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Abstract. Let ¢ be a linear map between operator spaces. To measure
the intensity of ¢ being isometric we associate with it a number, called the
isometric degree of ¢ and written id(¢p), as follows. Call ¢ a strict m-isometry
with m a positive integer if it is an m-isometry, but is not an (m -+ 1)-isometry.
Define id(¢p) to be 0, m, and oo, respectively if ¢ is not an isometry, a strict m-
isometry, and a complete isometry, respectively. We show that if ¢ : My, — M)
is a unital completely positive map between matrix algebras, then id(y) €
{0,1,2,..., [(n—1)/2], oo} and that when n > 3 is fixed and p is sufficiently
large, the values 1, 2, ..., [(n — 1)/2] are attained as id(y) for some ¢. The
ranges of such maps ¢ with 1 < id(p) < oo provide natural examples of
operator systems that are isometric, but not completely isometric, to M,,. We
introduce and classify, up to unital complete isometry, a certain family of such
operator systems.

1. Introduction.

Since the publication of the pioneering paper of Choi [1] in 1972, an extensive
literature has treated the difference between m-positivity and (m-1)-positivity on matrix
algebras for a positive integer m (see, for example, the monograph of Paulsen [5] and the
references cited there). However the difference between m-isometry and (m+ 1)-isometry
seems to have been paid less attention. Here a linear map ¢ between operator spaces X
and Y is called an m-isometry if id,,, ® o : My, @ X = M, @Y, (id,, @ ) (>0, ai @ ;) =
> ai ®@p(x;), is an isometry, where M,, is the C*-algebra of all complex m x m matrices,
an operator space X is a linear subspace of some C*-algebra A, and M, ® X is regarded
as a normed linear subspace of the C*-algebra M,, @ A. By a complete isometry we mean a
map that is an m-isometry for all m. Clearly a complete isometry or an (m+ 1)-isometry
is an m-isometry. We call an m-isometry strict if it is not an (m + 1)-isometry. Hence,
with any linear map ¢ between operator spaces we can associate a unique number, called
the isometric degree of ¢ and written id(p), defined as 0, m, and oo, respectively if ¢ is
not an isometry, a strict m-isometry, and a complete isometry, respectively.

We note that if ¢ is a surjective linear map between C*-algebras, then id(y) €
{0, 1, oo}, that is, id(¢) takes no integer value more than 1, or equivalently every sur-
jective 2-isometry is a complete isometry. Indeed, more generally, for a surjective linear
map between triple systems, the three notions of 2-isometry, triple isomorphism, and
complete isometry coincide ([3], Proposition 2.1). Here a triple system, also called a
ternary ring of operators (TRO), is a norm closed linear subspace of some C*-algebra
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that is closed under the triple product [z, y, z] := zy*z, and a triple isomorphism be-
tween triple systems is a linear bijection that preserves the triple products. A typical
example of a surjective strict 1-isometry between C*-algebras is the transpose = — ‘x of
the matrix algebra M, for n > 2 (see Tomiyama [6]).

The maps considered in this paper are unital completely positive maps ¢ : M,, — M,
between matrix algebras. In Section 3 we show that id(¢) € {0, 1, 2, ..., [(n — 1)/2], oo}
for such maps ¢ and that when n > 3 is fixed, the less trivial values 1, 2, ..., [(n — 1)/2]
are attained as id(y) for some p and some ¢ : M, — M,. The main ingredients for
the study are a criterion for ¢ being an m-isometry (Lemma 3.3 (iii)) and a technique
(Lemma 3.4(ii)) making the computation of id(y) effective via the notion of length defined
in Section 2.

In Section 4 we address the following problem. The ranges ¢(M,) of the linear
isometries ¢ : M, — M, with 1 < id(¢) < oo constructed in Section 3 are operator
systems identical with M,, as normed spaces. But, how different are they from M,
as operator systems? Given a positive integer n > 3 we introduce a family {MZ ¢} of
operator systems M? ¢ that are linearly isometric images of M,,, parametrized by positive
integers ¢ (3 < ¢ < n) and unit vectors ¢ in certain Hilbert spaces, and classify them
up to unital complete isometry. Moreover the group structure of all unital complete
isometries of a fixed MJ ¢ onto itself is determined.

In Section 5 we state two questions that have remained unanswered in this paper
and related remarks.

The author thanks the referee for his constructive critique and for suggesting many
simplifications of proofs, which will be noted in appropriate places.

2. Preliminaries.

Let ¢ : M,, — M, be a unital completely positive map between matrix algebras.
Throughout the paper we always assume that it is written in the form ¢y, : B(H;) —
B(L), which is the unital completely positive map defined as follows.

Let Hy and H, be finite-dimensional Hilbert spaces, H = H, ® Hy their Hilbert
space tensor product, and L C H a linear subspace. If dim Hy; = n, dim L = p and we
identify B(Hy) = M, B(L) = M,, then we obtain a unital completely positive map
¢r : My, = M, defined by

r — z®lyg, PL(Z‘®1H2)PL =: @L(x).

Here 1y, denotes the identity operator on Hs, P denotes the projection of H onto
L, and we canonically identify B(H,) ® B(H,) with B(H) and P;,B(H)P;, with B(L).
Conversely, every unital completely positive map ¢ : M,, = M,, between matrix algebras
is unitarily equivalent to the above map ¢y for some Hilbert spaces Hy, Hy and some
linear subspace L of Hy ® Hy such that dim H; = n and dim L = p. Indeed, if we
identify M, = B(H) for a Hilbert space H with dim H = p, then by the Stinespring
theorem (Paulsen [5], Theorem 4.1) there exist a finite-dimensional Hilbert space K, a
unital *-homomorphism 7 : M,, — B(K), and a linear isometry V : H — K such that
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p(x) = V*r(z)V for all x € M,,. Here, that dim K < oo follows from the fact that K is
obtained as the quotient space of the finite-dimensional tensor product M,,® H. Since M,,
is a simple C*-algebra, we can identify the *-homomorphism 7 with the amplification
B(Hl) — B(Hl) X B(HQ), T = T 1H2, where Mn = B(Hl) and K = H1 X H2
for some Hilbert space Hy. Moreover, since ¢ is unital, V' is an isometry of H onto
L:=VH C K, so that the map V- V*: B(H) — B(L), x — VaV*, defines a unitary
equivalence, and VV* = Py, € B(H; ® Hy). Hence the map ¢ : M,, - M, = B(H),
x = Vir(z)V = V*(x ® 1g,)V, is unitarily equivalent to the map ¢y, : B(Hy) — B(L),
T — VV*((E (9 1H2)VV* = PL(x (9 ]-HZ)PL'

The uniqueness of K = H; ® Hy and L. C Hy ® Hy, up to unitary equivalence, in the
expression ¢ = ¢y, follows when we further require that = (M, )VH = K, or equivalently
that (B(H1) ®1pg,)L = K = H; ® Hs (see [5], Proposition 4.2). But we will not assume
this condition (B(H1)®1p,)L = Hy ® Hs to give flexibility in the choice of L C H; ® Ho.

As usual we write B(H) = M,, when we need only specify dim H = n < oo.

In what follows we adopt the following notational convention. For Hy, Hy and
H, ® Hs as above we denote by the letters &, n and ( vectors in Hy, Ho and H; ® Hs,
respectively. Let Hy := {¢* : £ € H,} be the complex conjugate of Hy, i.e., the Hilbert
space with the linear space operation A&} + Xo&s = (A1€1 + X2&2)* and the inner product
(&1, &) = (2, &) for A1, Ay € C and &, & € Hy. Then the map §* — (-, ) gives a
linear isomorphism of H; onto the dual space of Hq, and it induces the canonical linear
isomorphism p : Hy ® Hy — B(Hy, Hz), ¢ — p¢, defined by

Perem & = (&, &m, &, § € Hi, m € Ha. (2.2)

The operator p; € B (Hy, Hs), ¢ € H; ® Ho, is reformulated by the following equality.

