonnegative constants (with at least one nonzero), immersed in the

hyperbolic space Hn+1. These hypersurfaces are called linear Weingarten hypersurfaces.

In this setting, initially we show that geodesic spheres are strongly stable. Afterwards,

under a suitable restriction on the mean and scalar curvatures, they prove that if a closed

linear Weingarten hypersurface into Hn+1 is strongly stable and its image of its Gauss

mapping is contained in the chronological future (or past) of an equator of the de Sitter

space then it must be a geodesic sphere.

Motivated by these works, here we define the notion of strong (r, k, a, b)-stability (cf.

Definition 1) concerning closed hypersurfaces immersed in the hyperbolic space Hn+1,

where r and k are nonnegative integers satisfying the inequality 0 ≤ k < r ≤ n − 2

and a and b are real numbers (at least one nonzero). Such concept arises considering

the variational problem of minimizing the r-area functional for all variations, including

those variations that preserve a linear combination of k-area functional and volume (cf.

Section 3). A hypersurface Σn of Hn+1 is a critical point of the variational problem

described above when it has higher order mean curvatures Hk+1 and Hr+1 verifying

brHr+1/(a bkHk+1 − b) = constant, with a bkHk+1 − b ̸= 0 on Σn (cf. Proposition 1),

where bj = (j + 1)
(

n
j+1

)
, j ∈ {k, r}. For such critical points, the second variation of

the Jacobi functional associated to the corresponding variational problem is calculated

(cf. Proposition 2), where appears naturally the differential operator L̃r,k,a,b, which is

a certain linear combination of the linearized operators associated to the higher order

mean curvatures Hr and Hk. In this context, considering some appropriate restrictions

on the constants a and b related to such hypersurfaces, we show that geodesic spheres of

Hn+1 are strongly (r, k, a, b)-stable (cf. Proposition 3). Next, we consider an appropriated

warped product model of the open subset Hn+1 \{q} of the hyperbolic space to calculate

the L̃r,k,a,b of a healthy function support (cf. Lemma 4) and, under a suitable restriction

on the constants a and b and the higher order mean curvatures Hk+1 and Hr+1, we

show that if a closed hypersurface in Hn+1 is strongly (r, k, a, b)-stable, then it must

be a geodesic sphere, provided that the image of its Gauss mapping is contained in

the chronological future (or past) of an equator of the de Sitter space (cf. Theorem 1).

Finally, in Corollary 1 we rewrite our main result in the context of linear Weingarten

hypersurfaces.

2. Preliminaries.

Let Ln+2 denote the (n+2)-dimensional Lorentz–Minkowski space (n ≥ 2), that is,

the real vector space Rn+2 endowed with the Lorentz metric

⟨v, w⟩ =
n+1∑
i=1

viwi − vn+2wn+2,
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for all v, w ∈ Rn+2. We recall that the (n + 1)-dimensional hyperbolic space Hn+1 can

be regarded as the following hyperquadric

Hn+1 =
{
p ∈ Ln+2 : ⟨p, p⟩ = −1 and pn+2 ≥ 1

}
,

which is a spacelike hypersurface of Ln+2, that is, its induced metric via the inclusion

ι : Hn+1 ↪→ Ln+2 is a Riemannian metric on Hn+1, indeed, this is its (complete) metric

of constant sectional curvature −1. In this setting, we will denote by C∞(Hn+1) the

commutative ring of real functions of class C∞ on Hn+1, by X(Hn+1) the C∞(Hn+1)-

module of vector fields of class C∞ on Hn+1, by dHn+1 the volume element of Hn+1 and

by ∇ the Levi-Civita connection of Hn+1.

Now, we consider hypersurfaces x : Σn ↪→ Hn+1, namely, isometric immersions from

a connected, n-dimensional orientable Riemannian manifold Σn into Hn+1. We also

let C∞(Σn), X(Σn) and ∇ denote, respectively, the commutative ring of real functions

of class C∞ on Σn, the C∞(Σn)-module of vector fields of class C∞ on Σn and the

Levi-Civita connection of Σn.

Since Σn is orientable, one can choose a globally defined unit normal vector field N

on Σn. Let A denote the shape operator with respect to N , so that, at each p ∈ Σn, A

restricts to a self-adjoint linear map Ap : Tp(Σ
n) → Tp(Σ

n).

