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Abstract. Let R be a Cohen—Macaulay local ring with a canonical mod-
ule. We consider Auslander’s (higher) delta invariants of powers of certain
ideals of R. Firstly, we shall provide some conditions for an ideal to be a
parameter ideal in terms of delta invariants. As an application of this result,
we give upper bounds for orders of Ulrich ideals of R when R has Gorenstein
punctured spectrum. Secondly, we extend the definition of indices to the ideal
case, and generalize the result of Avramov-Buchweitz—Iyengar—Miller on the
relationship between the index and regularity.

1. Introduction.

Let (R, m, k) be a Cohen—Macaulay local ring with a canonical module. The Aus-
lander d-invariant dr(M) for a finitely generated R-module M is defined to be the rank
of maximal free summand of the minimal Cohen-Macaulay approximation of M. For
an integer n > 0, the n-th §-invariant is defined by Auslander, Ding and Solberg [2] as
IR(M) = 0p(ULM), where Q%M denotes the n-th syzygy module of M in the minimal
free resolution.

On these invariants, combining the Auslander’s result (see [2, Corollary 5.7]) and
Yoshino’s one [13], we have the following theorem.

THEOREM 1.1 (Auslander, Yoshino). Let d > 0 be the Krull dimension of R.
Consider the following conditions.

(a) R is a regular local ring.
(b) There exists n > 0 such that §™(R/m) > 0.

(¢) There exist n >0 and l > 0 such that §"(R/m!) > 0.

Then, the implications (a) < (b) = (c) hold. The implication (c) = (a) holds if
depthgr,, (R) > d — 1.

Here we denote by gr;(R) the associated graded ring of R with respect to an ideal
I of R. In this paper, we characterize parameter ideals in terms of (higher) J-invariants
as follows.

THEOREM 1.2.  Let (R, m) be a Cohen—-Macaulay local ring with a canonical module
w, having infinite residue field k and Krull dimension d > 0. Let I be an m-primary ideal
of R such that I/I? is a free R/I-module. Consider the following conditions.
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(a) (R/I) > 0.
(b) I is a parameter ideal of R.

(¢) There exists n > 0 such that 6™ (R/I) > 0.

)
)
)
(d) There exist n > 0 and [ > 0 such that §"(R/I') > 0.

Then, the implications (a) = (b) < (c) = (d) hold. The implication (d) = (c) holds if
depthgr;(R) > d —1 and I'/I**! is a free R/I-module for any i > 0. The implication
(b) = (a) holds if I C tr(w).

Here tr(w) is the trace ideal of w. that is, the image of the natural homomorphism
w ®r Homp(w, R) — R mapping = ® f to f(z) for z € w and f € Homp(w, R). This
result recovers Theorem 1.1 by letting I = m.

On the other hand, Ding [4] studies the J-invariant of R/m' with [ > 1 and defines
the index index(R) of R to be the smallest integer [ such that §(R/m!) = 1. Extending
this, we define the index of an ideal.

DEFINITION 1.3. For an ideal I of R, we define the indez index(I) of I to be the
infimum of integers [ > 1 such that §g(R/I') = 1.

For example, we have index(m) = index(R).
Taking into account the argument of Ding [5] on indices of rings, Avramov,
Buchweitz, Iyengar and Miller [3, Lemma 1.5] showed the following equality.

THEOREM 1.4 (Avramov-Buchweitz—Iyengar—Miller).  Assume that R is a
Gorenstein local ring and gr,, (R) is Cohen—Macaulay. Then index(R) = reg(gr,, (R))+1.

The other main aim of this paper is to prove the following result.

THEOREM 1.5. Let R be a Cohen—Macaulay local ring having a canonical module
and Krull dimension d > 0, and I be an m-primary ideal of R such that gr;(R) is a
Cohen—Macaulay graded ring and I' /I is R/I-free for 1 <1 < indexI. Then we have
indexI > reg(gr;(R)) + 1. The equality holds if I C tr(w).

Note that this theorem recovers Theorem 1.4 by letting I = m.

There are some examples of ideals which satisfy the whole conditions in Theorem
1.2 and 1.5. One of them is the maximal ideal m in the case where gr,, (R) is Cohen—
Macaulay (for example, R is a hypersurface or a localization of a homogeneous graded
Cohen—Macaulay ring.)

