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Topological canal foliations
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Abstract. Regular canal surfaces of R3 or S3 admit foliations by circles:
the characteristic circles of the envelope. In order to build a foliation of S3
with leaves being canal surfaces, one has to relax the condition “canal” a little
(“weak canal condition”) in order to accept isolated umbilics. Here, we define

a topological condition which generalizes this “weak canal” condition imposed
on leaves, and classify the foliations of compact orientable 3-manifolds we can
obtain this way.

1. Introduction.

In the literature, one can find several attempts to define, construct and possibly

classify foliations on compact Riemannian manifolds with constant sectional curvature

whose leaves enjoy some conformal property. There are mainly results of non existence,

for example there do not exist

i) totally geodesic foliations of any codimension on negatively curved manifolds [Ze1],

[Ze2],

ii) codimension-one totally umbilical foliations on Sn (by purely topological reasons)

or on negatively curved closed Riemannian manifolds [LW1],

iii) Dupin foliations on S3 or on compact hyperbolic 3-manifolds [LW1] whose leaves

are pieces of Dupin cyclides (see below).

Recall that among all the local conformal invariants considered in the conformal ge-

ometry of surfaces (see, for example, [CSW]), one has conformal principal curvatures θ1,

θ2 defined as the derivatives of the usual principal curvatures k1, k2 along corresponding

suitably parameterized characteristic lines of curvature. A surface is Dupin if both of

its conformal principal curvatures vanish and it is canal if this condition holds for one of

them. This means that Dupin surfaces are canal in two ways: they carry two orthogonal

families of characteristic lines. Canal surfaces are envelopes of one parameter families of

spheres in the 3-dimensional space form; they carry characteristic circles, the intersec-

tions of the spheres defining them with the spheres of the derived family. These surfaces

are important for computer aided geometric design (see [Kr], [PP], etc.). In order to en-

large the family of surfaces under consideration, one may allow isolated umbilical points;

they will then be called geometric canal surfaces.
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Now a geometric canal foliation is any codimension-one foliation of a 3-dimensional

manifold of constant sectional curvature such that all its leaves become—when lifted

to the universal cover of the manifold under consideration—pieces of geometric canal

surfaces. Certainly, R3 and flat 3-tori admit canal foliations obtained from families of

parallel affine planes. In [LW2], it is shown that the standard Reeb foliation of S3 is a

geometric canal one and, conversely, that all canal foliations of S3 are not so far from

Reeb foliations. More precisely, one has the following.

Theorem. Any foliation F of S3 by geometric canal surfaces is either a Reeb

foliation with a unique toral leaf which is a Dupin cyclide or is obtained from such a

Reeb foliation by inserting a zone P ≃ T2 × [0, 1] foliated by toral and cylindrical leaves.

Now our aim in the present paper is to enlarge the family of geometric canal surfaces

or foliations by considering a purely topological condition: the existence of a griddled

structure or griddling i.e. an orientable foliation or sub-foliation by circles possibly with

isolated singularities. These griddled structures may be

- globally continuous and we will call the corresponding foliations griddled foliated

manifolds,

- or piecewise continuous on compact saturated submanifolds with sudden disconti-

nuities along finitely many compact leaves which will be analogues of Dupin cyclides

defining our family of topological canal foliations which will include the previous

family of geometric canal foliations of S3.

In Section 3 we construct a large class of griddled foliated manifolds and in Section 4,

we show that this family is complete. For the sake of simplicity, we restrict to C1-

foliations and classify them up to C0-isotopy or C0-conjugation. Precisely we show the

following:

Theorem A (see Theorem 4.14). A compact 3-manifold M supports a griddled

foliation of class C1 if and only if M is diffeomorphic to one of the following manifolds:

i) D2 × [0, 1], D2 × S1, S2 × [0, 1] or T2 × [0, 1] if ∂M ̸= ∅,

ii) S2 × S1 or any S1-bundle over T2 if ∂M = ∅.

Moreover if M is either D2 × [0, 1] or S2 × [0, 1], all griddled structures on M are C0-

isotopic while in the remaining cases, M supports countably many different C0-isotopy

and C0-conjugacy classes of griddled structures.

We introduce “topological canal” foliations in Section 5; these foliations may be

smooth of any differentiability class and we classify the corresponding manifolds:

Theorem B (see Theorem 5.4). A topological canal foliation of class C1 on a

compact manifold is either griddled or obtained by gluing two or three compact griddled

foliated pieces. Therefore a compact 3-manifold M supports such a foliation if and only

if M is diffeomorphic to one of the following manifolds:

i) D2 × [0, 1], D2 × S1, S2 × [0, 1] or T2 × [0, 1] if ∂M ̸= ∅,
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ii) S2 × S1, S3 or any lens space, T3 or any S1-bundle over T2 if ∂M = ∅.

Moreover all manifolds M listed in ii) support countably many different C0-isotopy and

C0-conjugacy classes of topological canal foliations.

Finally we characterize geometric canal foliations among all topological canal folia-

tions of S3 by observing that the characteristic circles of a geometric canal foliation on

S3 define a “coherent system of meridians and parallels” on all toral leaves. We formalize

this observation with the notion of “canal foliations of strong type” (see Definition 5.6)

and using it we get

Theorem C (see Theorem 5.8). A topological canal foliation F of class C2 on S3
is C0-conjugate to a geometric one if and only if it is of strong type.

As an immediate consequence of Theorem B, we also observe that no compact hyper-

bolic manifold can support topological canal foliations, corroborating the nonexistence

of Dupin foliations on such manifolds already established in [LW1].