For 1 ≤ r ≤ n, if we let Sr(p) denote the r-th elementary symmetric function on the

eigenvalues of Ap, we get n smooth functions Sr : Σn → R such that

det(tI −A) =

n∑
k=0

(−1)kSkt
n−k,

where S0 = 1 by definition. If p ∈ Σn and {e1, . . . , en} is an orthonormal basis of Tp(Σ
n)

formed by eigenvectors of Ap, with corresponding eigenvalues λ1, . . . , λn, one immediately

sees that

Sr = σr(λ1, . . . , λn),

where σr ∈ R[X1, . . . , Xn] is the r-th elementary symmetric polynomial on the indeter-

minates X1, . . . , Xn.

For 1 ≤ r ≤ n, one defines the r-th mean curvature Hr of Σn by(
n

r

)
Hr = Sr = Sr(λ1, . . . , λn).

In particular, for r = 1, H1 = (1/n)
∑n

k=1 λk = H is the mean curvature of Σn, which

is the main extrinsic curvature of the hypersurface. When r = 2, H2 defines a geo-

metric quantity which is related to the (intrinsic) normalized scalar curvature R of the

hypersurface. More precisely, it follows from the Gauss equation of the hypersurface that

R = −1 +H2. (1)

We also define, for 0 ≤ r ≤ n, the r-th Newton transformation Pr on Σn by setting

P0 = I (the identity operator) and, for 1 ≤ r ≤ n, via the recurrence relation
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Pr = SrI −APr−1.

A trivial induction shows that

Pr = (SrI − Sr−1A+ Sr−2A
2 − · · ·+ (−1)rrAr),

so that Cayley–Hamilton theorem gives Pn = 0. Moreover, since Pr is a polynomial in

A for every r, it is also self-adjoint and commutes with A. Therefore, all bases of TpM

diagonalizing A at p ∈ Σn also diagonalize all of the Pr at p. Let {e1, . . . , en} be such a

basis. Denoting by Ai the restriction of A to ⟨ei⟩⊥ ⊂ TpΣ, it is easy to see that

det(tI −Ai) =
n−1∑
k=0

(−1)kSk(Ai)t
n−1−k,

where

Sk(Ai) =
∑

1≤j1<...<jk≤n

j1,...,jk ̸=i

λj1 · · ·λjk .

With the above notations, it is also immediate to check that

Prei = Sr(Ai)ei, (2)

and hence (cf. Lemma 2.1 of [5])
tr(Pr) = (n− r)Sr = brHr;

tr(APr) = (r + 1)Sr+1 = brHr+1;

tr(A2Pr) = S1Sr+1 − (r + 2)Sr+2 = n
br

r + 1
HHr+1 − br+1Hr+2,

(3)

where br = (r + 1)
(

n
r+1

)
= (n− r)

(
n
r

)
.

Associated to each Newton transformation Pr one has the second order linear dif-

ferential operator

Lr : C∞(Σn)→C∞(Σn)

f 7→ Lr(f) = tr(Pr Hess f).

We remark that L0 is the Laplacian operator ∆ and L1 is the Cheng–Yau’s square

operator □ defined in [9].

3. The notion of strong (r, k, a, b)-stability.

For a closed hypersurface x : Σn ↪→ Hn+1 as in the previous section, a variation of

it is a smooth mapping X : (−ϵ, ϵ)× Σn → Hn+1 satisfying the following condition: for

t ∈ (−ϵ, ϵ), the map Xt : Σn ↪→ Hn+1 given by Xt(p) = X(t, p) is an immersion such

that X0 = x.

In all that follows, we let dΣt denote the volume element of the metric induced on

Σn by Xt and Nt the unit normal vector field along Xt.
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The variational field associated to the variation X : (−ϵ, ϵ) × Σn → Hn+1 is

(∂X/∂t)|t=0. Letting

f =
⟨∂X

∂t
,Nt

⟩
, (4)

we get ∂X/∂t = fNt + (∂X/∂t)
⊤
, where ( · )⊤ stands for tangential components.

The balance of volume of the variation X : (−ϵ, ϵ)× Σn → Hn+1 is the functional

V : (−ϵ, ϵ)→ R

t 7→ V(t) =
∫
Σn×[0,t]

X∗(dHn+1),

where dHn+1 denotes the volume element of Hn+1. The following lemma is well known

and can be found in [5].

Lemma 1. If X : (−ϵ, ϵ) × Σn → Hn+1 is a variation of a closed hypersurface

x : Σn ↪→ Hn+1, then

V ′(t) =

∫
Σn

fdΣt,

where f is the function defined in (4).

Following the ideas of [5], we define the r-area functional associated to the variation

X : (−ϵ, ϵ)× Σn → Hn+1 by

Ar : (−ϵ, ϵ)→ R

t 7→Ar(t) =

∫
Σn

Fr(S1, S2, . . . , Sr)dΣt,

where Sr = Sr(t) and Fr is recursively defined by setting F0 = 1, F1 = S1 and, for

2 ≤ r ≤ n− 1,

Fr = Sr −
(n− r + 1)

r − 1
Fr−2.