Other interesting examples are Ulrich ideals. These ideals are defined in [6] and
many examples of Ulrich ideals are given in [6] and [7]. We shall show in Section 3 that
Ulrich ideals satisfy the assumptions of Theorems 1.2 and 1.5. We have an application
of Theorem 1.2 concerning Ulrich ideals as follows.

COROLLARY 1.6.  Let I be an Ulrich ideal of R that is not a parameter ideal. As-
sume that R is Gorenstein on the punctured spectrum. Then I ¢ m™3(E) - In particular,
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the supremum of set of integers n satisfying I C m™ for any Ulrich ideal I that is not a
parameter ideal is finite.

We prove this result in Section 3.

2. Proofs.

Throughout this section, let (R, m, k) be a Cohen-Macaulay local ring of dimension
d > 0 with a canonical module w, and assume that & is infinite. We recall some basic
properties of the Auslander d-invariant.

For a finitely generated R-module M, a short exact sequence

0-Y—=XLM-0 (2.0.1)

is called a Cohen-Macaulay approximation of M if X is a maximal Cohen-Macaulay
R-module and Y has finite injective dimension over R. We say that the sequence (2.0.1)
is minimal if each endomorphism ¢ of X with p o ¢ = p is an automorphism of X. It is
known (see [1], [8]) that a minimal Cohen—-Macaulay approximation of M exists and is
unique up to isomorphism.

If the sequence (2.0.1) is a minimal Cohen—Macaulay approximation of M, then
we define the (Auslander) d-invariant 6(M) of M as the maximal rank of a free direct
summand of X. We denote by 6™(M) the d-invariant of n-th syzygy Q"M of M in the
minimal free resolution for n > 0.

We prepare some basic properties of delta invariants in the next Lemma; see [10,
Corollary 11.28].

LEMMA 2.1.  Let M and N be finitely generated R-modules.
(1) If there exists a surjective homomorphism M — N, then §(M) > 6(N).
(2) The equality 6(M @& N) = 6(M) + §(N) holds true.

LEMMA 2.2. Let N be a maximal Cohen—Macaulay R-module. Then §'(N) = 0.
In particular, 6" (M) =0 for n > d+ 1 and any finitely generated R-module M.

PROOF. Suppose that §'(N) > 0. Then Q'N has a free direct summand. Let

™

o, T T
Q'N = X @ R. There is a short exact sequence 0 — X @ R o1, gem T, N 0.
According to [12, Lemma 3.1], there exist exact sequences

0—+R5S R - B0, (2.2.1

0— R - A®B— N —0 (2.2.2)

for some R-modules A, B. By the sequence (2.2.2), B is a maximal Cohen-Macaulay
R-module. In view of (2.2.1), B is a free R-module provided that B has finite projec-
tive dimension. Then, the sequence (2.2.1) splits and 7 has a left inverse map. This
contradicts that the map 7 is minimal. O
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We now remark on J-invariants under reduction by a regular element. The following
lemma is shown in [9, Corollary 2.5].

LEMMA 2.3.  Let M be a finitely generated R-module and x € m be a regular element
on M and R. If0 =Y — X — M — 0 is a minimal Cohen—Macaulay approximation
of M, then

0—-Y/2Y - X/2X - M/zM — 0

is a minimal Cohen—Macaulay approximation of M/xM over R/(x). In particular, it
holds that 5R(M) < 53/(1)(M/1’M)

In the proofs of our theorems, the following lemma plays a key role. We remark that
in the case I = m, similar statements are shown in [5] and [13].

LEMMA 2.4. Let [ >0 be an integer, I be an m-primary ideal of R and x € I\ I?
be an R-reqular element. Assume that I'/T*t! is a free R/I-module for any 1 < i <1
and the multiplication map x : I'=Y/I" — I'/I*TY is injective for any 1 < i < I, where
we set I° = R. Then the following hold.

1) oI = (x) NI for all 0 < i < 1.

2) I/ = =Yg I (el = + I'HY) for all1 <i <.

4

(1)

(2)

(3) I'/xIt = "1 /Ii @ I /zI*Y for all 1 <i <.

(4) (I' 4 (z))/xl' = R/T" ® I' JxI'™" for all1 <i < 1.
(5)

5) (I' + (z)) /(I + () 2 R/(I' + (x)) ® I* /I~ for all 1 <i < 1.

