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Abstract. For a metric measure space, we consider the set of distri-
butions of 1-Lipschitz functions, which is called the 1-measurement. On the
1-measurement, we have the Lipschitz order relation introduced by M. Gro-

mov. The aim of this paper is to study the maximum and maximal elements
of the 1-measurement of a metric measure space with respect to the Lipschitz
order. We present a necessary condition of a metric measure space for the

existence of the maximum of the 1-measurement. We also consider a metric
measure space that has the maximum of its 1-measurement.

1. Introduction.

In this paper, we study the maximum and the maximal elements of the 1-

measurement of a metric measure space. Based on the measure concentration phenome-

non, M. Gromov introduced various concepts and invariants in the metric measure space

framework ([3]). Observable diameter is one of the most important invariants defined by

him. It represents how much the measure of a metric measure space concentrates and

it is defined by the 1-measurement. The 1-measurement of a metric measure space X is

defined as

M(X; 1) := { f∗mX | f : X → R : 1-Lipschitz function },

where a 1-Lipschitz function is a Lipschitz continuous function with its Lipschitz constant

less than or equal to one. The 1-measurement has a natural order relation called the

Lipschitz order (Definition 2.4 and Remark 2.6).

From now on, we call a metric measure space an mm-space in short. We assume any

mm-space X is equipped with a complete separable metric dX and a Borel probability

measure mX . We additionally assume X = suppmX unless otherwise stated, where

suppmX is the support of mX .

We firstly treat the n-dimensional unit sphere Sn(1) centered at the origin in Rn+1

as an mm-space. A compact Riemannian manifold is considered as an mm-space with

the Riemannian distance function and the normalized volume measure.

Theorem 1.1 (Gromov [2, Section 9]). The push-forward ξ∗mSn(1) of the mea-

sure mSn(1) by the distance function ξ from one point in Sn(1) is the maximum of

M(Sn(1); 1).
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M. Gromov proved this theorem using convexly derived measures but we do not use

it in this paper and we give an alternative proof using Lévy’s isoperimetric inequality

(Theorem 2.11). He also stated that the isoperimetric inequality of Sn(1) yields the

existence of the maximum of M(Sn(1); 1) without proof. We give a detailed proof of

Theorem 1.1 in Section 3.1. As a corollary of Theorem 1.1, we see the normal law à la

Lévy (Corollary 3.6). Theorem 1.1 can be thought as a finite-dimensional version of the

normal law à la Lévy.

We obtain the following result for a general mm-space. Denote the diameter of X

by diamX.

Theorem 1.2. Let (X, dX ,mX) be an mm-space. Any measure µ ∈ M(X; 1) satis-

fying diam suppµ = diamX <∞ is a maximal element of the 1-measurement M(X; 1).

Theorem 1.2 is simple but powerful to find a maximal element of the 1-measurement

M(X; 1). As a corollary of Theorem 1.2, we have the following.

Corollary 1.3. Let an mm-space X satisfy diamX < ∞ and a point x0 ∈ X

satisfy supx∈X dX(x, x0) = diamX. Then, the push-forward ξ∗mX of mX by the distance

function ξ from the point x0 is a maximal element of the 1-measurement M(X; 1). In

particular, if the maximum of the 1-measurement M(X; 1) exists, then it is ξ∗mX .

In the case where two points x0, x1 ∈ X satisfy supx∈X dX(x, xi) = diamX <

∞, i = 0, 1, each push-forward (ξi)∗mX of mX by the distance function ξi from the

point xi is a maximal element of the 1-measurement M(X; 1). Therefore, if (ξ0)∗mX

and (ξ1)∗mX are not isomorphic to each other, then the 1-measurement M(X; 1) has

no maximum because it has two different maximal elements. On the other hand, the

push-forward by the distance function from one point does not depend on how to pick

the point in a homogeneous space such as the flat torus Tn (n ≥ 2) or the projective space

RPn (n ≥ 2). However, M(Tn; 1) and M(RPn; 1) both have no maximum because of

one of main theorems of this paper stated as follows.

Theorem 1.4. Assume that the 1-measurement M(X; 1) has its maximum. Then,

for any two points x, y ∈ X with dX(x, y) = diamX <∞, we have

dX(x, z) + dX(z, y) = diamX for any point z ∈ X.

We prove Theorem 1.4 in Section 4.2. Theorem 1.4 is widely applicable not only for

Riemannian manifolds but also for discrete spaces.