We notice that if r = 0, the functional A0 is the classical area functional. The following

result follows from Proposition 4.1 of [5].

Lemma 2. If X : (−ϵ, ϵ)× Σn → Hn+1 is a variation of x : Σn ↪→ Hn+1, then

∂Hr+1

∂t
=

r + 1

br

{
Lrf +

(
−tr(Pr) + tr(A2Pr)

)
f
}
+

⟨(
∂X

∂t

)⊤

,∇Hr+1

⟩
, (5)

where br = (r + 1)
(

n
r+1

)
and f is the function defined in (4).

The previous lemma allows us to obtain the first variation of the r-area functional

(see, for example, Lemma 3.4 of [15]).
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Lemma 3. If X : (−ϵ, ϵ) × Σn → Hn+1 is a variation of a closed hypersurface

x : Σn ↪→ Hn+1, then

A′
r(t) = −br

∫
Σn

Hr+1fdΣt,

where br = (r + 1)
(

n
r+1

)
and f is the function defined in (4).

Let r and k be nonnegative integers, satisfying the inequality 0 ≤ k < r ≤ n − 2,

and consider real numbers a and b (with at least one nonzero). In order to characterize

hypersurfaces whose elementary functions satisfy a certain constant quotient, we define

Ck,a,b : (−ϵ, ϵ)→ R
t 7→ Ck,a,b(t) = aAk(t) + bV(t),

and we say that the variation X : (−ϵ, ϵ)× Σn → Hn+1 of x : Σn ↪→ Hn+1 preserves the

linear combination Ck,a,b if Ck,a,b(t) = Ck,a,b(0) for all t ∈ (−ϵ, ϵ).

Now, we consider the variational problem of minimizing the r-area functional Ar for

all variations that preserve the functional Ck,a,b. The Jacobi functional associated to the

problem is given by

Jr,k,a,b : (−ϵ, ϵ)→ R
t 7→ Jr,k,a,b(t) = Ar(t) + ϱ Ck,a,b(t),

where ϱ is a constant to be determined. As an immediate consequence of Lemmas 3

and 1 we get

J ′
r,k,a,b(t) = −

∫
Σn

{brHr+1 + ϱ (a bkHk+1 − b)} fdΣt,

where f is the function defined in (4). To choose ϱ, let

H =
1

A0(0)

∫
Σ

{
brHr+1(0)

a bkHk+1(0)− b

}
dΣ

be the mean of the function brHr+1(0)/{a bkHk+1(0)− b} along Σn, where Hj(0) stands

for the j-th mean curvature of the immersion X0 = x. We call the attention to the fact

that, when brHr+1(0)/{a bkHk+1(0)− b} is constant, one has

H =
brHr+1(0)

a bkHk+1(0)− b
=

brHr+1

a bkHk+1 − b
, (6)

and this notation will be used in what follows without further comments. Therefore, if

we choose ϱ = −H, we arrive at

J ′
r,k,a,b(t) = −

∫
Σn

{
brHr+1 −H (a bkHk+1 − b)

}
fdΣt, (7)

where f is the function defined in (4).

Now, following the same ideas of Proposition 2.7 in [6] we can establish, from (7),
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the following result (see [15, Proposition 3.6]).

Proposition 1. Let r and k be nonnegative integers satisfying the inequality 0 ≤
k < r ≤ n− 2, and let x : Σn ↪→ Hn+1 be a closed hypersurface. Are equivalent

(a) x : Σn ↪→ Hn+1 have higher order mean curvatures Hk+1 and Hr+1 verifying

brHr+1

a bkHk+1 − b
= constant,

with a bkHk+1 − b ̸= 0 on Σn, where a and b are real numbers (with at least one

nonzero) and bj = (j + 1)
(

n
j+1

)
for j ∈ {k, r} ;

(b) for all variations X : (−ϵ, ϵ)×Σn → Hn+1 of x that preserve the functional Ck,a,b,
we have A′

r(0) = 0;

(c) for all variations X : (−ϵ, ϵ)× Σn → Hn+1 of x, we have J ′
r,k,a,b(0) = 0.