ProoFr. (1): We prove this by induction on 4. If ¢ = 0, there is nothing to prove.
Let i > 0. The injectivity of z : I*"1/I* — I'/I'T! shows that zI"~1 N I*t! = . By
the induction hypothesis, xI*~1 = (x) N I*. Thus it is seen that

el = (z)N T
=@)NI'NI™ = (z)n It
(2): As R/I is an Artinian ring, the injective map z : I*~1/I* — I /T**1 of free R/I-
modules is split injective. We can also see that the cokernel of this map is I*/(xI*~1 +

I'+1). Therefore we have an isomorphism I¢/I*t1 = [*=1 /10 @ [0 /(xI*1 + [PT1),
(3): We have the following natural commutative diagram with exact rows:

0—I""YI' = T/a]' ———I'/2]'" "' ——— 0

o |

0 Ii—l/[i x Ii/[i+1 Iz/(xll—l + Ii+1) 0
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We have already seen in (2) that the second row is a split exact sequence, and
thus the first row is also a split exact sequence. Therefore we have an isomorphism
VAVEY KE=1 Lyl KNG VP Lty

(4): The cokernel of the multiplication map = : R/I* — (I' + (z))/xI* is (I* +
(x))/(z) = I*/((z) N I*), which coincides with I'/zI*~! by (1). Consider the following
commutative diagram with exact rows:

0—I"YI' ———T'/a]' ———I' /2] ——0
Lk
0 R/I' —— (I' 4 (x)) /a1 AVET C 0

Here (1,2 are the natural inclusions. The first row is a split exact sequence as in (3).
Therefore the second row is also a split exact sequence and we have an isomorphism
(I' + (z))/z* = R/I' ® I'/xI'~ 1.

(5): The cokernel of the multiplication map z : R/ (I + (z)) — (I* + (z))/z(I* + (x))
is (I' + (v))/(x) = I'/xI'"~1. We can get the following commutative diagram with exact
rows:

0 R/I! = (I' + (z)) /2! —— ' /2"t ——=0

SR

0 —— R/ + (2) = (I' + (@) /(I + (2)) —= I'/al"~! —0

Here 71, o are the natural surjections. Then we can prove (5) in a manner similar to
(4). O

In the case that the dimension d is at most 1, the d-invariants mostly vanish.

LEMMA 2.5. Assume d <1 and I is an m-primary ideal of R. If §(I) > 0, then I
is a parameter ideal of R.

PROOF. Since d < 1, the m-primary ideal I is a maximal Cohen—Macaulay R-
module. Therefore the condition §(I) > 0 provides that I has a free direct summand.
We have I = J + () and J N (z) = 0 for some ideal J and R-regular element x € I. Let
y € J. Then zy € JN (x) = 0. Since z is R-regular, the equality zy = 0 implies y = 0.
This shows that J =0 and I = (z). O

Now we can prove Theorem 1.2.

PROOF OF THEOREM 1.2. (b) = (c): If I is a parameter ideal, then Q4(R/I) = R
and hence 6%(R/I) =1 > 0.

(a), (¢) = (b): Assume that §(R/I) > 0. Then the inequality §(I) > 0 also holds
because I/I? is a free R/I-module and thus there is a surjective homomorphism I — R/1I.
Therefore we only need to prove the implication (¢) = (b) in the case n > 0. We show
the implication by induction on the dimension d.
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If d = 1, then n = 1 by Lemma 2.2. Using Lemma 2.5, it follows that I is a
parameter ideal.

Now let d > 1. Take x € I\ mI to be an R-regular element. Then the image of x in
the free R/I-module I/I? forms a part of a free basis over R/I. This provides that the
map = : R/I — I/I? is injective. We see from Lemma 2.3 that

Oy L/ 2T) = O (U gy (/1) (2.5.1)
= 0ry@) (% '(I) @r R/ (2))
> Gp(Qp ) = a%(R/I) > 0.

Applying Lemma 2.4 (3) to ¢« = 1, we have an isomorphism I/xI = R/I & I/(z) and
hence we obtain an equality

5?%7(11)(1/331) - 5?%7(2)(1%/]) + 5?37(116) (I/(x)).