<PC§*777> = <<7§®77>7 €€H1777€H2~ (23)

We use the following symbolic notation to denote inner products or operators:

66 = (&, &), &, & € Hy;

§87 t Hy — Hy, 0 (§267)6 = &(878) = (€, §1)&2, &1, §2 € Hy

& = peon, : Hi — Ha, € = € (&Gm) = (€°&)m = (&, §m, & € Hi, m € Ho,
etc. The meaning would be self-explanatory when we view vectors as column vectors

with respect to some orthonormal basis and juxtapositions of them as matrix products.
Then p22®n2 : Hy — H; and Perom p22®n2 : Hy — H, — H, are written formally as

Perom =115 Perom Peyen, = (&15 §2)mns, (2.4)

meaning the maps 1 — &nin = (7, m)& and 0 (€1, &) (. n2)m, respectively.
For any subsets S C Hy ® Hy and T C H; write

[Slr :=1lin{pc&" : (€S, £ €T} =lin | pcT* C Ho. (2.5)
ces
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Here and throughout, lin{. ..} denotes the linear span of {...} in any linear space, and
T :={&": £ €T} Inparticular, if T' = {&, ..., &}, & € Hy, write [S]e, . ¢, == [S]r,
and if T'= Hy, write [[S]] := [S]H,.

DEFINITION 2.1.  For a nonempty subset S of H; ® Hy we call the following integer
the length of S.

length S := min{dim 7" : T C H; linear, [S]r = [[5]]}. (2.6)

That is, [ = length S if and only if [S]r & [[S]] for any linear subspace T' of H; of
dim T < [ and [S]p = [[9]] for some linear subspace T of Hy of dimT = .

Note that replacing S and T in (2.5) and (2.6) by their linear spans does not affect
the resulting sets and the value of length S, i.e., [S]r = [lin Sy = [SinT = [lin S)iinT,
[[S]] = [[lin S]] and length S = length(lin S). Note also that since the map T — T™* gives
a bijection between the set of all linear subspaces of H; and that of H;, the equality in
(2.6) is written as > e g pcT™ = e pcHi, and (2.6) is reformulated as

length S = min{dim 7T : T C H; linear, Z pcl = Z pcH1}. (2.7)
ces ces

DEFINITION 2.2. Let ¢ : X — Y be a linear map between operator spaces X and
Y.

(i) For a positive integer m we call ¢ a strict m-isometry if @, : My, (X) = M, (Y)
is an isometry, but @41 1 Miy41(X) = My41(Y) is not an isometry, where M,,(X) =
M, ® X, M,,(Y) = M, ®Y, etc., and ¢,,, = id,,, ® o with id,, denoting the identity
map on M,,.

(i) We define the isometric degree of v, written id(y), to be 0, m, and oo, respectively
if  is not an isometry, a strict m-isometry, and a complete isometry, respectively.

3. Isometric degrees of .

We describe the isometric degree id(¢r) of the unital completely positive map ¢r,
defined in Section 2 in terms of the orthogonal complement L+ of L as follows.

THEOREM 3.1.  As in Section 2, let Hy, Hy be finite-dimensional Hilbert spaces, L
a linear subspace ofﬁ := Hi®Hs, and ¢, : B(Hy) — B(L) the unital completely positive
map associated with L. Let n := dim H,, q := dim Hy, L* the orthogonal complement of
L in Ef, and | := length L. Then:
(i) We have I < min{n, ¢}.
(ii) The following are equivalent:
(iil) id(pyp) = 00, i.e., @1, is a complete isometry.
(i2) [[L1]] S .
(ii3) There exists an ng € Ha \ {0} such that Hy ® no C L.
(iii) Suppose that id(pr) < oo and hence by (ii) that [[L*]] = Ha. Then we have
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. -1
id(pr) = [2 } ; (3.1)
where [a] for a real number a is the largest integer < a. That is, if | < 2, then ¢, is not
an isometry, and if | > 3, then ¢, is a strict [(I — 1)/2]-isometry.

Since | < n, Theorem 3.1 means that if 1 < n < 2, then id(¢r) € {0, oo} and if
n >3, thenid(pr) € {0, 1,2, ..., [(n — 1)/2], oo}. In particular, if 1 < n < 2, ¢, being
an isometry implies its being a complete isometry. The following theorem shows that the
values 1, 2, ..., [(n — 1)/2] are indeed attained as id(yr) for some ¢, if n > 3 is fixed
and p is sufficiently large.

THEOREM 3.2. Let n and m be positive integers with n > 3 and 1 < m <
[((n—1)/2]. Then there exist a positive integer p and a map ¢ : M, — M, such
that id(pr) = m. Here we can take p to be n(2m + 1) — 1.

We separate the proofs of Theorems 3.1 and 3.2 into several lemmas. In the following
lemmas we retain the notation Hy, Ho, L, ¢y, n = dim Hy, and ¢ = dim Hy in Theorem
3.1.

LEMMA 33, (i) Forér, € € Hy we have | Py (66 @ 1) Pl = 661 = &l
if and only if there exists ann € Hy\{0} such that & ®n, E&2@n € L, where £ € B(Hy)
is the operator & — (£267)E = &(6E) = (€, £1)& on Hy of rank < 1 as before.

(ii) The map ¢y : B(H1) — B(L), vr(z) = Pp(z ® 1p,)Pr, is an isometry if and
only if

V&, &€ Hi,dn e Ho\{0}: & ®n, &@ne L (32)
(iii) For a positive integer m the map @y, is an m-isometry if and only if
V¢ e Hy (1§2§2m), H’I’]EHQ\{O}: &enel(1 §z§2m) (33)

Proor. (i) Clearly ||&&5] = |I&1]l|€2]], and for the proof we may assume that

€]l = ll&2ll = [lnll = 1.
(<): Suppose such an n € Hs exists. Then § @n € L, ||& @ || = [|&]n]] = 1
(i =1, 2)a

| Pr(&28 @ 1m,) Pl > [(Pr(§28] @ 1m,)Pr(&1 ®@n), & @)
= [((&&1 @ 1m,)(E1 @ M), &2 @)
= (&1, &0)(&2, &2)(n, ) = 1,

and further, || Py (6261 @ L) P < 6268 @ L, | = &1 lll€al] = 1.

(=): The following proof was suggested by the referee; the original proof was more
lengthy. Let v = &¢&f and suppose that ||Pr(v @ 1p,)Pr|| = ||v]] = 1. Then v is a
partial isometry with v*v = £1&] and vv* = £&5. Since Hy ® Hy is finite-dimensional
and its unit sphere is compact, there is a unit vector ( € H; ® Hy such that ||Pr(v ®
1g,)Pr¢|| = 1. We show that ¢, (v ® 1g,)¢ € L and (v'v ® 1g,)¢ = (. Indeed,



434 M. HAMANA

1= [|Pp(v@1lm,) Prll < [[Po(v@ Lo, )| PLlll < [PLCll < [I¢]F = 1 implies that || L]l =
[¢]| and hence that ¢ = Pr¢ € L, since ||C||? = ||Pr¢|]® + [|[¢ — Pr¢||*. Similarly,
|1PL(v@1p,)C|| = |PL(v®lm,)Prlll =1 =|(v®1lm,)C| implies (v®1p,)¢ € L. Since v
is a partial isometry, ||[(v*o ® 1, )|l = (v ® 11, )¢|| =1, and ||(v*v ® 1g,)¢|| =1 = ||C]|
Then, since v*v ® 1y, = & ® 1y, is the projection onto £ ® Ha, it follows that
(v*v ® 1g,)¢ = ¢ and hence that ¢ = & ® n for some unit vector n € Hy. Then
(v ® 1g,)C = (L7 @ 11,) (&1 ® ) = &2 @, and it follows that &, @7, o @7 € L.

Note that the above argument shows that || Pr, (§267®1 4, ) PrC|| = ||¢|| for ¢ € H1®H,
if and only if ( = & ® n for some 1 € Hs such that & ®n, & ®n € L.

(i) (=): T . is an isomety, then | Py (€€} ® L) Pr| = or (626Dl = 16265 | for
all &1, & € Hy. Hence (3.2) follows from (i).

(«): Let x € B(H1) and take any unit vectors & € Hy (i = 1, 2). Then there exists
a unit vector n € Hy as in (3.2), and so

(Pr(z @ 1m,) Pr(& @n), & @n)| = [((x @ 1m,) (61 @ 1), &2 @)
(@&, &2)[(n, m) = [(x&1, &2)].