At this point, motivated by the ideas established in [11], we exchanged our problem

and now we want to detect closed hypersurfaces x : Σn ↪→ Hn+1 that minimize the Jacobi

functional Jr,k,a,b for all variations X : (−ϵ, ϵ) × Σn → Hn+1 of x. Next, Proposition 1

shows that the critical points of Jr,k,a,b are hypersurfaces x : Σn ↪→ Hn+1 such that its

higher order mean curvatures Hk+1 and Hr+1 verify

brHr+1

a bkHk+1 − b
= constant,

with a bkHk+1− b ̸= 0 on Σn. So, for such a hypersurface, we aim to compute the second

variation of Jr,k,a,b. This will motivate us to establish the following notion of stability.

Definition 1. Let r and s be nonnegative integers satisfying the inequality 0 ≤
k < r ≤ n−2, and let x : Σn ↪→ Hn+1 be a closed hypersurface whose higher order mean

curvatures Hk+1 and Hr+1 satisfy

brHr+1

a bkHk+1 − b
= constant,

with a bkHk+1 − b ̸= 0 on Σn, where a and b are real numbers (with at least one non-

zero) and bj = (j + 1)
(

n
j+1

)
for j ∈ {k, r}. We say that x : Σn ↪→ Hn+1 is strongly

(r, k, a, b)-stable if J ′′
r,k,a,b(0)(f) ≥ 0 for all f ∈ C∞(Σn).

The sought formula for the second variation of Jr,k,a,b is a straightforward conse-

quence of Lemmas 2 and 3.

Proposition 2. Let r and k be nonnegative integers satisfying the inequality 0 ≤
k < r ≤ n− 2, and let x : Σn ↪→ Hn+1 be a closed hypersurface whose higher order mean

curvatures Hk+1 and Hr+1 satisfy

brHr+1

a bkHk+1 − b
= constant,
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with a bkHk+1 − b ̸= 0 on Σn, where a and b are real numbers (with at least one non-

zero) and bj = (j + 1)
(

n
j+1

)
for j ∈ {k, r}. If X : (−ϵ, ϵ)× Σn → Hn+1 is a variation of

x, then J ′′
r,k,a,b(0) is given by

J ′′
r,k,a,b(0)(f) = −(r + 1)

∫
Σn

{
L̃r,k,a,b(f) +

(
− tr(Pr) + tr(A2Pr)

− Λr,k,a,b

(
− tr(Pk) + tr(A2Pk)

))
f
}
fdΣ, (8)

for any f ∈ C∞(Σn), where L̃r,k,a,b is the differential operator

L̃r,k,a,b : C
∞(Σn)→ C∞(Σn)

f 7→ L̃r,k,a,b(f) = Lrf − Λr,k,a,b Lkf,
(9)

and

Λr,k,a,b =
a(k + 1)brHr+1

a(r + 1)bkHk+1 − (r + 1)b
. (10)

Proof. From (5), (6) and (7), we obtain

J ′′
r,k,a,b(0) =

∂

∂t

(
−
∫
Σ

{
brHr+1 −H (a bkHk+1 − b)

}
fdΣt

) ∣∣∣
t=0

= −
∫
Σn

(
br
∂Hr+1

∂t

∣∣∣
t=0

−Ha bk
∂Hk+1

∂t

∣∣∣
t=0

)
fdM

−
∫
Σn

brHr+1 −H (a bkHk+1 − b)︸ ︷︷ ︸
0

 ∂

∂t
(fdMt)

∣∣∣
t=0

= −(r + 1)

∫
Σn

{
(Lr − Λr,k,a,bLk) (f) +

(
−tr(Pr) + tr(A2Pr)

−Λr,k,a,b

(
−tr(Pk) + tr(A2Pk)

))
f
}
fdΣ

−
∫
Σn

⟨ (
∂X

∂t

)⊤

,∇
(
brHr+1 −H (a bkHk+1 − b)

)︸ ︷︷ ︸
0

⟩
fdΣ.

To finish the proof, we observe that the above expression depends only on the hypersur-

face x : Σn ↪→ Hn+1 and on the function f ∈ C∞(Σn). □

4. Strongly (r, k, a, b)-stable hypersurfaces in Hn+1.

We establish a similar result to the statements found in Proposition 5.1 of [5] and

Proposition 4.1 of [15].