In the case whereX is a compact Riemannian homogeneous space, by using Theorem

1.4, we see that the cut locus of every point consists of a single point if M(X; 1) has

its maximum. Such a Riemannian manifold is called a Wiedersehen manifold and is

known to be isometric to a round sphere Sn(r) of some radius r > 0 ([6]). Therefore,

the following corollary follows.

Corollary 1.5. Let X be a compact Riemannian homogeneous space. Then, the

1-measurement M(X; 1) has its maximum if and only if X is isometric to a round sphere

Sn(r), r > 0.
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2. Preliminaries.

In this section, we enumerate some basics of mm-space and prepare for describing

the maximum and maximal elements of the 1-measurement. We refer to [3], [5] for more

details about this section.

2.1. Some basics of mm-space.

Definition 2.1 (mm-space). Let (X, dX) be a complete separable metric space

with a Borel probability measure mX . We call such a triple (X, dX ,mX) an mm-space.

We sometimes say that X is an mm-space, for which the metric and measure of X are

respectively indicated by dX and mX .

We denote the Borel σ-algebra over X by BX . For any point x ∈ X, any two subsets

A,B ⊂ X and any real number r > 0, we define

dX(x,A) := inf
y∈A

dX(x, y),

dX(A,B) := inf
x∈A, y∈B

dX(x, y),

Ur(A) := { y ∈ X | dX(y,A) < r },
Br(A) := { y ∈ X | dX(y,A) ≤ r }.

Let p : X → Y be a measurable map from a measure space (X,mX) to a topological

space Y . The push-forward of mX by the map p is defined as p∗mX(A) := mX(p−1(A))

for any A ∈ BY .

Definition 2.2 (mm-isomorphism). Two mm-spaces X and Y are said to be mm-

isomorphic to each other if there exists an isometry f : suppmX → suppmY such that

f∗mX = mY , where suppmX is the support of mX . Such an isometry f is called an

mm-isomorphism. The mm-isomorphism relation is an equivalence relation on the set of

mm-spaces. Denote by X the set of mm-isomorphism classes of mm-spaces.

Note that X is mm-isomorphic to (suppmX , dX ,mX). We assume that any mm-

space X satisfies

X = suppmX

unless otherwise stated.

We define the 1-measurement of an mm-space. This is the set of distributions of

1-Lipschitz functions.

Definition 2.3 (1-measurement). The 1-measurement M(X; 1) of an mm-space

X is defined as

M(X; 1) := {f∗mX | f : X → R : 1-Lipschitz function}.

We give the definition of the Lipschitz order. We consider the maximum and maxi-

mal elements of the 1-measurement of an mm-space with respect to this order relation.
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Definition 2.4 (Lipschitz order). Let X and Y be two mm-spaces. We say that

X dominates Y and write Y ≺ X if there exists a 1-Lipschitz map f : X → Y satisfying

f∗mX = mY .

We call the relation ≺ on X the Lipschitz order.

Proposition 2.5 ([5, Proposition 2.11]). The Lipschitz order ≺ is a partial order

relation on X .

Remark 2.6. Since an element µ of 1-measurement M(X; 1) is a measure on the

real line R, the triple (R, dR, µ) is an mm-space, where dR is the Euclidean distance

on R. We define the Lipschitz order between two elements of M(X; 1) by considering

µ ∈ M(X; 1) as an mm-space in the above way. In this manner, we consider the maximum

and maximal elements of the 1-measurementM(X; 1) with respect to the Lipschitz order.

For two measures µ, ν ∈ M(X; 1), we write µ ≺ ν as (R, dR, µ) ≺ (R, dR, ν) for simplicity.

Remark 2.7. For a Borel probability measure µ on the real line R, we immediately

see that the measure µ is the maximum of the 1-measurement M((R, dR, µ); 1).

2.2. Observable diameter and partial diameter.

Observable diameter is one of the most important invariants. We remark that this

is defined by the 1-measurement.

Definition 2.8 (Partial diameter). Let X be an mm-space. For any real number

α ∈ [0, 1], we define the partial diameter diam(X;α) = diam(mX ;α) of X as

diam(X;α) := inf{diamA | mX(A) ≥ α, A ∈ BX },

where the diameter of A is defined by diamA := supx,y∈A dX(x, y) for A ̸= ∅ and

diam ∅ := 0.

Definition 2.9 (Observable diameter). Let X be an mm-space. For any real

number κ ∈ [0, 1], we define the κ-observable diameter ObsDiam(X;−κ) of X as

ObsDiam(X;−κ) := sup
µ∈M(X;1)

diam(µ; 1− κ).