Since &1, & are arbitrary, it follows that ||¢r (x)|| > ||z||, and the reverse inequality being
obvious, [z (x)]] = |1zl

(iii) For ¢ := ¢ : B(H1) — B(L) in (ii), ¢m = idym®p : M, B(H1) — M,,®B(L)
is given as follows. For x = Zlgi,jgm eij ® xij € My, ® B(Hy), where {e;;}1<i, j<m i a
family of matrix units for M,, and z;; € B(H),

pm() = Y ey®@p(ziy)= Y, ey®P(e;®1y,)Py

1<i, j<m 1<i, j<m
=(cm @PL)( Y e @2y @ 1g,)(lem @ Pr)
1<i, j<m

= PC’"(X)L(-T & 1H2)PCT"'®L-

That is, ¢, is just the ¢ with Hy replaced by C™ ® H; and L C Hy ® Hs replaced by
C™® L C C™® H; ® Hy. Hence, by (ii), ¢, is an m-isometry, i.e., @, is an isometry if
and only if

VEL ELeCm @ Hy,dne Ho\ {0} : & ®n, &9neC™® L. (3.4)

For a fixed orthonormal basis {€;}1<j<m for C™, C" @ H) =1 QH1 & - Pep, @ Hy, the
orthogonal direct sum of right summands, and similarly C"® L =1 QL& -Pe,,, ® L C
€1 (H1 @ Hy)) ® -+ Pep @ (Hy @ Hy). Hence, taking two vectors &1, & in C™ @ H;
is equivalent to taking 2m vectors &1,&a, ..., &am in Hy so that & = 27;1 €; ®&; and
€ =211, €j ®&jpm, and for some n € Hy \ {0}, @ e C" @ L (i =1,2) <= for
some n € Hy\ {0}, &1®n, &2®1, ..., 2m ®n € L. Thus the equivalence (3.4) <= (3.3)
follows. O

NOTATION. For a linear subspace L of H; ® Hs and £ € H; we write

LS :={ncHy: E@nel} (3.5)
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LEMMA 3.4. (i) For & € Hy we have LS = ([LY)¢)t, where [LY]e := {pc&* : ¢ €
L+} as in (2.5).

(i) (3.3) holds if and only if [L*]r S Hy for each linear subspace T of Hy of
dimT < 2m.

PrROOF. (i) Forn € Hy,n€ LS < £@ne L < (p&*, n) = (¢, E®n) =0 for
all ¢ € Lt by (2.3) (since L is finite-dimensional and so (L)t = L) <= n € {p:&*:
¢ e LA = ([L4e)

(ii) (3.3) holds <= V& € Hy (1 <4 <2m): (Vycjen, LY # {0} < V& € Hy
(1<i<2m): 32 csenn (LE)E # Hy (since (Y, My)* = ), M;- for any linear subspaces
M; of Hy and since Hj is finite-dimensional). But, by (i) and (2.5), Y icicom (L8 =
SicicomlLt e, = [LF )7, where T =5, .., C&. When &; (1 <i < 2m) range over all
2m vectors in Hy, T = Y oi<i<am Céi ranges over all linear subspaces of H; of dimension
< 2m. Hence the assertion follows. O

LEMMA 3.5. (i) Let K be a finite-dimensional linear space, {K;}ier a finite family
of proper linear subspaces K; of K with d; :== dim K;, and r := dim K — min;cy d; > 0.
Then there exists an r-dimensional linear subspace T of K such that K; +T = K for all
1€1.

(ii) Let K and M be finite-dimensional linear spaces, {a;}icr a finite subset of
B(K, M), and r := max;cyrank a;. Then there exists an r-dimensional linear subspace
T of K such that a;T = a; K for alli € 1.

(iii) For any subset S of Hy ® Ha we have length S < min{n, ¢}.

PROOF. (i) We repeatedly use the following obvious fact: (x) If {L;} is a finite
family of proper linear subspaces of K, then (J ;L # K. Indeed, each L; is closed and
has empty interior in K. So the same is true for their union J; L;, K \ U, L; is open
and dense in K, and it is non-empty.

By (*) there exists §; € K \ U,;c; Ki. Let KZ-(I) =K;+C& (iel)and I := {i €
I: KV GK}. Forielwehaveie I\I, <= di+1=dimK; +1=dimK" =n,
ie, di=n—-1,andsoi € I, < d; < n—2 1If I} # 0, then again by (x),
there exists & € K\ Uiel1 Ki(l)7 and we can define Kl-(z) = Ki(l) + C& (i € L),
L:=f{ich:K”CK}sothatforiel,icly — d;<n-3andie L\
<= d; = n—2. Aslong as I; # () this procedure works, and since d; > n — r for
all ¢ with equality for some i, it terminates precisely at the rth step. Thus we obtain
vectors &1, &9, ..., & € K and sets Igp := I D I; D I D -+ D I,_1 # () so that
KGKYG CKY =K +C&++C& =K < iel\I. If weset
T:=C& + -+ Cg,, it follows that K; +T = K for all i € I.

(ii) We may assume a; # 0 for all ¢ € I. Then K; := Kera; ; K (iel),dmK; =
n —r;, and n — min;er(n — ;) = max;ey r; = r, where n = dim K and r; := ranka;. By
(i) there exists an r-dimensional linear subspace T of K such that K; + T = K for all
1€ 1. Hence a; K = a;(K; +T) = ;T for all i € I.

(iii) Clearly length S < n since dim T < dim H; = dim H; = n for T in (2.7). Since
dim lin S < dim H < oo, we have lin § = lin {C1, ..., ¢} for some finite {(3, ..., (x} C
S. Then, by (2.7), length S = min{dimT : T C H; linear, Zle pe. T = Zf:l pe, Hit.
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If r := maxj<;<grank p;, = maxj<;<;dim(pe, H1) < dim Hy = ¢, then by (ii) there
exists an r-dimensional linear subspace T' of H; such that p¢,T = p¢, H; for all i. Hence
lengthS < dimT =r <gq. O

LEMMA 3.6. (i) Let s be a positive integer with 1 < s < min{n, ¢}. Define (o, (;; €
Hi @ Hy by Co = >0 & @i, Gy =&@m; 1 <i<s s+1<j<q), where
{&}1<i<s C Hi is linearly independent and {nj}lgqu s a basis for Hy. Then the linear
span M :=1in{(o, ¢;j : 1 <1 < s, s+1 < j < g} satisfies that length M = s, [[M]] = Ho,
and dim M = s(q — s) + 1.

(ii) Suppose that 1 < dim He = ¢ < dim Hy = n. If {, = 23:1 &E®n € H @ Hy
with both {&}1<i<q C H1 and {n;}1<i<q C Ha linearly independent and M := C(y, then
length M = g and [[M]] = Hs.

PROOF. (i) There exist linearly independent vectors {{/}i1<i<s in H; such that
(&, §5) = dij, the Kronecker symbol, for all i, j. Indeed, since {{;}1<i<s is a basis for
H{ :=1in{& }1<i<s, for each j (1 < j <'s) the linear functional >°7_, ;& — A; (A € C)
on Hj defines a unique element & € Hj such that (377 Xi&;, &) = A; for all \; € C
(1 <i<s). Then it follows that for 1 < k < s,

[M]g, ={pc&i = ¢ € M} =lin{pg, & pe,, &k 1<i<s, s+1<j<q}
= lin{nk, Ms+1, Ms+2y -« - » 77(1}7

since by (2.2), po €l = Sty (6, € = m and pe, € = (€, €4y = ey Hence, for
the s-dimensional linear subspace Ty := lin{&}, ..., &} of Hi, [M|g, = >3 _ [M]e =
lin{m, ..., Ns, Vs41, Nst2, - -, Mg} = Ha. Since [M|r, C [[M]] C Ha, it also follows that
[[M]] = Hs. On the other hand, if T is a k-dimensional linear subspace of Hy with basis
{0 .1 <r <k} and if k < s, then, since Pei; (€M)  elin{n;: s+1<j<gq},

(M =1in{pe, (€7, pe, (€))7 : 1<r <k 1<i<s s+1<j<q)
- lin{pgo(g(r))* 1<r<k}+lin{n;:s+1<j<g}

The dimension of the right-hand side is at most k + (¢ — s) < ¢ = dim Hs, and so
[M]7 G Hs. Thus it follows that length M = s.

The set {i;}1<i<s, s+1<j<q is linearly independent, and so its linear span N has
dimension s(q— s). Moreover (o = Y ;_, & ®mn; € N, since each element of N is uniquely
written in the form Y77, & ® >37_ 11 Aijn; (Aij € C). Hence dim M = dim(N + C¢p) =
s(g—s)+ 1.

(ii) This is the special case of (i) where s = ¢ and the (;;’s are missing. O

PROOF OF THEOREM 3.1. (i) This follows from Lemma 3.5 (iii).