It follows from (2.5.1) that 51';7(130)(}{/[) > 0 or 6%7(196)(1/(:10)) > 0. Note that the ideal
I:=1/(x) of R := R/(z) satisfies the same condition as (c), that is, the module 7/72
is free over R/I = R/I, because 7/72 = I/((x) + I?) is a direct summand of I/I? by
Lemma 2.4 (2). By the induction hypothesis, the ideal I is a parameter ideal of R. Then
we see that [ is also a parameter ideal of R.

(¢) = (d): This implication is trivial.

Next we prove by induction on d the implication (d) = (b) when depth gr;(R) > d—1
and I'/I'*! is a free R/I-module for any i > 0. If d = 1, then §(I') > 0 by Lemma 2.2.
By Lemma 2.5, it follows that I' is a parameter ideal. Set (y) := I'. Taking a minimal
reduction (t) of I, we have I™1 = tI™ for any m > 0. Setting m = pl, we obtain that
I =yPl =™t =¢]™ = (tyP). This shows that I is a parameter ideal.

Assume d > 1. Since k is infinite, there is an element € I\ I? such that the
initial form x* € G is a non-zerodivisor of G. The G-regularity of z* yields that the
map z : I*71/I* — I/t is injective for every i > 1. We see from Lemma 2.3 that
5%7(190) (IY/2I') > 6%(R/I') > 0 in the same way as (2.5.1). Applying Lemma 2.4 (3), we
get an isomorphism I'/zI' = ['=1/I' @ I'/xI'~! and then we see that

-1 l 1 -1 -1 /7l -1 1 1—1

Since I'"1/I' is a free R/I-module, we have (5%7(11,)(1%/]) > 0 or 5%7(11)(Il/xll’l) > 0.
In the case that 627(136)(]%/[) > 0, we already showed that [ is a parameter ideal. So

we may assume that 5?%7(195) (I'JxI'"1) > 0. The equality 2I'~! = I' N (x) in Lemma 2.4
(1) shows that the image I' of I' in R/(x) coinsides with I'JxI'='. Thus it holds that

6%7(1@ (Tl) = 5;:7(1@ (I') > 0. We also note that Tl/fﬂ_1 is free over R/I by Lemma 2.4
(3). By the induction hypothesis, I is a parameter ideal of R/(x). This implies that I is
also a parameter ideal of R.

Finally, the implication (b) = (a) follows from the proof of [10, Theorem 11.42]. O

Next, to prove Theorem 1.5, we start by recalling the definition of regularity; see
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[11, Definition 3].

DEFINITION 2.6. Let A be a positively graded homogeneous ring and M be a
finitely generated graded A-module. Then the (Castelnuovo-Mumford) regularity of M
is defined by reg 4 (M) = sup{i + j | Hf4+(M)j # 0}.

Here we state some properties of regularity.
REMARK 2.7. Let A and M be the same as in the definition above.

(1) Let a € A be a homogeneous M-regular element of degree 1. Then we have
reg 4 /(q)(M/aM) = reg,(M).

(2) If Ais an artinian ring, then reg(M) = max{p | M,, # 0}.
Now let us state the proof of Theorem 1.5.

PROOF OF THEOREM 1.5. Since k is infinite, there exists a regular sequence
Z1,...,2q of R in I such that the sequence of initial forms =7, ..., ) makes a homoge-
neous system of parameters of gr;(R). Then the equality gr;(R)/(z3,...,z}) = grp (R)
holds, where R’ = R/(x1,...,2q4) and I' = I/(z1,...,24). It holds that

reg(gr;(R)) = reg(grp (R'))
= max{p | gr;,(R'), # 0}
=max{p | gr;(R)p Z (21,...,23)}
=max{p | I” ¢ (x1,...,24)}

To show the inequality index(I) > reg(gr;(R)) + 1, it is enough to check that I? C
(x1,...,2q) if p = index(I). We prove this by induction on d.

Let R be the quotient ring R/(x1) and I be the ideal I/(x1) of R. Now put p =
index(I) and we have dr(R/IP) > 0 by definition. Since there is a surjection from
J = I? 4+ (z) to R/IP by Lemma 2.4 (4), dr(J) is greater than 0 . Lemma 2.3 yields
that 65(J/x1J) > dr(J) > 0. Using Lemma 2.4 (5), we obtain an isomorphism J/xJ =
R/J & IP /x1IP~*, and hence 65(J/x1.J) = 65(R/J) + 05(IP /x1 1P~ ). Therefore we see
that 65(R/J) > 0 or 65(IP /z11P~") > 0. Now assume that d = 1. If 65(I7 /z11P~1) > 0,
then IP/z;IP~! = R since I?/x1IP~t = IP/(z1) N IP is an ideal of the Artinian ring
R and we apply Lemma 2.5. Therefore I”? = R and this is a contradiction. So we get
67(R/J) > 0. In this case, R/J must have an R-free summand. This shows that J = (1)
and I? C (z1).