Proposition 3. If Λr,k,a,b is nonpositive, then the geodesic spheres of Hn+1 are

strongly (r, k, a, b)-stable.
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Proof. Let x : Σn ↪→ Hn+1 be a geodesic sphere of Hn+1. Since Σn is totally

umbilical then its principal curvatures are all equal to a certain constant λ. By choosing

a suitably normal vector we may assume that λ > 0. Thus we have

Sj =

(
n

j

)
λj , Hj = λj , Sj(Ai) =

(
n− 1

j

)
λj

and, if e1, . . . , en are the principal directions of Σn,

Lj(f) =

n∑
i=1

⟨
Hess(f)(ei), Pj(ei)

⟩
=

(
n− 1

j

)
λj∆f.

for any j ∈ {0, . . . , n} and all f ∈ C∞(Σn), where we use (2) in the last step. Next,

for nonnegative integers r and k, satisfying the inequality 0 ≤ k < r ≤ n − 2, and real

numbers a and b (with at least one nonzero) such that a(k + 1)
(

n
k+1

)
λk+1 ̸= b, we have

brHr+1/{a bkHk+1− b} = brλ
r+1/{a bkλk+1− b} = constant, where bj = (j+1)

(
n

j+1

)
for

j ∈ {k, r}. Then, from (3) and (8) we obtain

J ′′
r,k,a,b(0)(f) = −(r + 1)

∫
Σn

{
Γn−1
r,k,a,b ∆f +

(
− (n− r)Sr + S1Sr+1 − (r + 2)Sr+2

)
f

− Λr,k,a,b

(
− (n− k)Sk + S1Sk+1 − (k + 2)Sk+2

)
f
}
fdΣ,

where

Γn−1
r,k,a,b =

(
n− 1

r

)
λr − Λr,k,a,b

(
n− 1

k

)
λk (11)

and Λr,k,a,b is defined in (10). Thus,

J ′′
r,k,a,b(0)(f) = −(r + 1)

∫
Σn

{
Γn−1
r,k,a,b ∆f +

(
−(n− r)

(
n

r

)
λr

+n

(
n

r + 1

)
λr+2 − (r + 2)

(
n

r + 2

)
λr+2

)
f

−Λr,k,a,b

(
−(n− k)

(
n

k

)
λk + n

(
n

k + 1

)
λk+2

−(k + 2)

(
n

k + 2

)
λk+2

)
f
}
fdΣ

= −(r + 1)

∫
Σn

{
Γn−1
r,k,a,b ∆f

−
(
(n− r)

(
n

r

)
λr − Λr,k,a,b(n− k)

(
n

k

)
λk

)
f

+λr+2

(
n

(
n

r + 1

)
− (r + 2)

(
n

r + 2

))
f

−λk+2Λr,k,a,b

(
n

(
n

k + 1

)
− (k + 2)

(
n

k + 2

))
f
}
fdΣ
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= −(r + 1)

∫
Σn

{
Γn−1
r,k,a,b ∆f − nΓn−1

r,k,a,b f + nΓn−1
r,k,a,b λ

2f
}
fdΣ

= (r + 1)Γn−1
r,k,a,b

∫
Σn

{
−f∆f − n(−1 + λ2)f2

}
dΣ, (12)

for any f ∈ C∞(Σn). Hence, if η1 denote the first eigenvalue of the Laplacian of Σn and

considering the assumption of function Λr,k,a,b, from (11) and (12) we get

J ′′
r,k,a,b(0)(f) ≥ (r + 1)Γn−1

r,k,a,b

∫
Σn

{
η1 − n(−1 + λ2)

}
f2dΣ = 0,

for any f ∈ C∞(Σn), where the last equality was obtained by observing that Σn is

isometric to an n-dimensional Euclidean sphere with constant sectional curvature equal

to λ2 − 1; hence η1 = n(λ2 − 1). Therefore, we conclude that x : Σn ↪→ Hn+1 is strongly

(r, k, a, b)-stable. □

In order to prove our main result, we note that, according to Example 4.3 in [13],

the hyperbolic space Hn+1 (minus a certain point q) can be regarded of as the following

warped product

Hn+1 \ {q} ≃ (0,+∞)× sinh τ Sn, τ ∈ (0,+∞), (13)

(≃ means isometric to) where Sn stands for the Euclidean unit sphere. More precisely,

if dτ2 and dσ2 denote the metrics of (0,+∞) and Sn, respectively, then

⟨ , ⟩ = (π1)
∗ (

dτ2
)
+ (sinh τ)2(πSn)

∗ (dσ2
)
,

is the tensor metric of (0,+∞)× sinh τ Sn, where π1 and πSn denote the projections onto

the (0,+∞) and Sn factors, respectively. We note that, in this warped product model,

the slices

Σn
τ0 = {τ0} × Sn, τ0 ∈ (0,+∞),

are, exactly, the geodesic spheres of Hn+1. Moreover, if we orient such slices by the unit

normal vector field −∂/∂τ , then the j-th mean curvature of Σn
τ0 is constant equal to

Hj = (coth τ0)
j , j ∈ {1, . . . , n}. (14)