(i) (ii1l) <= (ii2): The map ¢y, is a complete isometry <= ¢, is an m-isometry
for all m <= by Lemma 3.3 (iii) and Lemma 3.4 (i), [L*]r S Ha for each lincar
subspace T' of Hy of dimT < 2m and each m <= [[L']] = [L*]n, & Ho.

(ii2) <= (ii3): Forne€ Hy, HH @1 C L <= 1€ ey, L = Neep, (LHe) " =
(Ceen, L)t = ([LH]m,) " = ([[LH])* by (3.5) and Lemma 3.4(i). Hence, [[L*]] & H2
<= H; ®mny C L for some ny € Hy \ {0}.



Completely positive isometries between matriz algebras 437

(iii) As noted above, Lemma 3.3 (iii) and Lemma 3.4 (ii) show that (x) ¢y is an
m-isometry for m > 1 if and only if [Lt]r ; H, for each linear subspace T of H; of
dim T < 2m. Since we are assuming that [[L1]] = Ha, the definition of length (Definition
2.1) implies that [ = dim T for some linear subspace T of H; with [L1]r = Hy and that
[L+]r G Hy for each linear subspace T' of Hy of dim T < L.

If | = length L+ < 2, then [L*]r = Hy for some linear subspace T of H; of dim T < 2.
Hence, by (x), ¢ is not an isometry.

Ifi>3and m:=[(1—-1)/2] > 1, thenm < (I —1)/2 < m+ 1. Hence 2m <[ —1,
2(m+1) > 1 —1, and so 2m < I, 2(m + 1) > I. The inequality 2m < [ shows that
[LJ-]T ; H, for each linear subspace T of H; of dimT < 2m and hence by () that ¢,
is an m-isometry. Since [LJ-]T = H, for some linear subspace T of H; of dimT = [ and
since 2(m + 1) > I, the condition in (*) with m replaced by m + 1 does not hold. Hence
¢ is not an (m + 1)-isometry. Thus ¢y, is a strict m-isometry. O

PROOF OF THEOREM 3.2. Set ¢ := 2m + 1 so that 3 < g < msince 1 < m <
[(n—1)/2] < (n—1)/2, and take Hilbert spaces H; and Hs with dim H; = n and
dim H, = ¢q. Lemma 3.6 (ii) shows that for (; € H; ® Hs as in the statement there,
length C¢p = ¢ and [[C(p]] = Ha. Then Theorem 3.1 (iii) shows that ¢y, for L := {(o}+
is a strict m-isometry since [(¢ — 1)/2] = m. Since dim L = dim(H; ® Hy) —1=ng—1 =
n(2m+1)—1, ¢ : B(H1) — B(L) may be regarded as a unital completely positive map
of My, into My, (2m+1)—1- O

REMARK 3.7. Part (ii) of Theorem 3.1 may be well-known although we cannot
provide suitable references, and the implication (ii3) = (iil) is obvious without any
consideration used above, since M := H;®ny C L with g € H>\{0} implies that the map
B(Hy) —» B(M), x — ¢r(2)|M = Pr(x ® 1g,)Pr|M, is an injective *-homomorphism,
so a complete isometry and that ¢y itself is a complete isometry.

4. Classification of a family {M%¢}.

The notation Hy, Hy, n = dim H; < oo, ¢ = dim Hy < o0, H = H, ® Ha, o1, :
B(H,) — B(L) for L C H, etc. will be as before.

In this section we assume n > ¢ > 3, and introduce operator systems M <, linearly
isometric to M,, as follows. Consider the following condition for a vector ( in H:

q
¢= Zfl & i, {fi}lgigq C Hy, {m}lgigq C H, linearly independent, (41)
=1

and set
Zp.q:={Ce€H: || =1, Csatisfies (4.1)}. (4.2)

For ¢ € Z,,, denote by ¢ the map ¢y, defined for L := {¢}+. Then id(¢¢) = [(¢ — 1)/2],
since length C¢ = ¢ and [[C(]] = H2 by Lemma 3.6(ii) and so Theorem 3.1(iii) applies.
We have dim L = dim{¢}* = dim H —1 = ng—1, and [(¢ — 1)/2] > 1 since ¢ > 3. Hence
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we may regard ¢¢ as a unital completely positive isometry of M,, into M,,_1, and we
obtain an operator system M% ¢ := p¢(M,) C M,,_1 as its range.

We will classify the family {M% ¢}, where n > ¢ > 3 and ¢ € Z,_ 4, up to unital
complete isometry. That is, we will show when

Mo <22 M ¢ (4.3)

holds forn > ¢ >3,( € Z, 4,0 >¢ >3, and ' € Z,, ,. Here, for operator systems
X and Y we write X 2 Y if there exists a unital complete isometry of X onto Y.
We first deduce that MJ ¢ % M,, from the following:

PROPOSITION 4.1.  Let X be an operator system and suppose that there is a unital
completely positive isometry of M, onto X that is not a complete isometry. Then X is
not unitally completely isometric to M,.

PrROOF. Let ¢ : M, — X be a surjective unital completely positive isometry
that is not a complete isometry. Suppose that there exists a surjective unital complete
isometry x : M,, — X. Note in general that any surjective unital isometry ¢ between
operator systems V and W is positive. Indeed, for a € V we have a > 0 if and only if
fla) >0forall f € S(V):={feV*:|fll = f(1) =1}, and similarly for W. Hence, the
condition on ¢ implies t*(S(W)) = S(V), and the assertion follows. Then k!, being also
a surjective unital complete isometry, is completely positive, and ¢ := k" toy : M,, — M,
is a surjective unital completely positive isometry. By Kadison’s structure theorem of
surjective linear isometries between unital C*-algebras [4], there exists a unitary u € M,
such that (i) ¥ (z) = uzu* for all x € M,, or (ii) ¢ (z) = u'zu* for all x € M,,. Indeed,
since M, is a factor, 1) is a *-automorphism or an anti-*-automorphism. In the former
case, (i) is true. In the latter case, 1) composed with the transpose map, = — ‘i(z), is
a *-automorphism, and so v is of the form (ii). The map in case (ii) is not 2-positive
(Tomiyama [6], Corollary 2.3), and so the case (i) occurs. Hence ¢ = ko1 is also a
complete isometry. This is a contradiction. O

Clearly (4.3) implies n = n’ since dim M ¢ = dim M,, = n? and dim MZ:’CI =2
The following result shows that it also implies ¢ = ¢'.

THEOREM 4.2.  The C*-envelope C*(M% %) of M3 ¢ equals My .

Here we recall the notion of the C*-envelope, written C*(X), of an operator system
X [2]. (We follow the usage of the notation C¥(X) to denote the C*-envelope of X in
the recent literature.) An operator system X is a norm closed linear subspace of some
unital C*-algebra such that 1 € X and x € X implies z* € X. The C*-envelope of X is
the C*-algebra C*(X) uniquely determined by the following properties:

(i) X C C¥(X) and X generates C¥(X) as a C*-algebra,

(ii) if Y € B with B a unital C*-algebra is an operator system, there is a unital
complete isometry & of Y onto X, and C*(Y) is the C*-subalgebra of B generated by
Y, then there exists a *-homomorphism 7 of C*(Y) onto C*(X) extending ~ so that
C*(Y)/Kerm = C*(X) (*-isomorphic as C*-algebras).
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If Theorem 4.2 were true, then (4.3) would imply by the uniqueness of the C*-
envelope that M,, ; = C*(M%¢) = C*(M3-<") = M,,_, and hence that ng — 1 =
ng —1 and q = ¢ as stated above. To show Theorem 4.2 it suffices to show that MJ ¢ =
0c(My) C Mpq—1 generates M, ,_1 as a C*-algebra. Indeed, the C*-envelope C;(MZ¢)
is realized as the quotient C*-algebra B/I, where B is the C*-subalgebra of M,,_1
generated by M ¢ and [ is its ideal. But, since My q—1 is simple, B = M, 41 implies
I = {0}, and C*(M%°) = B = M,,_1. Moreover, since M,,_1 is finite-dimensional,
B = M, 1 if and only if (M%) :={x € Mpq—1: 2y =yz, Yy € MT} = Clyq_1.

Hence Lemma 4.3(iii) below completes the proof of Theorem 4.2 if we take B(H;) =
M, PLB(H)P, = B(L) = Myq—1 and PL(B(H1) ® 11,)Pp = ¢r(B(Hy)) = ¢¢(My)
there.