Proposition 2.10 ([5, Proposition 2.18]). Let X and Y be two mm-spaces and

κ ∈ [0, 1] a real number. If Y ≺ X, then we obtain

diam(Y ; 1− κ) ≤ diam(X; 1− κ),

ObsDiam(Y ;−κ) ≤ ObsDiam(X;−κ).

In other words, the partial diameter and the κ-observable diameter are non-

decreasing invariants with respect to the Lipschitz order. We obtain the value of the

observable diameter if we know the maximum of the 1-measurement because the partial

diameter is non-decreasing invariants.
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2.3. Lévy’s isoperimetric inequality.

Let Sn(r) be the n-dimensional sphere of radius r > 0 centered at the origin in the

(n+1)-dimensional Euclidean space Rn+1. We assume the distance dSn(r)(x, y) between

two points x and y in Sn(r) to be the geodesic distance and the measure mSn(r) on S
n(r)

to be the Riemannian volume measure on Sn(r) normalized as mSn(r)(S
n(r)) = 1. Then,

(Sn(r), dSn(r), mSn(r)) is an mm-space.

Theorem 2.11 (Lévy’s isoperimetric inequality [1], [4]). For any closed subset

Ω ⊂ Sn(1), we take a metric ball BΩ of Sn(1) with mSn(1)(BΩ) = mSn(1)(Ω). Then we

have

mSn(1)(Ur(Ω)) ≥ mSn(1)(Ur(BΩ))

for any r > 0.

2.4. Box distance.

In this subsection, we briefly describe the box distance which is needed in Subsection

3.2.

Definition 2.12 (Parameter). Let I := [0, 1) and let L1 be the one-dimensional

Lebesgue measure on I. Let X be a topological space with a Borel probability measure

mX . A map φ : I → X is called a parameter of X if φ is a Borel measurable map such

that

φ∗L1 = mX .

Definition 2.13 (Pseudo-metric). A pseudo-metric ρ on a set S is defined to be

a function ρ : S × S → [0,∞) satisfying that, for any x, y, z ∈ S,

1. ρ(x, x) = 0,

2. ρ(y, x) = ρ(x, y),

3. ρ(x, z) ≤ ρ(x, y) + ρ(y, z).

Definition 2.14 (Box distance). For two pseudo-metrics ρ1 and ρ2 on I := [0, 1),

we define 2(ρ1, ρ2) to be the infimum of ε ≥ 0 satisfying that there exists a Borel subset

I0 ⊂ I such that

1. |ρ1(s, t)− ρ2(s, t)| ≤ ε for any s, t ∈ I0,

2. L1(I0) ≥ 1− ε.

We define the box distance 2(X,Y ) between two mm-spaces X and Y to be the infimum

of 2(φ∗dX , ψ
∗dY ), where φ : I → X and ψ : I → Y run over all parameters of X and

Y , respectively, and where φ∗dX(s, t) := dX(φ(s), φ(t)) for s, t ∈ I.

Theorem 2.15 ([5, Theorem 4.10]). The box distance 2 is a metric on the set X
of mm-isomorphism classes of mm-spaces.
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Proposition 2.16 ([5, Proposition 4.12]). Let X be a complete separable metric

space. For any two Borel probability measures µ and ν on X, we have

2((X,µ), (X, ν)) ≤ 2dP(µ, ν),

where dP is the Prohorov distance (see [5, Definition 1.14]).

Theorem 2.17 ([5, Theorem 4.35]). Let X,Y,Xn and Yn be mm-spaces, n =

1, 2, . . . . If Xn and Yn 2-converge to X and Y respectively as n → ∞ and if Xn ≺ Yn
for any n, then X ≺ Y .

3. The maximum of the 1-measurement of n-dimensional sphere.

3.1. The maximum of the 1-measurement of n-dimensional sphere –The

proof of Theorem 1.1–

The aim of this subsection is to prove Theorem 1.1. We prepare some lemmas for

the proof.

Lemma 3.1. Let X be an mm-space and f : X → R a Borel measurable function.

We define the function F : R → [0, 1] as F (t) := f∗mX((−∞, t]). If the function

F |Im f : Im f → [0, 1] is bijective, then we have

F∗f∗mX((−∞, a]) = a

for all a ∈ [0, 1].

Proof. For any a ∈ [0, 1], we see

F∗f∗mX((−∞, a]) = f∗mX(F−1((−∞, a]))

= f∗mX({ t ∈ R | F (t) ≤ a })
= f∗mX({ t ∈ Im f | F |Im f (t) ≤ a })
= f∗mX({ t ∈ Im f | t ≤ (F |Im f )

−1(a) })
= f∗mX({ t ∈ R | t ≤ (F |Im f )

−1(a) })
= f∗mX((−∞, (F |Im f )

−1(a)])

= F ((F |Im f )
−1(a)) = a,

where we use the non-decreasing and bijective property of F |Im f in the fourth equality.