Finally, we observe that

W = (sinh τ)
∂

∂τ
(15)

is a conformal, and closed vector field (in the sense that its dual 1-form is closed), namely,

∇Y W = (cosh τ)Y for any tangent vector field Y defined in Hn+1 \ {q}.
We need the following result, whose proof is a consequence of a suitable formula due

to Barros and Sousa [8].
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Lemma 4. Let r and k be nonnegative integers satisfying the inequality 0 ≤ k <

r ≤ n − 2, and let x : Σn ↪→ (0,+∞) ×sinh τ Sn be a hypersurface whose higher order

mean curvatures Hk+1 and Hr+1 satisfy

brHr+1

a bkHk+1 − b
= constant,

with a bkHk+1 − b ̸= 0 on Σn, where a and b are real numbers (with at least one non-

zero) and bj = (j + 1)
(

n
j+1

)
for j ∈ {k, r}. If N is the Gauss map on Σn and η =

⟨(sinh τ)∂/∂τ,N⟩ then

L̃r,k,a,b(η) = −
{(

−tr(Pr) + tr(A2Pr)
)
− Λr,k,a,b

(
−tr(Pk) + tr(A2Pk)

)}
η

−{brHr − Λr,k,a,b bkHk}
⟨ ∂

∂τ
,N

⟩
sinh τ

−{brHr+1 − Λr,k,a,b bkHk+1} cosh τ, (16)

where L̃r,k,a,b is the differential operator defined in (9) and Λr,k,a,b is defined in (10).

Proof. From Theorem 2 of [8],

Lj(η) = −
{
tr(A2Pj)− tr(Pj)

}
η − bjHjN(cosh τ)− bjHj+1 cosh τ

− bj
j + 1

⟨(sinh τ) ∂

∂τ
,∇Hj+1⟩

for j ∈ {k, r}. Thus,

L̃r,k,a,b(η) = Lr(η)− Λr,k,a,bLk(η) = −
{
−tr(Pr) + tr(A2Pr)

}
η

−brHrN(cosh τ)− brHr+1 cosh τ − br
r + 1

⟨(sinh τ) ∂

∂τ
,∇Hr+1⟩

−Λr,k,a,b

(
−
{
−tr(Pk) + tr(A2Pk)

}
η − bkHkN(cosh τ)

−bkHk+1 cosh τ − bk
k + 1

⟨(sinh τ) ∂

∂τ
,∇Hk+1⟩

)
= −

{(
− tr(Pr) + tr(A2Pr)

)
− Λr,k,a,b

(
−tr(Pk) + tr(A2Pk)

)}
η

−{brHr − Λr,k,a,b bkHk}N(cosh τ)

−{brHr+1 − Λr,k,a,b bkHk+1} cosh τ

−
⟨
(sinh τ)

∂

∂τ
,∇

(
− br
r + 1

Hr+1 + Λr,k,a,b
bk

k + 1
Hk+1

)
︸ ︷︷ ︸

0

⟩
. (17)

Now, observing that

∇ cosh τ =
⟨
∇ cosh τ,

∂

∂τ

⟩ ∂

∂τ
= (cosh τ)′

∂

∂τ
= (sinh τ)

∂

∂τ
,

we have that
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N(cosh τ) = ⟨∇ cosh τ,N⟩ =
⟨ ∂

∂τ
,N

⟩
sinh τ. (18)

Finally, substituting (18) into (17) we obtain (16). □

Returning to the hyperquadric model of Hn+1 ⊂ Ln+2, let a ∈ Ln+2 be an unit

timelike vector (that is, ⟨a,a⟩ = −1). Then, we easily verify that

V (p) = a+ ⟨p,a⟩p , p ∈ Hn+1, (19)

is a closed conformal vector field globally defined in Hn+1. Consequently, from Propo-

sition 1 in [13], we have that such a vector field V foliates Hn+1 by means of totally

umbilical spheres, which can be characterized as the following level sets

Lδ = { p ∈ Hn+1 : ⟨p,a⟩ = δ } , δ2 > 1.

At this point, we recall that the (n+ 1)-dimensional de Sitter space Sn+1
1 is defined

as being the following hyperquadric of Ln+2

Sn+1
1 =

{
p ∈ Ln+2 : ⟨p, p⟩ = 1

}
.

The induced metric from ⟨ , ⟩ makes Sn+1
1 into a Lorentz manifold with constant sectional

curvature one.