LEMMA 4.3. (i) For any subset S of H, [[S]] = [S]x, := lin {pcHy1: ¢ € S} C Ho
is the smallest linear subspace M of Hy such that S C Hy ® M, and

lin (B(H,) ® 15,)S :==lin{(z® 15,)¢: x € B(H,), (€ S} = Hy @ [[S]].  (4.4)

(ii) We have

(PL(B(Hl) (24 ]-HQ)PL)/ ﬂPLB(H)PL = {.CEPL X E 1H1 ®B(H2)7 xPr, = PLI}, (45)
where T' := {x € B(H) : zy = yx, Yy € T} for any T C B(H).
(iii) If L = {¢}* for ¢ € Zy 4, then

(PL(B(H1) ® 1,)PL) N P B(H)P, = CPy. (4.6)

Proor. (i) For n € Ha, [[S]] € {n}+ <= n € [9]F <= (p&*, n) =0,
VEe€ H,VC €S <= ((,&@n) =0,Y¢ € Hy,V¢ € Shy (2.3) «<—= H,®{n} C St <
S S c(Hi®{nh)*t =Hi®{n}*. Since [[S]] = N{{n}" : n € Ha, [[S]] C {n}*},
the first assertion follows. Hence S C H; ® [[S]] implies N := lin (B(H;) ® 1g,)S C
(B(H1) ® 1g,)(H1 @ [[S]]) = H1 ® [[S]]. Moreover, since (B(Hy) ® 1g,)N C N, Py €
(B(H1)®1p,) =1y, ® B(Hy), and Py = 1y, ® Py for some linear subspace M of Hs.
It follows that S C N = Hy ® M, [[S]] € M, and H, ® [[S]] € H, ® M = N.

(ii) To elucidate the point we start from a slightly general setting. Let M be a
von Neumann algebra, N C M a von Neumann subalgebra, P := N'N M, and p e M a
projection. Then () p(PN{p}’) C (pNp)' NpMp, since p € (pNp)', PN{p}’ C N'n{p}’ C
(pNp)', and so p(PN{p}’) C (pNp)' NpMp. Under certain conditions on M, N and p we
show the reverse inclusion. Then (4.5) follows if we take M = B(H) = B(H;) ® B(H>),
N = B(H,) ® 1y, and p = Py, and show that the conditions hold for such M, N and p.

The argument in this and the next paragraphs is due to the referee. Suppose there
is a faithful conditional expectation i) of M onto P such that

zp(p) = pY(x), Vo € (pNp)' N pMp, and (a)
if ¢ is the support projection of ¥(p) in P, then v (p) is invertible in ¢Pgq. (b)

Then ¢ is the smallest projection in P such that p < g, since ¢ is faithful, so ¢ ((1—q)p(1—
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q)) = (1—q)¥(p)(1 —¢q) =0 implies (1 —¢q)p(1 —¢q) =0 and p < ¢, and since p < ¢’ for a
projection ¢’ in P implies ¢¥(p) < ¢(¢") = ¢’ and ¢ < ¢’. Replacing = by 2* in (a) shows
Y(p)z = (z)p, and (a) implies that x = xq = 29 (p)h(p) ~! = py(x)(p)~! and similarly
x = p(p) (@) for z € (pNp) N pMp. Here p(x)d(p)~" = ¥(p) "$(z) = y € P, 0
x = py = yp holds, and it follows that y € PN{p} and = = py € p(PN{p}’), showing the
reverse inclusion in (+). Indeed, by (a), ¥(2)i(p) = v(21(p) = B(e(p)z) = H(p)U(2),
so ¥(p) " h(x)g = quz)e(p)"", and Y(p) " (z) = B(x)b(p)~!, since p < g € P and
x € pMp imply that ¢ (z)q = ¢(zq) = ¢(z) and q¥(z) = ¥(z).

It remains only to show the existence of 1 as above for M = B(H), N = B(H;,)®1p,,
and p = Pr. The unitary group U of B(H;) ® 1p, is a compact group with the unique,
normalized, left and right invariant Haar measure du. Then the left invariance of du
shows that the map ¢ : B(H) — B(H) defined by ¢ (z) = Jy vru* du, © € B(H),
is a conditional expectation of B(H) onto (B(H) ® 1g,)" = 1y, ® B(H,). Moreover,
Y(B(Hy) ® 1g,) C (B(H1) ® 1pg,) N (1, ® B(Hz)) = Cly and the right invariance of
du show that ¢(a ® 1p,) = tr(a)lgz = 1z, ®tr(a)ly, and so Y(a ®b) = 15, @ tr(a)b for
a € B(Hy) and b € B(Hs), where tr is the unique normalized trace of B(H;). Hence, if we
denote by tr®idp(g,) : B(H) = B(H,)®B(H,) — B(H>) the right slice map Do ai®b;

> i tr(aq)bi, a; € B(Hy), by € B(Hs), then ¢(z) = 1y, ® (tr ® idp,))(z), v € B(H).
Since tr is faithful, ¢ is also faithful. If 2 € (PL(B(Hy)®1y,)PL) NPLB(H)Py, then for
allu € U, zPruPru* = PruPrxu*, and xuPru* = Pruxu® since xPr, = Prx = x. Hence
integration over U shows 29 (Pr) = Ppi(x), and (a) above is true. By (i), 1x, ® Pz
is the smallest projection in 1g, ® B(Hs) majorizing Py, and by the previous paragraph
it is the support projection of ¢(Pr). Finally, since 1y, ® B(Hz) is finite-dimensional,
Y(Pr) is invertible in 1, ® Pz B(H2) Pz, showing (b).

(iii) It suffices to show that if Q € (Pp(B(H,)®1y,)PL) NPLB(H)Py is a projection,
then @ = 0 or Pr. By (ii), @ = (1g, ® q)Pr, for some projection ¢ € B(Hs) such that
1y, ® q € {PL}/. Since L = {C}J‘ and ]‘I;' — P = P(C(, (1H1 (%9 Q)PCC = P(CC(lHl ® q)
equals 0 or Pgc. Hence Poe < 1y, ® (1g, —q) or Pee < 1g, ® g. Since [[C¢]] = H> as
noted before, (i) implies 1y, @ 1gy, < 1g, @ 1y, —¢q) or 1y, ® 1y, < 1y, ® ¢. Therefore

g=0orlg,, @ =0 or Pr, as desired. O
The following is a key to the classification of { M2 ¢}.

THEOREM 4.4. Fori = 1,2 let ¢; € Zn, 4, Li == {G}*, and regard Mg S =
¢¢,(B(H1)) = Pr,(B(H1) ® 1g,)Pr, C B(H; @ Hy).

(i) A linear map x : M3 — MY 2 is a surjective unital complete isometry if and
only if k(Pr,(x ® 1g,)Pr,) = Pr,(uzu* ® 1g,)Pr, for all x € B(Hy), where u € B(Hy)
is a unitary such that (u ® v){1 = (a for some unitary v € B(Hs).

(ii) We have M2 = M3 if and only if there exist unitaries u € B(Hy) and
v € B(Hs) such that (u @ v)(1 = (s.

For the proof we need the following two lemmas, which take care of v and v as in
the above statement, respectively.
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LEMMA 4.5.  Fori=1,2 let (; € Z,, 4, Li :={¢;}* and let U € B(H; ® H») be a
unitary such that Uy = (3. If

UPr,(B(H1) ® 1p,) P, U* = P, (B(H1) ® 1,)Pr,, (4.7)
then there exists a unitary u € B(Hy) such that
UPLl({E X 1H2)PL1U* = PLQ(’LML'U* X 1H2)PL2> Vo € B(Hl) (48)

Proor. The following map ¢ : B(Hy) — B(H;) is a surjective unital linear
isometry:

T = (PC1($) = PL1<3j® 1H2)PL1 = UPLl(w ® 1H2>PL1U*
= ()OEQI(UPLI (l‘ ® 1H2)PL1 U*) =: ¢($)

Indeed, ¢¢, : B(H1) — ¢, (B(Hy)) = Pr,(B(H1) ® 1g,)Pr, (i = 1,2) are lin-
ear isometries, and by (4.7), UPy,(z ® 1g,)Pr, U* € UPy, (B(H1) ® 1p,)PL, U* =
PL2(B(H1) & 1H2)PL2 = QOCQ(B(Hl)) Then

UPLI (3j ® 1H2)PL1 U*= Peo (1/J($)) = PLz (1/}(37) ® 1H2>PL27 Vo € B(Hl) (49)

As used in the proof of Proposition 4.1, Kadison’s result [4] shows that the unital linear
isometry 1 is of the following form: for some unitary u in B(Hy), (i) ¥(x) = uzu* for
all z € B(Hy) or (ii) ¢(x) = ulzu* for all x € B(Hy).