This completes the proof. □

The following three lemmas are properties of generalized functions.

Lemma 3.2. For a non-decreasing function G : R → [0, 1] with G(t0) = 0 for some

t0 ∈ R, we define G̃ : (0, 1] → R by

G̃(s) := inf{ t ∈ R | s ≤ G(t) }.
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Then, G̃ is non-decreasing and lower bounded on (0, 1]. In particular, G̃ takes finite

values on (0, 1].

Proof. We take a real number t0 ∈ R satisfying G(t0) = 0. Fix a real num-

ber s ∈ (0, 1] and define A := { t ∈ R | s ≤ G(t) }. For any element t ∈ A, we have

G(t0) < s ≤ G(t). Since G is non-decreasing, the inequality t0 < t follows. This im-

plies that t0 ≤ G̃(s). The function G̃ is a non-decreasing function on (0, 1] because we

have { t ∈ R | s′ ≤ G(t) } ⊃ { t ∈ R | s ≤ G(t) } for any 0 < s′ ≤ s. This completes the

proof. □

Lemma 3.3. Let G : R → [0, 1] be a non-decreasing and right continuous function

such that G(t0) = 0 for some t0 ∈ R. We define G̃ : [0, 1] → R by

G̃(s) :=

{
inf{ t ∈ R | s ≤ G(t) } if s ∈ (0, 1],

c if s = 0,

where c is an arbitrary constant. Then, we have

G ◦ G̃(s) ≥ s, s ∈ [0, 1], (3.1)

G̃ ◦G(t) ≤ t, t ∈ R with G(t) > 0, (3.2)

G̃−1((−∞, t]) \ {0} = (0, G(t)], t ∈ R. (3.3)

Proof. First we prove (3.1). If s = 0, we have (3.1) because ImG ⊂ [0, 1]. Fix a

real number s ∈ (0, 1] and define A := { t ∈ R | s ≤ G(t) }. By the definition of infimum,

we have

G(t′) ≥ inf
t∈A

G(t)

for any t′ ∈ A. For any t′ > inf A, we have t′ ∈ A because G is non-decreasing. By this,

we have

lim
t′→inf A+0

G(t′) ≥ inf
t∈A

G(t).

By the right continuity of G, we obtain

G(inf A) ≥ inf
t∈A

G(t).

Therefore, we have

G(G̃(s)) = G(inf A)

≥ inf
t∈A

G(t)

= inf{G(t) | s ≤ G(t) }
≥ s.

Next we prove (3.2). We take any real number t ∈ R with G(t) > 0, then we have
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G̃(G(t)) = inf{ t′ ∈ R | G(t′) ≥ G(t) } ≤ t.

Finally we prove (3.3). Take any real number s ∈ G̃−1((−∞, t]) \ {0}. Since

G̃−1(R) = [0, 1], we have s ∈ (0, 1]. It follows from G̃(s) ≤ t and the non-decreasing

property of G that G ◦ G̃(s) ≤ G(t). This implies that s ≤ G(t) by (3.1) and we have

s ∈ (0, G(t)]. Conversely, take any real number s ∈ (0, G(t)]. We obtain G̃(s) ≤ G̃ ◦G(t)
because G̃ is non-decreasing by Lemma 3.2. Then we have G̃(s) ≤ t by (3.2). This

completes the proof. □

Remark 3.4. In Lemma 3.3, G̃ is a Borel measurable function. In fact, G̃|(0,1] is
Borel measurable on (0, 1] in view of Lemma 3.2.

Lemma 3.5. Let f, g : X → R be two Borel measurable functions and define two

functions F,G : R → [0, 1] as F (t) := f∗mX((−∞, t]), G(t) := g∗mX((−∞, t]). We

assume that some real number t0 satisfies G(t0) = 0. We define G̃ : [0, 1] → R by

G̃(s) :=

{
inf{ t ∈ R | s ≤ G(t) } if s ∈ (0, 1],

c if s = 0,

where c is an arbitrary constant. We define φ : R → R by φ := G̃ ◦F . If F |Im f : Im f →
[0, 1] is bijective, then we have

φ∗f∗mX = g∗mX .

Proof. Take any real number t ∈ R. we have

φ∗f∗mX((−∞, t]) = G̃∗F∗f∗mX((−∞, t])

= F∗f∗mX(G̃−1((−∞, t]))

= F∗f∗mX(G̃−1((−∞, t]) \ {0})
= F∗f∗mX((0, G(t)])

= F∗f∗mX((−∞, G(t)])

= G(t)

= g∗mX((−∞, t]).