In a dual manner of that of the hyperbolic space, taking again a unit timelike vector

a ∈ Ln+2, we have the vector field

K(p) = a− ⟨p,a⟩p , p ∈ Sn+1
1 ,

is a conformal and closed timelike vector field globally defined in Sn+1
1 . From Proposition

1 in [14], we see that such a vector field K foliates Sn+1
1 by means of totally umbilical

round spheres, which are described as the following level sets

Lε = { p ∈ Sn+1
1 : ⟨p,a⟩ = ε } , ε ∈ R.

In particular, the level set { p ∈ Sn+1
1 : ⟨p,a⟩ = 0 } defines a round sphere of radius

one which is a totally geodesic hypersurface in Sn+1
1 . According to [1], we will refer to

that sphere as the equator of Sn+1
1 determined by a. This equator divides Sn+1

1 into two

connected components, the chronological future which is given by

{ p ∈ Sn+1
1 : ⟨a, p⟩ < 0 }, (20)

and the chronological past, given by

{ p ∈ Sn+1
1 : ⟨a, p⟩ > 0 }.

On the other hand, we observe that the unit normal vector field N of x : Σn ↪→ Hn+1

can be regarded as a map N : Σn ↪→ Sn+1
1 , called Gauss mapping of x. In this setting,

the image N(Σn) will be called the Gauss image of x.
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Remark 1. By fixing a unit timelike vector a ∈ Ln+2 and considering in Hn+1

as well as in Sn+1
1 the foliations previously described, we can follow the same ideas of

Section 3 in [4] in order to verify that the Gauss mapping of a geodesic sphere Lδ of

Hn+1 is given by

N(p) = − 1√
δ2 − 1

(a+ δp) , p ∈ Lδ.

Consequently, we have that N(Lδ) ⊂ Lε for ε = −
√
δ2 − 1 < 0. Therefore, we conclude

that the Gauss image of a geodesic sphere of Hn+1 is contained in the chronological future

(or past) of the equator of Sn+1
1 determined by a.

Now, we are in position to state and prove our main result.

Theorem 1. Let r and k be nonnegative integers satisfying the inequality 0 ≤ k <

r ≤ n− 2, let a and b be real numbers, with b ̸= 0, and let x : Σn ↪→ Hn+1 be a strongly

(r, k, a, b)-stable closed hypersurface. Suppose that Λr,k,a,b is nonpositive and the higher

order mean curvatures Hk+1 and Hr+1 of x : Σn ↪→ Hn+1 satisfy

Hj+1 ≥ Hj , j ∈ {k, r}. (21)

If the Gauss image of x is contained in the chronological future (or past) of an equator

of Sn+1
1 then x(Σn) is a geodesic sphere of Hn+1.

Proof. Initially, we affirm that Hj > 0 everywhere on Σn, for all j ∈ {0, . . . , r +
1}. In fact, as Σn is closed in Hn+1, we may assume that the orientation N of Σn is

considered such that its principal curvatures are positive at a point p0 ∈ Σn. Moreover,

from the strong (r, k, a, b)-stability of x : Σn ↪→ Hn+1 we obtain that the quotient

brHr+1/{a bkHk+1 − b} is constant, with a bkHk+1 − b ̸= 0 on Σn. Let

β :=
(r + 1)Sr+1

a bkHk+1 − b
(p0) ≡

brHr+1

a bkHk+1 − b
. (22)

If a bkHk+1 − b < 0 then β < 0, so, by (22), Hr+1 = b−1
r β{a bkHk+1 − b} > 0 on Σn.

On the other hand, if a bkHk+1 − b > 0, we have β > 0, so, again by (22), Hr+1 =

b−1
r β{a bkHk+1 − b} > 0 on Σn. Anyway Hr+1 > 0 on Σn. Finally, our assertion follows

directly from the classical inequalities of G̊arding [12].

Now, let us suppose that, without loss of generality, the Gauss image N(Σn) of the

hypersurface x : Σn ↪→ Hn+1 is contained in the chronological future of the equator of

Sn+1
1 determined by a unit timelike vector a ∈ Ln+2. For such vector a, let us also

consider the warped product given in (13), which models the hyperbolic space Hn+1

(minus a point) as being (0,+∞)× sinh τ Sn.
In this setting, we consider the normal angle θ of x : Σn ↪→ Hn+1, which is the

smooth function θ : Σn → [0, π] given by

cos θ(p) = −
⟨
Φ∗N,

∂

∂τ

⟩
(Φ◦x)(p)

, (23)
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where Φ stands for an isometry between the hyperquadric and warped product models

of Hn+1. From (23) and (15), for any p ∈ Σn we have that

cos θ(p) = −
⟨
Φ∗N((Φ ◦ x)(p)), W ((Φ ◦ x)(p))

|W ((Φ ◦ x)(p))|

⟩
= − 1

|Φ−1
∗ W (x(p))|

⟨
N(x(p)),Φ−1

∗ W (x(p))
⟩
. (24)