We show that the case (ii) does not occur. Indeed, if (ii) holds, then (4.9) implies

(u* ® 1H2)UPL1 (.1‘ ® 1H2)PL1 U*(u ® 1H2)
=(u" @ 1) Pry(u® 1, ) (" @ 1, ) (0" @ 1ar, ) Pry (u ® 1)
:P(u*®1H2)L2 (tx ® 1H2)P(u*®1H2)L2 = Po(tx ® 1H2)P0

for all * € B(H1), where Py := P(yg1,,)L,- Since the map x (v* @ 1g,)UPL, (2 ®
1p,)Pr,U*(u ® 1g,) on B(H;) is completely positive, so is the map 7 : z — Py(tz ®
1m,)Po on B(H;). But the latter is not 2-positive. To see this we use a well-known
argument showing that the transpose is not 2-positive (see [1]). Let {p := (u*® 1g,)(2 =
Yrie® 771(0) € fI where 17(0) € Hs and {e;}1<i<n is an orthonormal basis for H;.

Since ||¢o|l = [|&2]| = 1, by renumberlng if necessary we may assume that 77 74 0. Let
ey = 0”7 'ni” € Hy so that ni” = [|[n{” |} and ||} ]| =1, and let

(=XM(E1®e)) +e3®el, (g:=Xa(e1®e]) —e2®el,

where )\1, X2 € C are specified later (note that n > 3). Since (¢}, Co) = A|ni” | +

(5, 15”), (Gs o) = Aallmt” || = (et mi”), we may take A, Az so that (¢f, Go) = (G o =
0 and hence so that ¢}, ¢4 € {(o}t = (u* @ 1p,){G}t = (u* @ 1y,)Le P,H.
If 211 1= eaq, T12 = ea3, Ta1 = €32, Taz = €33 € B(Hp), where e;; := , then
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[zij]1<i, j<2 € B(H1) ® My is positive, since x/2 is a projection, but 7 ({mu x12]> =

T21 T2
Py 0 tr ® 1g, tri ® 1, | [Po O
0 Py |"201 ® 1, fxoo @ 1p,| [ 0 Py

Py 0] ["x11 @ 1p, fz12 @ 1m, | [Po 0] [¢] G
0 Py ["wo1 @1p, twoe ®@1p,| |0 Po) [G5]7 |&
NERreRnN
€23 @ 1, e33 @ 1w, | (5] |5

_ <[—53®5’1} 7 [A1(51®sg)+sg®a’1]> Y

g2 ®@¢) Ao(e1 ®e)) —e2®e]

] is not positive, since Py¢; = {1, Po¢s = (b,

Hence (i) holds, and substitution of (i) for (4.9) shows (4.8). O

LEMMA 4.6. Let (1 € Z,, 4 and Ly = {¢1 3. If there ewists a unitary Uy €
B(H:1 ® Hs) such that (o = U1(1 € Z,, ¢ and

PL1 (1’ & 1H2)PL1 = PLlUl*(IE & 1H2)U1PL1, Va € B(Hl), (410)
then there exist a unitary v € B(Hz) and Ao € C such that

U1=1H1®’U—|—)\QCQCT, |1—)\0|=1. (411)

PrOOF. We use the technique in the proof of Lemma 4.3 (ii) suggested by the
referee. We have (4.10) <=

U1PL1($®1H2)PL1 :PL2($®1H2)U1PL1, V.’EEB(Hl) (412)

(since (]1PLIUYik = PU1L1 = PLQ) <~ U1PL1’U,PLIU* = PLzuU1PL1u*7 Yu € u7 the
unitary group of B(H;) ® 1g,, which implies as in the proof of Lemma 4.3 (ii) that
U1PL1(1H1 ® (tr ® idB(Hz))(‘PLl)) = PL2(1H1 X (tr X idB(HQ))(Ul-PLl)) and the support
projection of (tr ® idp(m,))(Pr,) equals Pyz,). Here Pz, = 1m,, since Pr, < 1g, ®
Py, by Lemma 4.3 (i) and so ng — 1 = dimH —1= rank Pr, < n-rank Py, < ng
and n > ¢ > 3 imply rank Pyz,j) = ¢ = dim Hy. Hence (tr ® idg(g,))(Pr,) is invertible
in B(Hyz), and if we set v := (tr @ id () (U1 Pr, ) (tr @ id pa,)) (Pr,) ™' € B(Hz), then

UrPr, = Pr,(1n, ®v). (4.13)

By substituting (4.13) for (4.12) it follows that Pr,(B(H1)®1g,)Pee,(1g, ®v)Pr, = {0}.
Then we have Pee, (1, @) P, =0, s0 (1, ®v)Pr, = Pr,(1u, ®v)Py,, and since (4.13)
implies Pr,(1g, ® v)Pr, = Pr,(1y, ® v), it follows that

(g, ®v)Pr, = Pr,(1g, ®v). (4.14)

Indeed, otherwise Pec, (15, ® v)Pp, H = C(z, and
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{0} = Pr,(B(H1) ® 1u,) Pec, (L, ® v)Pp, H = Pr,(B(Hy) @ 111,)(CG2)
= Pp,(H1 ® [[C(]]) = PrL,(H1 ® Hz) = Ly

by (4.4) and the fact that {; € Z,, 4, a contradiction.
Now we show that v is a unitary in B(Hsz). Indeed, by (4.13) and (4.14), U1 P, =
(1, ® v)Pr,, and by substituting this for (4.10) it follows that

{O} = PLl(lHl ® (1H2 - ’U*U))(B(Hl) & 1H2)PL17
and by (4.4) and the fact that [[L1]] = Hy shown above,

{0} = Pr, (1, ® (1a, —v™v))(H1 @ [[L4]])
= PL1 (Hl ® (1H2 — U*’U)HQ).

Hence H,®(1g, —v*v)Hy C L{ = C(;. But, since dim Hy = n > 3, (1g, —v*v)Hy = {0},
v*v = lg,. Since dim Hy < oo, it follows that v is a unitary.

We have Uy Pee, = (2(; and Pee, (1g, ® v) = (2(5 for some (3 € H, since Uit = (2
and Pee,(1g, ® v)H C C(y, and

U, = U1PL1 + U1P(C(1 = PL2(1H1 ® ’U) + U1P([j<1 (415)
=1p, ®v— Pee,(1y, ®v) + Ui Peg, = 1, @ v+ GG,

where (4 := (1 — (3 € H. Then ¢4 = Aoy for some )y € C, since Pr, Uy = Uy P, and
PL2(1H1 ®7)) = (1H1 ®’U)PL1 imply that by (415), CQCZ = PCC2<2<Z = JD(CC2 (U1_1H1 ®’U) =
(U1 —1H,®v)Pee, and (2 = (2 Pre, . Hence the first equality in (4.11) follows. Finally,
since (1g, ®v)C1 = U1(1—X02(i ¢ = (1—=X0)C2, [1=Xo| = [[(1=X0)C2|| = [[(1a, ®@v)C1]| =
¢l =1. O

PROOF OF THEOREM 4.4. (i) («<): Suppose that there exist unitaries u € B(H;)
and v € B(H3) such that (u® v)(; = (s and let U := u® v € B(H; ® Hz). Then U is
a unitary and UPy, = Pr,U, since U(; = (o implies that UL, = U{(;}* = {UG}H =
{¢2}*+ = Ly and UPL,U* = Py, = Pp,. Hence, for all z € B(H;),

UPLI(SU 024 1H2)PL1U* = PLQU(LB ® 1H2)U*PL2 = PLQ(USU’LL* X 1H2)PL2a
and
UMSSU* =UPL, (B(H,) ® 1y,)Pp,U* = P, (B(H,) ® 1p,)Pr, = M% ¢,

So the map Pr,(x ® 1g,)Pr, — Pr,(uzu* ® 1py,)Pr,, * € B(H;), is a unital complete
isometry of M% St onto MJ <2,

(=): If there exists a surjective unital complete isometry s : M2 — M3 <2 then
k extends to a surjective unital complete isometry & : Pr, B(Hy ® Hy)Pr, = B(Ly) —
Pr,B(H,® H;3)Pr, = B(Ls), since C*(MZ %) = P, B(H, ® Hy) Pr,, by Theorem 4.2 and
the C*-envelopes are unique. Then there exists a surjective linear isometry Uy : L1 — Lo
such that &(z) = UpzUg for all 2 € P, B(H; ® Hy)Pr,. Since H=L; ® L} = L; ® C¢;
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(i =1, 2), we obtain a unitary U € B(H; ® Hy) such that U|Ly = Uy and U(; = (o.
Then, since #(MJ2 ) = k(M2 ) = M2 and Uy = U|Ly, it follows that

UPp,(B(H1) ® 1p,) P, U" = Pr,(B(H1) ® 1p,) Pr,.