In the third and fourth equalities, we use F∗f∗mX((−∞, 0]) = 0 obtained by Lemma 3.1.

We use (3.3) of Lemma 3.3 in the fourth equality. We have the sixth equality by Lemma

3.1. This completes the proof. □

Proof of Theorem 1.1. Take a point x̄ ∈ Sn(1) and define ξ : Sn(1) → R
by ξ(x) := dSn(1)(x̄, x). Take any 1-Lipschitz function g : Sn(1) → R. We prove the

existence of a 1-Lipschitz function φ : R → R satisfying

φ∗ξ∗mSn(1) = g∗mSn(1)
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in the following. Put two functions V,G : R → [0, 1] as V (t) := ξ∗mSn(1)((−∞, t]),

G(t) := g∗mSn(1)((−∞, t]). We define G̃ : [0, 1] → R as

G̃(s) := inf{ t ∈ R | s ≤ G(t) }

if s ∈ (0, 1], and

G̃(0) := lim
s→+0

G̃(s), (3.4)

if s = 0. We have G(t0) = 0 for some t0 because g has a lower bound. The existence

of limit of (3.4) is guaranteed because G is non-decreasing and G̃ has a lower bound on

(0, 1] by Lemma 3.2. Put φ : R → R as φ := G̃ ◦ V . Since V |Im ξ is bijective, we apply

Lemma 3.5 to obtain

φ∗ξ∗mSn(1) = g∗mSn(1).

Let us prove that φ is a 1-Lipschitz function. If t ≤ 0, we have φ(t) = G̃(0) by

V (t) = 0. We obtain

lim
t→+0

φ(t) = lim
t→+0

G̃ ◦ V (t) = G̃(0)

because G̃ is continuous at 0 and limt→+0 V (t) = 0. By this, we prove φ is a 1-Lipschitz

function in the case where t > 0. The function φ is non-decreasing since the two functions

G̃ and V are both non-decreasing. Thus, it is sufficient to prove that φ(t+ ε) ≤ φ(t) + ε

for any ε > 0. Fix t > 0 and take any ε > 0. We have

mSn(1)(Bt(x̄)) = ξ∗mSn(1)((−∞, t])

= V (t)

≤ (G ◦ G̃)(V (t))

= G ◦ φ(t)
= mSn(1)(g

−1((−∞, φ(t)])),

where we use (3.1) of Lemma 3.3 in the inequality on the third line. We obtain

mSn(1)(Bt+ε(x̄)) ≤ mSn(1)(Bε(g
−1((−∞, φ(t)])))

by applying Theorem 2.11 (Lévy’s isoperimetric inequality). We use this inequality to

obtain

V (t+ ε) = ξ∗mSn(1)((−∞, t+ ε])

= mSn(1)(Bt+ε(x̄))

≤ mSn(1)(Bε(g
−1((−∞, φ(t)])))

≤ mSn(1)(g
−1(Bε((−∞, φ(t)])))

= g∗mSn(1)((−∞, φ(t) + ε])
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= G(φ(t) + ε),

where we have the inequality on the fourth line because g is a 1-Lipschitz function.

Therefore, we have

φ(t+ ε) = G̃ ◦ V (t+ ε)

≤ G̃ ◦G(φ(t) + ε)

≤ φ(t) + ε,

where we use (3.2) of Lemma 3.3 in the inequality of the third line. This completes the

proof. □

3.2. The relation between the normal law à la Lévy and Theorem 1.1.

The aim of this section is to prove Corollary 3.6 by Theorem 1.1. It is one of the

important applications of Theorem 1.1.

Corollary 3.6 (Normal law à la Lévy [3], [5]). Let fn : Sn(
√
n) → R, n =

1, 2, . . . , be 1-Lipschitz functions. Assume that a subsequence {fni} of {fn} satisfies

that the push-forward (fni)∗mSni (
√
ni) converges weakly to a Borel probability measure σ.

Then we have

(R, dR, σ) ≺ (R, dR, γ1).

Here γ1 is the one-dimensional standard Gaussian distribution on R, i.e., γ1(dr) =

(1/
√
2π)e−r2/2.

We prepare some lemmas to prove Corollary 3.6. We use the following three lemmas

to prove 2((R, dR, (ξn)∗mSn(
√
n)), (R, dR, γ1)) → 0.

Lemma 3.7. For any real number r ∈ R, we have

cosn−1 r√
n
→ e−r2/2 as n→ ∞.