Next we assume that d > 1. By Theorem 1.2, 65(I?/z1I7~') = 0. So we have
d7(R/J) > 0. Then R/J = R/(I” + (z1)) = R/T" hold. By the induction hypothesis,
1" C (z1,29,...,24)/(x1). Hence we get IP C (z1,...,24).

It remains to show that index(I) = reg(gr;(R)) + 1 if I C tr(w). We only need
to prove that I? C (x1,...,24) implies §(R/I?) > 0. This immediately follows from
the inequalities §(R/I?) > §(R/(z1,...,24)) and §(R/(x1,...,24)) > 0 by applying
Theorem 1.2 (b)= (a) to the ideal (z1,...,zq). O
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3. Examples.

In this section, (R, m, k), and d are the same as in the previous section. Let I be an
m-primary ideal of R. To begin with, let us recall the definition of Ulrich ideals.

DEFINITION 3.1.  We say that [ is an Ulrich ideal of R if it satisfies the following.
(1) gr;(R) is a Cohen—Macaulay ring with a(gr;(R)) <1 —d.
(2) I/I?is a free R/I-module.

Here we denote by a(gr;(R)) the a-invariant of a(gr;(R)). Since k is infinite, the
condition (1) of Definition 3.1 is equivalent to saying that I? = QI for some minimal
reduction @ of I.

Next, we prove that Ulrich ideals satisfies the assumption of Theorem 1.2 and 1.5.

PROPOSITION 3.2.  Let I be an Ulrich ideal of R. Then I'/I'*! is a free R/I-module
foranyl > 1.

PROOF. By definition, I/I? is free over R/I. Take a minimal reduction @ of I.
Consider the canonical exact sequence

0-1Q' - Q1 /Q' - Q1 /I - 0
of R/Q-modules. Then Q'~1/Q' is a free R/@Q-module and

QNI = QIQ = R/T 9y Q7/Q

is a free R/I-module. Therefore
I'/Q" = Qrio((R/D)®™) = Qpryo(R/1)®™ = (1/Q)*™

for some m. Since 1/Q is free over R/I, I'/Q" is also a free R/I-module. We now look
at the canonical exact sequence 0 — Q'/I'*t — I/ — 1'/Q' — 0 of R/I-modules.
Then as we already saw, I'/Q' and Q'/I'T! are both free over R/I. Thus the sequence
is split exact and I'/I'*! is a free R/I-module. O

Now we give the proof of Corollary 1.6.

PROOF OF COROLLARY 1.6. It follows from [4, Theorem 1.1] that index(R) is
finite number. Since I is not a parameter ideal, we have 6(R/I) = 0 by Theorem 1.2. If
I ¢ mindex(R) then we have a surjective homomorphism R/I — R/mindex(R) and thus
S(R/I) > 6(R/mindex(F)) > 0. This is a contradiction. O

To end this section, we give an example of an ideal showing that the condition I/I>
is free over R/I does not imply that I'/I'*1 is free over R/I for any [ > 1.

EXAMPLE 3.3. Let S = k[[z, y]] be the formal power series ring in two variables, n
be the maximal ideal of S, L = (2*)S, J = (22,4)S, R = S/L be the quotient ring of S
by L and I be the ideal J/L of R. Then I/I? is free over R/I but I?/I3 is not so.
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PROOF. We note that .J is a parameter ideal of S and therefore J!/.J!*1 is free over
S/J for any [ > 1. Since I? = (J?+L)/L = J?/L, we have I /1> = (J/L)/(J?/L) = J/J?
which is free over S/J =2 R/I. On the other hand, we have [r(I?/I3) = l5(J?/(J3+L)) =
4, lgr(R/I) = 15(S/J) = 2 and ur(I?) = 3, here we denote by l4(M) the length of A-
module M for a commutative ring A and by p4 (M) the number of minimal generator of
M. Thus Ig(I?/I3) # ur(I?)lr(R/I). This shows that I?/I? is not free over R/I. [
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