Now Lemma 4.5 together with U{; = (s shows that there exists a unitary v € B(H;)
such that

UPL1(1'® 1H2)PL1U* = PLZ(UIU* X 1H2)PL27 Vx € B(Hl)

If we set Uy = (u* ® 1p,)U, then Pr,(u® lg,) = UPL, U*(u® 1g,) = UPr,U{, since
U(1 = (o implies that Pr, = UPr,U* as seen above. Substituting this for the above
equality we have the following:

PL1(1'® 1H2)PL1 = PLlUik({E® 1H2)U1PL1, Vx € B(Hl)

Since ¢ = UG € Z,,4, we have, in view of (4.1), (3 := U1t = (u* ® 1g,)UG =
(u* ®1g,)C2 € Zy, q. Hence Lemma 4.6 applies, and it follows that there exist a unitary
v € B(Hs) and A € C such that

Ui =1g, @v+ X3¢, 1= =1
Thus
U=u®lg)Ui=u®v+Auly,)GEE =u®v+ Ald.

Since U¢; = (2 and |1 — Xg| =1, we have (u®v)(1 = UG — MGl ¢ = (1 —Xo)Ca, ug =
(1 — Xo)"tu € B(H;) is a unitary, and (u; ® v)¢; = (2. Moreover, UP, = (u ® v)Py,,
since (2(i P, = (i (1 — Gi¢f) = 05 (u1 ® v)Pr, = Pr,(u1 ®v), since (u; ® v)¢1 = (2;
and for all x € B(Hy),
I{(PLl(iL' & 1H1)PL1) = I?L(PLl({E & 1H1)PL1) = UPLI(CU & ]-Hl)PLlU*
=(u®v)Pp,(x®1pg, )P, (u®v)*
= (u1 ® V)P, (x ® 1g,)Pr, (u1 ® v)*
= Pr,(u1 @v)(x @ 1y, )(u] @ v*)Pr,
= PL2 (ulxu*{ X 1H2)PL2~

(ii) This is obvious from the above argument in (i). O
To state the following theorem we need some notation and a lemma. Write
Mo, q = {MP 2 (€ Zn,g};

define an equivalence relation ~ on M, , by writing M% % ~ M2 if and only if
Mg ¢ =2 M3 ¢2; and denote by M, ,/ ~ the set of all equivalence classes. Consider the
following set:
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q

Agi={A=(A1, ., A) ERT: Ay > > 2,>0, Y A7 =1} (4.16)
=1

Since ¢ = dim Hy < dim H; = n, we may assume Hs C Hy, and we identify B(Hs) =
Py,B(H1)Py, C B(Hi, Hy) = Py,B(H1) C B(H;). Take a fixed orthonormal basis
{e%} 1 <i<y for Hy so that Hy = 7 Ce? and {5?}1991 is an orthonormal basis for Hs.
For each A = (\;) € A, write

q
=S NV € Zug, Lyi={G)' C HioH,
=1
M@ = M@ = P, (B(Hy) ® 1u,)Pr, C P, B(H) @ H2)Pr, .

Hence we obtain the following subsets of Z,, , and M,, , parametrized by A,:

Z%q ={0 AeEAL,
M%,q = {Mg’)‘ A e A}
Denote by Uy = U(H4), Uy = U(Hz) the unitary groups of B(Hy), B(Ha2), respectively,
and define an action of the product group U; x Uy on Hy ® Hs by
(u, V)¢ = (u®v)¢, (u,v) €U x Uz, ¢ € H ®Hs.

LeEMMA 4.7. (i) Each ¢ in Hy ® Hy is written in the form
a
(=D \ei®e, (4.17)
i=1

where \; € R (1 << q), AL > Ay > > /\q >0, and {8;}1§i§q C Hy and {61‘}1Si§q C
Hs are orthonormal.

(i) The vector ¢ in (i) has another expression ¢ = > 1, wid, ® §; for {u;}, {0}
and {6;} as above if and only if \; = u; (1 < i < q) and there exist unitary matrices
[az(;?)}i’jejk (1 <k <s) such that

G=>ale 6= e (e, 1<k<s), (4.18)

JEIx JjE)
where I, (1 < k < 8) are the partition of {1, 2, ..., ¢'} that we define by taking ¢’ < q
as the largest i with \; > 0 and by setting {\1, A2, ..., Ag} ={M, ..., AL} (A > >

No>0)and Iy ={1€{1,2,...,¢}: i= A} 1 <k<s).

Proor. (i) For the linear isomorphism p : H; ® Hy — B(H,, Hy) defined in
Section 2 consider the polar decomposition pf = ug|pf| of pf € B(Hz, Hy), where |pf| €
B(Hs) and ug € B(Hs, H;) is the unique partial isometry such that ufuoHy = |pZ|H2.
The spectral decomposition of |pf] is of the form [pf| = 71| Nicief, where Ay > -+ >

Ag > 0 and {e;}1<i<q is an orthonormal basis for Hy. Let ¢’ < ¢ be such that Ay > 0
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and A\; = 0 for ¢ > ¢’. Then ulugHz = ?;1 Cei, {uoei}1<i<q is an orthonormal
set in Hp, and we may take an orthonormal set {}}1<;<, in Hy so that upe; = (})*
(1<i<¢q),=0(>¢q) Itfollows that ¢ = Y 7, Niei ® ;. Indeed, let ¢’ =

i1 gl @ g5 Then plej = uolpfle; = uo(Njez) = Nj(eh)* (1 < j < q); by (2.4),
ples = (Q0io Nilel) e )e; = Aj(e))* (1 < j < q); and since p is injective, ¢ = ('.
(ii) For simplicity we assume that A\, > 0 and hence that ¢’ = ¢. The case A\, =0 is
treated similarly.
(=): Suppose ¢ = Y0 Niel ®e&; = > ;6 ® §;. The argument in (i) shows
that 30, Nief @ &i = 30, wid ® 6 <= (a) [pf] = I Nisie® = 20, pididi”
(by (2.4)) and (b) uge; = ", ugd; = 6.° (1 < i < q). Then (a) holds <= \; = u;

(1 <4< gq) and Zielk el ®e; = Zielk 0l ®d; (1 < k < s). The latter condition

implies that &; = > .y, agf)aj for some agf) €C (i €Iy, 1 <k <s). By (b),d" =
k k) s k) s\ % .
upd; = ZjGIk az(j)UOEj = Zjelk az('j)E;' = (Zje[k agj)fé) , and & = Zjelk agj)g} (i €

I, 1 < k < 's). Finally, since {J;}ics, and {e;}icr, are both orthonormal, the matrices
[ozl(f)}mejk are unitary.
The implication (<) follows from a direct computation. O

THEOREM 4.8.  We have MY, , = {M2*: A€ Ay} C My g = {MZC: (€ Zy ¢}
for each ¢ € Z,, , there exists a unique X\ € Ay so that M3 ¢ = M3 ; and if A1, A2 € A,
and A\ # Ag, then M@* %2 M%*2. Hence we can identify the set M,, 4/ ~ of all
equivalence classes with Ag.

PROOF. In view of (4.1), the set Z,, , is stable under the action of U; x Uy defined
above, and so we can consider the set Z, ,/ ~ consisting of all orbits [¢] := {(u, v)( :
(u, v) € Uy x Uz} of elements ¢ of Z,, ,. Then Theorem 4.4(ii) shows that Mg 1 =2 Mg ¢2
if and only if [¢(1] = [¢2] and hence that the map M,, ; — Zn, 4/ ~, M2 ¢ — [(], induces
a bijection between M,, ./~ and Z,, ,/~.