Proof. If r = 0, then the lemma is trivial. Assume r ̸= 0. We first prove

lim infn→∞ cosn−1(r/
√
n) ≥ e−r2/2. We use cosx ≥ 1 − x2/2 for any x ∈ [−π/2, π/2].

For some positive integer N ∈ N, we have r ∈ [−(π/2)
√
n, (π/2)

√
n ] for any positive

integer n ≥ N . Then, we have

cosn−1 r√
n
≥

(
1− 1

2

(
r√
n

)2
)n−1

for any positive integer n ≥ N . We obtain lim infn→∞ cosn−1(r/
√
n) ≥ e−r2/2 because

we have(
1− 1

2

(
r√
n

)2
)n−1

=

(
1− r2

2n

)(−2n/r2)·(−r2/2)−1

→ e−r2/2 as n→ ∞.
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We next prove lim supn→∞ cosn−1(r/
√
n) ≤ e−r2/2. Take any real number ε ∈

(0, 1/2). Since limx→0(1− cosx)/x2 = 1/2, there exists some δ > 0 such that cosx ≤
1 − (1/2 − ε)x2 for any x ∈ (−δ, δ). We take some positive integer N ∈ N satisfying

|r/
√
N | < δ. For any positive integer n ≥ N , we have

cosn−1 r√
n
≤

(
1− 1− 2ε

2

(
r√
n

)2
)n−1

.

Since we have(
1− 1− 2ε

2

(
r√
n

)2
)n−1

=

(
1− 1− 2ε

2
· r

2

n

)(−2n/((1−2ε)r2))·(−(1−2ε)r2/2)−1

→ e(−r2/2)·(1−2ε) as n→ ∞

and e(−r2/2)·(1−2ε) → e−r2/2 as ε→ +0, we obtain lim supn→∞ cosn−1(r/
√
n) ≤ e−r2/2.

This completes the proof. □

To use Lebesgue’s dominated convergence theorem in the proof of Lemma 3.9 below,

we prove the following inequality.

Lemma 3.8. For any integer n ≥ 2 and any real number r ∈ [−(π/2)
√
n, (π/2)

√
n ],

we have

cosn−1 r√
n
≤ e−r2/4.

Proof. Take any integer n ≥ 2. This lemma is clear if r = ±(π/2)
√
n. Then,

we prove the lemma in the case r ∈ (−(π/2)
√
n, (π/2)

√
n). By the symmetry, we may

assume r ≥ 0. Setting

f(r) := −r
2

4
− (n− 1) log cos

r√
n
,

we have

f ′(r) = −r
2
+ (n− 1) · 1√

n
tan

r√
n

= −
√
n

2
· r√

n
+

(√
n− 1√

n

)
tan

r√
n

≥
√
n

2

(
tan

r√
n
− r√

n

)
≥ 0,

where we use n ≥ 2 in the first inequality and r/
√
n ∈ [0, π/2) in the second inequality.

Since f(0) = 0, we obtain f(r) ≥ 0 for any r ∈ [0, (π/2)
√
n). This completes the

proof. □
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Lemma 3.9. Fix a point x̄n ∈ Sn(
√
n), and define ξn : Sn(

√
n) → R as ξn(x) :=

dSn(
√
n)(x, x̄n) for x ∈ Sn(

√
n). Then we have

d((ξn −
√
n(π/2))∗mSn(

√
n))

dL1
(r) → dγ1

dL1
(r) as n→ ∞

for any r ∈ R, where we define γ1 as

dγ1

dL1
(r) :=

1√
2π
e−r2/2.

In particular, we have(
ξn −

√
n
π

2

)
∗
mSn(

√
n) → γ1 as n→ ∞ weakly.

Proof. Let χ[−(π/2)
√
n,(π/2)

√
n ] be the indicator function of the subset

[−(π/2)
√
n, (π/2)

√
n ]. We have

d((ξn −
√
n(π/2))∗mSn(

√
n))

dL1
(r) = χ[−(π/2)

√
n,(π/2)

√
n ] ·

cosn−1(r/
√
n)∫ (π/2)

√
n

−(π/2)
√
n
cosn−1(t/

√
n)dt

for any real number r ∈ R. We obtain

χ[−(π/2)
√
n,(π/2)

√
n ] ·

cosn−1(r/
√
n)∫ (π/2)

√
n

−(π/2)
√
n
cosn−1(t/

√
n)dt

→ e−r2/2∫
R e

−t2/2dt
as n→ ∞

because of Lebesgue’s dominated convergence theorem, Lemmas 3.7 and 3.8. This com-

pletes the proof. □

Proof of Corollary 3.6. Take any 1-Lipschitz functions fn : Sn(
√
n) → R,

n = 1, 2, . . . . We may assume 2((R, dR, (fni)∗mSni (
√
ni)), (R, dR, σ)) → 0 as i→ ∞ be-

cause of Proposition 2.16. Take a point x̄n ∈ Sn(
√
n) and define ξn(x) := dSn(

√
n)(x, x̄n).