Since Φ−1
∗ W = V , where V is the closed conformal vector field given by (19), from (24)

we get

cos θ(p) = − 1

|V (x(p))|

⟨
N(x(p)),a+ ⟨a, x(p)⟩x(p)

⟩
= − 1

|V (x(p))|

⟨
N(x(p)),a

⟩
. (25)

Hence, since we are supposing that the Gauss image N(Σn) is contained in the chrono-

logical future of Sn+1
1 determined by a, from (20) and (25) we conclude that

0 < cos θ ≤ 1. (26)

On the other hand, since x : Σn ↪→ Hn+1 is strongly (r, k, a, b)-stable, from Defini-

tion 1 and equation (8) we obtain

0 ≤ J ′′
r,k,a,b(0)(f) = −(r + 1)

∫
Σn

{
L̃r,k,a,b(f) +

(
−tr(Pr) + tr(A2Pr)

−Λr,k,a,b

(
−tr(Pk) + tr(A2Pk)

))
f
}
fdΣ,

for all f ∈ C∞(Σn), where L̃r,k,a,b is the differential operator defined in (9) and Λr,k,a,b

is defined in (10). In particular, taking

f = η ◦ Φ−1 =
⟨
(sinh τ)

∂

∂τ
,Φ∗N

⟩
= − sinh τ cos θ

and (for simplicity of notation) considering N = Φ∗N and Hj = Hj ◦ Φ−1 for j ∈
{k, k + 1, r, r + 1}, from Lemma 4 we obtain

0 ≤ (r + 1)

∫
Φ(Σn)

{(brHr − Λr,k,a,b bkHk) sinh τ cos θ

− (brHr+1 − Λr,k,a,b bkHk+1) cosh τ} sinh τ cos θ dΦ(Σ)

≤ (r + 1)

∫
Φ(Σn)

{(brHr − Λr,k,a,b bkHk) cos θ

− (brHr+1 − Λr,k,a,b bkHk+1)} cosh τ sinh τ cos θ dΦ(Σ), (27)

where bj = (j + 1)
(

n
j+1

)
= (n− j)

(
n
j

)
, with j ∈ {k, r}. But, since Λr,k,a,b ≤ 0, from (21)

we also have that

bk (Hk+1 −Hk) Λr,k,a,b − br (Hr+1 −Hr) ≤ 0.
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Equivalently,

brHr+1 − Λr,k,a,b bkHk+1 ≥ brHr − Λr,k,a,b bkHk. (28)

Substituting (28) into (27) we have

0 ≤ (r + 1)

∫
Φ(Σn)

(brHr − Λr,k,a,b bkHk)(cos θ − 1) cosh τ sinh τ cos θ dΦ(Σ) ≤ 0,

where we have used (26), that Λr,k,a,b ≤ 0, Hr > 0, Hk > 0 and that τ > 0. Hence,

cos θ = 1 and, consequently, there exists τ0 ∈ (0,+∞) such that

(Φ ◦ x)(Σn) = {τ0} × Sn. □

Remark 2. We would like to point out that, taking into account that the higher

order mean curvatures of each slice Σn
τ0 = {τ0}×Sn verify Hr+1 > Hr ≥ Hk+1 > Hk > 1

(as can be observed from (14)) for any entire numbers r and k satisfying the inequality

0 ≤ k < r ≤ n − 2, our restriction on the values of the higher order mean curvatures

Hk+1 and Hr+1 in Theorem 1 constitutes a mild hypothesis in the sense that, in the light

of Proposition 3 and Remark 1, it is natural to detect geodesic spheres of Hn+1.

We recall that a hypersurface x : Σn ↪→ Hn+1 is linear Weingarten when the mean

curvature H and normalized scalar curvature R satisfy

δ0H + δ1R = δ2,

for some constants δ0, δ1, δ2 ∈ R. Then, making r = 1 and k = 0 in Theorem 1, from (1)

we get the following result.

Corollary 1. Let a and b be real numbers, with b ̸= 0, and let x : Σn ↪→ Hn+1

be a strongly (1, 0, a, b)-stable closed linear Weingarten hypersurface such that

n(n− 1)(R+ 1)− naHδ = −bδ,

where δ ∈ R \ {0}. Suppose that Λ1,0,a,b is nonpositive and 1 ≤ H ≤ R+ 1. If the Gauss

image of x is contained in the chronological future (or past) of an equator of Sn+1
1 then

Σn is a sphere and x is its inclusion as a geodesic sphere of Hn+1.
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