Now we define a map o : Z,, 4/~ — A4 by using (4.17) in Lemma 4.7. Let ¢ € Z,, ,.
Then A := (A1, ..., Ag) € Ag for Ay > -+ > Ay >0 in (4.17), since rank [pf| = rank pf =
rank p; = ¢, so Ay > 0, and ||¢|| = 1. Then define ¢([¢]) := A. That o is a well-
defined bijection is almost obvious. Indeed, for ¢, (' € Z,, 4, ¢ = ;1:1 A€l ® €; and
¢ =31, No®6; for some A = (\;) € A, and orthonormal {£/}, {6/} C H; and
{ei}, {6;} C Hy if and only if there exists (u, v) € U; x Us such that ' = (u ® v)(, i.e.,
[€] = [¢]. This shows that o is a well-defined injection. Further, o([¢\]) = A for each
A € Ay, and o is a surjection. O

Let X be an operator system. We call a unital complete isometry of X onto itself
an automorphim of X, and denote by Aut X the group of all automorphisms of X. We
determine the automorphism group Aut MZ * of the operator system M2 *. Tt turns
out that Aut M2 * is rather different from Aut M,,, which is isomorphic to the quotient
group U(n)/T1,, where U(n) := {u € M,, : v*u = uu* = 1,} is the unitary group of
M, and T:={ueC: |u =1}

In order to describe Aut M%* we introduce some notation. For A = (A1, ..., A,) €
A, define a subgroup Uy of U(n) as follows. As in the statement of Lemma 4.7 (ii),
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let {Ai, ... A ={N, .., XN AN > >X)and I, ={i e {1,...,q} : \i =X}
(1 <k <s). Further,let Iy ={¢+1,...,n}(=0if n=q),

Ky:=)Y Cef, ..., Ko=) C&), Ko=) Ce,
i€l

i€l i€lp

sothat K1 @ @Ky =1 Ced=Hy CK1® - ®K,; DKo =Y, Ce? = Hy. Define
a subgroup Uy of U(n) = U(B(Hy)) by

Uy:=U(K1) @ & U(K;) ® U(Ko),

where U(K}) := U(B(K})) is the unitary group of B(K}) (0 < k < s) and when n = ¢
we regard the last summand U(Kj) as missing.

PROPOSITION 4.9.  For A € A, and Uy as above, every automorphism of M@ A =
Pr,(B(Hy) ® 1g,)Pr, is of the form P, (x ® 1g,)Pr, — Pr, (uzu* ® 1g,)Pr,, * €
B(Hy), for some u € Uy; two such automorphisms corresponding to u, u' € Uy coincide
if and only if u*u’ € T1,; and the automorphism group Aut M%* of M3 is isomorphic
to U)\/Tln.

PROOF. By Theorem 4.4 (i) an automorphism of M * is characterized as the map
Pr, (:L' & 1H2)PL,\ — Pr, (’LL:EU* ® 1H2)PLM x € B(Hl),

for some u € U(Hq) for which (x) there exists v € U(Hz) such that (u®v)(x = (). Since
¢, : B(Hy) = Pr,(B(H1) ® 1u,)Pr,, * — Pr, (v ® 1g,)Pr,, is a linear isometry, for
u, v’ € U(Hy) we have Pp, (uru* ® 1p,)Pr, = Pr, (v/zv/" ® 1y,) Py, for all z € B(H;)
if and only if uzu* = v'zu'* for all z € B(Hy), i.e., u*u’ € T1,.

Hence it remains only to show that for u € U(H;) we have (x) if and only if u € Uy.
In the notation Xy, I, etc. as above we have (y = Y7, Xi(e)®e) = D20 X, Yicp, (€7@
ef) and (u@v)Cx = Y op_q Ak Dosey, (uef @veld). If (u®w)Cx = (), then, by Lemma 4.7 (ii),

us? = ngk agj)&t?, ve? = Zjelk agj)s? (i € I, 1 <k < s) for some unitary matrices

[ag;c)]melk (1 <k <s). Hence uK, = K, (1 <k <), so uKy = Ky, too, and u € Uy.
Conversely, let u € Uy and so u =u1 @ -+ Bus Dug for up, e UKy) (k=1,...,s,0).
Define unitary matrices [Bi(j]?)]i,jelk (1 <k <s) by uged = djern ﬁff)gg (tely, 1<k<

s). Then [62”
by v =1v; @ -+ ® vs, where vy, € U(Ky) and vxe) = Zjelk ﬁgf)sg (e, 1<k<s) It
follows again from Lemma 4.7 (ii) that (u ® v){x = (. O

li. jer, (1 <k < 's) are also unitary, and a unitary v € U(Hz) is defined

5. Two questions.

Theorem 3.1 describes the isometric degree id(¢y,) of ¢y, in terms of [[L*]] C Hy and
I :=length L. That is, id(pL) = oo if and only if [[L]] S Ha, and if id(¢r) < oo and
so [[L*]] = Ho, then id(¢r) = [(I — 1)/2]. But our satisfactory computation of length L+
is essentially confined to the case dim L+ = 1 (Lemma 3.6). So it would be interesting
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to answer the following;:

QUESTION 1. Can we compute length M for any linear subspace M of Hy ® H,
effectively?

The following remark may be useful in treating the case dim M > 2. If we set
N :=py ={pc: ( € M} C B(H, Ha), then

length M = min{dim T : T C H; linear, lin NT = lin NH; },
and by the proof of Lemma 3.5 (iii) we have the estimate:

length M < min{lrilaéikrankai say, ..., ar € Nin{aq, ..., ax} =N,k=1,2,...}.

Indeed, if N = lin{aq, ..., ax} for some finite {a1, ..., ax} C N, then, by Lemma 3.5
(ii) there exists a linear subspace Ty of Hy with dim Ty = maxi<i<j rank a; =: r such that
a;Ty = a;H; for all i. Hence in NTy = a1 To+---+arTop = a1 H1+---+apH; =lin NH;,
and () length M < r. By varying the a;’s the inequality follows.

Equality in (x) holds provided that the a;’s (1 < i < k) satisfy further the condition
that the sum a1 H; + -+ + apH; is a direct sum. For, we have rank a;, = r for some
ig, and dima;, H; = r. If T is a linear subspace of H; with dim7T < 7 — 1, then
dima;, T < dim7T < r —1, and a;,T g a;, Hy. By the assumption on the a;’s it follows
that inNT = a1T + --- + aiT g a1H1 + -+ apHy = lin NHy. Thus this and the
argument in the preceding paragraph show that length M = r.

QUESTION 2. Given positive integers n, m with n > 3 and 1 < m < [(n —1)/2],
what is the least number p for which there exists ¢y, : M,, — M, with id(¢r) = m?

Theorem 3.2 shows that such a least number, pg, exists and pp < n(2m + 1) — 1.
Note also that if we can find one ¢, : M,, = My, with id(¢r,) = m, then, for each
p > po there exists ¢, : M,, — M, such that id(¢r) = m. Indeed, take Hilbert spaces
K, K» so that dim K; = pg, dim Ky =: ¢ < 00, and py < p < ppg. Then there is a linear
subspace L of K1 ® K5 so that dimL = p and K; ® g C L C K; ® K> for some unit
vector 19 € Ko. By Theorem 3.1(ii), the map « : M,, = B(K1) — B(K1) ® B(K») =
B(K1 X Kg) — PLB(Kl X KQ)PL = B(L) = Mp, = T®lg, — PL(QT ® 1K2)PL; is
a unital complete isometry. So it follows that x o ¢r, : M, — M,, — M, is a unital
completely positive map with id(k o ¢r,) = id(¢L,) = m.

The map ¢ : M, — M, is determined by Hilbert spaces H;, Hy and a linear
subspace L of H; ® Hs such that dim H; = n and dim L = p. As noted above, id(pr) < 0o
if and only if [[L1]] = Hs, and in this case, id(pz) = [(I — 1)/2] with | = length L.
Hence Question 2 is equivalent to the problem of minimizing dim L when we vary Ho
and L C H; ® Hy under the following condition:

-1
mZ[ZQ ] [L*]] = Hz, and I=lengthL*. ()

In the proof of Theorem 3.2 we obtained the value n(2m + 1) — 1 for p = dim L
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by taking M = C(, in Lemma 3.6(ii) as L*. But, even if we take M in Lemma 3.6(i)
as L+, we cannot reduce this number n(2m + 1) — 1. Indeed, in the notation there, we
have 1 < s < min{n, ¢}, length M = s, [[M]] = Hs, and dim M = s(q — s) + 1. If ()
holds for L+ = M, then m = [(s — 1)/2] implies s = 2m + 1 or 2m + 2, and dim L =
dim(H1® Hy) —dim M = ng—(s(¢—s)+1) = (n—s)g+s*—1. Sincen—s > 0 and s < g,
the minimum value of dim L when ¢ varies is (n —s)s+s>—1=ns—1>n(2m+1) — 1.
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