By applying Theorem 1.1, we have (R, dR, (fn)∗mSn(
√
n)) ≺ (R, dR, (ξn)∗mSn(

√
n)) for

any positive integer n ∈ N. Since we have 2((R, dR, (ξn)∗mSn(
√
n)), (R, dR, γ1)) → 0 by

Lemma 3.9, we obtain (R, dR, σ) ≺ (R, dR, γ1) by Theorem 2.17. This completes the

proof. □

4. A necessary condition for the existence of the maximum of the 1-

measurement.

The aim of this section is to prove Theorem 1.2 and Theorem 1.4. Theorem 1.4 gives

a necessary condition for the existence of the maximum of the 1-measurement.

4.1. Maximal elements of the 1-measurement.

In this subsection, we prove Theorem 1.2. We need the following lemma for the

proof of Theorem 1.2.
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Lemma 4.1. Let µ, ν be two Borel probability measures on R. We assume

diam suppµ = diam supp ν < ∞ and µ ≺ ν. Then, two mm-spaces (R, dR, µ) and

(R, dR, ν) are mm-isomorphic to each other.

Proof. Since µ ≺ ν, there exists a 1-Lipschitz function φ : supp ν → suppµ

such that φ∗ν = µ. Put c := diam suppµ = diam supp ν, y0 := min suppµ and y1 :=

max suppµ. We have c = y1 − y0. Since φ is surjective, there exists xi ∈ supp ν such

that φ(xi) = yi for each i = 0, 1. We have

c = y1 − y0 = φ(x1)− φ(x0) ≤ |x1 − x0| ≤ c

because φ is a 1-Lipschitz function. Therefore we obtain |x1−x0| = c. In particular, the

point x0 is the maximum or the minimum of supp ν. We prove φ(x) = y0 + |x− x0| for
any x ∈ supp ν in the following. If this is true, then we see that φ is an isometry and

the proof of the lemma is completed. Let us first prove it in the case where x0 ≤ x1. We

have x0 = min supp ν, x1 = max supp ν because x1 = x0 + c. We obtain

φ(x)− y0 = φ(x)− φ(x0) ≤ x− x0

for any x ∈ supp ν. This implies that φ(x) ≤ y0 + |x− x0|. We have

(y0 + c)− φ(x) = y1 − φ(x)

= φ(x1)− φ(x)

≤ x1 − x

= x0 + c− x.

We also have φ(x) ≥ y0 + |x− x0|. We next prove it in the case where x0 ≥ x1 similarly.

In fact, we have φ(x) ≤ |x− x0|+ y0 because

φ(x)− y0 = φ(x)− φ(x0) ≤ |x− x0|

and we have φ(x) ≥ |x− x0|+ y0 because

x0 − x1 + y0 − φ(x) = c+ y0 − φ(x)

= y1 − φ(x)

= φ(x1)− φ(x)

≤ x− x1.

This completes the proof. □

Proof of Theorem 1.2. Take a measure µ ∈ M(X; 1) with diam suppµ =

diamX <∞ and a measure ν ∈ M(X; 1) with µ ≺ ν. We have (R, dR, ν) ≺ (X, dX ,mX)

because ν ∈ M(X; 1). By Proposition 2.10, we have diam supp ν = diam(ν; 1) ≤
diam(X; 1) = diam suppmX = diamX. By µ ≺ ν and Proposition 2.10, we also have

diam suppµ = diam(µ; 1) ≤ diam(ν; 1) = diam supp ν. Two mm-spaces (R, dR, µ) and
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(R, dR, ν) are mm-isomorphic to each other because of diam suppµ = diam supp ν and

Lemma 4.1. This completes the proof. □

Proof of Corollary 1.3. Let a point x0 ∈ X satisfy supx∈X dX(x, x0) =

diamX and ξ be the distance function from the point x0. We take some sequence

{xn}∞n=1 of X satisfying dX(xn, x0) → diamX as n→ ∞. By Theorem 1.2, it is suf-

ficient to prove that diam supp ξ∗mX = diamX. We have supp ξ∗mX = ξ(suppmX)

because ξ is continuous, where ξ(suppmX) is the closure of ξ(suppmX). Using this equal-

ity, we obtain diam supp ξ∗mX = diam ξ(suppmX) ≥ |ξ(xn) − ξ(x0)| = dX(xn, x0) →
diamX as n→ ∞. Remark that we always assume X = suppmX . On the other hand,

by the 1-Lipschitz continuity of ξ, we have diam supp ξ∗mX = diam ξ(suppmX) ≤
diamX. □

4.2. A necessary condition for the existence of the maximum of the

1-measurement.

In this subsection, we prove Theorem 1.4 by using Theorem 1.2.

Proof of Theorem 1.4. Without loss of generality, we may assume diamX >

0. Otherwise, the assertion is trivial. We prove the contrapositive proposition of

the theorem. Take three points x0, x1, x2 ∈ X satisfying dX(x0, x1) = diamX and

dX(x0, x2) + dX(x2, x1) > dX(x0, x1). Put ri := dX(xi, x2), i = 0, 1, R := diamX and

D := (r0 + r1 −R)/2 > 0. We have ri −D > 0, i = 0, 1 and (r0 −D) + (r1 −D) = R.

By the symmetry, we may assume r1 ≤ r0. Put a function ξ : X → R as ξ(x) :=

dX(x, x0) for x ∈ X and define a function ζ : X → R by

ζ(x) :=


dX(x, x0) if x ∈ Ur0−D(x0),

R− dX(x, x1) if x ∈ Ur1−D(x1),

r0 −D otherwise

for x ∈ X. Let us prove that ζ is a 1-Lipschitz function. For any two points x ∈
Ur0−D(x0) and y ∈ Ur1−D(x1), we have

|ζ(x)− ζ(y)| = |dX(x, x0)−R+ dX(y, x1)|
= R− dX(x, x0)− dX(y, x1)

= dX(x0, x1)− dX(x, x0)− dX(y, x1)

≤ dX(x, y).

For x ∈ Ur0−D(x0) and y ∈ Ur0−D(x0)
c ∩ Ur1−D(x1)

c, we have

|ζ(x)− ζ(y)| = |dX(x, x0)− (r0 −D)|
= −dX(x, x0) + r0 −D

≤ −dX(x, x0) + dX(x0, y)

≤ dX(x, y).

For x ∈ Ur1−D(x1) and y ∈ Ur0−D(x0)
c ∩ Ur1−D(x1)

c, we have
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|ζ(x)− ζ(y)| = |(R− dX(x, x1))− (r0 −D)|
= |(R− dX(x, x1))− (R− r1 +D)|
= |r1 −D − dX(x, x1)|
= r1 −D − dX(x, x1)

≤ dX(y, x1)− dX(x, x1)

≤ dX(x, y).

Thus, the function ζ is a 1-Lipschitz function.

We prove diam supp ξ∗mX = diam supp ζ∗mX = diamX in the same way as the

proof of Corollary 1.3. In fact, we have diam supp ξ∗mX = diam ξ(suppmX) ≥ |ξ(x1)−
ξ(x0)| = diamX and diam supp ζ∗mX ≥ |ζ(x1) − ζ(x0)| = diamX. Therefore, two

measures ξ∗mX and ζ∗mX are both maximal elements by Theorem 1.2. Let us prove

that two measures ξ∗mX and ζ∗mX are not mm-isomorphic to each other. It is sufficient

to prove that ξ∗mX ̸= ζ∗mX and (R−ξ)∗mX ̸= ζ∗mX . We prove those by contradiction.

We first assume ξ∗mX = ζ∗mX . Then we have

mX(Br0−D(x0) ⊔ UD(x2)) ≤ mX(Ur1−D(x1)
c)

= ζ∗mX([0, r0 −D])

= ξ∗mX([0, r0 −D])

= mX(Br0−D(x0)).

This inequality contradicts mX(UD(x2)) > 0. We next assume (R− ξ)∗mX = ζ∗mX and

then we have

mX(Ur1−D(x1)) ⊔ UD(x2)) ≤ mX(Br0−D(x0)
c)

= ξ∗mX((r0 −D,R])

= (R− ξ)∗mX([0, r1 −D))

= ζ∗mX([0, r1 −D))

= ξ∗mX([0, r1 −D))

= (R− ξ)∗mX((r0 −D,R])

= ζ∗mX((r0 −D,R])

= mX(Ur1−D(x1)),

where we use r1−D ≤ r0−D in the equality on the fifth line. This inequality contradicts

mX(UD(x2)) > 0. This completes the proof. □
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