2. Griddled surfaces and foliations.

Manifolds considered in this paper will be of dimension 2 or 3, connected, smooth

and orientable. For the sake of simplicity we will assume that all foliations are of class

C1 so that we can use the fundamental result of Epstein concerning finiteness of holo-

nomy groups for compact codimension 2 foliations on 3-manifolds (see [E] and [EMS]).

Moreover we suppose that all foliations are orientable and transversely orientable. If a

manifold M of dimension 2 or 3 has non empty boundary and N is a connected compo-

nent of ∂M , we will also assume that

i) any codimension 1 foliation F on M is either tangent or transverse to N ; accord-

ingly we say that N is a tangential or a transversal component of ∂M ,

ii) any codimension 2 foliation C is always tangent to any boundary component N .

Note that ∂M may have simultaneously tangential and transversal components.

Moreover, in order to facilitate our constructions, we will exceptionally consider also the

product D2× [0, 1] with the canonical foliation by closed disks; in this case, the boundary

of D2 × [0, 1] splits into a tangential part D2 × {0, 1} and a transversal part ∂D2 × [0, 1].

We believe that our results can be adapted to C0 foliations but in this context,

proofs would become long and tedious: therefore we prefer to restrict ourselves to the

C1-case.

Definition 2.1. A griddled structure on a surface L is a 1-dimensional foliation

C (with singularities) such that

i) any singularity of C is isolated,

ii) any regular leaf of C is homeomorphic to S1.
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Similarly, a griddled structure on a foliated 3-manifold (M,F) will be an orientable

subfoliation C of the codimension 1 foliation F which induces by restriction a griddled

structure on each leaf L of F .

We will say that L and (M,F) are griddled.

This notion is inspired by the geometry of regular canal surfaces, possibly with

isolated umbilical points, which are griddled by their characteristic circles.

Example 2.2. Canonical griddled structures on surfaces.

Recall that an action of S1 is called semi-free if any non trivial isotropy subgroup is

the whole of S1. Now a semi-free action of S1 on a surface defines a griddled structure

provided that its singularities are isolated; we call such a structure canonical. Examples

of canonical griddled structures on surfaces (see Figure 1) are defined by the following

semi-free actions:

(1) the action of the group of rotations around the origin of the plane R2 or the unit

disk D2; the action of the group of rotations of the unit sphere S2 around the

vertical axis
−→
Oz of R3; these structures have either one or two singularities,

(2) the natural free action of the first factor on the annulus A = S1×[0, 1], the cylinders

S1 ×R or S1×]0, 1], the torus T2 = S1 × S1; all four structures are regular, without

singularities.

Figure 1. Canonical griddled structures.

Next we show that any griddled surface is topologically conjugate to one of these

canonical surfaces.

Lemma 2.3. Any singularity of a connected griddled surface (L, C) is a center and

(L, C) is topologically conjugate to one of the previous canonical griddled surfaces.

Proof. As singularities are isolated, the set Σ of singularities of C is a countable

discrete subset of L and L̂ = L \ Σ is a connected surface foliated by circles. Due to the

transverse orientability, the restriction Ĉ of C to L̂ is without holonomy thus a locally

trivial circle bundle so that L̂ is homeomorphic to S1 × ]0, 1], S1 × R or T2. Moreover,

L̂ is an open dense subset of L and any singularity of C can be seen as an end of L̂. We

conclude that, either L is the torus T2 or L has genus 0 and therefore is a cylinder, a

plane or a disk, or it is a 2-sphere with respectively 0, 1 or 2 singularities.
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Of course, the induced structure Ĉ is conjugate to the canonical regular structure

of L̂ and because Σ is identified with the set of ends of L̂, any conjugacy extends to Σ.

It follows that any griddled structure is conjugate to a canonical one; in particular any

singularity is a center. □

The following observation will be helpful for the classification of griddled 3-manifolds:

Remark 2.4. If a griddled surface (L, C) admits a loop γ contained in the regular

part L̂ and transverse to Ĉ, then (L, C) is a canonically griddled torus and γ is not null

homotopic in L.

Remark 2.5. Further, we notice that the group of orientation preserving dif-

feotopies of the griddled surface (L, C) reduces to

i) the identity if L ̸= T2,

ii) the cyclic group generated by the Dehn twist along the typical fiber of C if L = T2.

3. Griddled foliated 3-manifolds: examples.

Here, we introduce a large class of compact griddled foliated 3-manifolds (M,F , C).

According to Lemma 2.3, any leaf of F is one of the griddled surfaces listed in Example 2.2

and we denote by Σ the singular set of C.

First, we describe three special families of griddled 3-manifolds.

Example 3.1. Griddled fibrations.

Let (L, C0) be one of the compact griddled surfaces described in Example 2.2 and

consider the trivial fibration F defined by π : M = L × J → J where J is either [0, 1]

or S1 when L is D2, S2 or T2 but J = S1 when L = A. The canonical semi-free action

of S1 on L lifts to the fibers of π defining a semi-free action of S1 on M : it generates a

subfoliation C of F which is a griddled structure called the canonical griddled structure

of (M,F).

So far we have obtained seven griddled 3-manifolds: the corresponding singular set

is homeomorphic respectively to J , the sum of two copies of J or is empty.

The second family is that of Reeb components. They will play an important role in

the sequel, therefore we start recalling some well known properties of these foliations.

Example 3.2. Griddled Reeb components.

(1) Let (x, y) be the usual coordinate system of [−1,+1]×R, and let Ω± be the two

non singular one forms on the annulus A = [−1, 1] × S1 which lift to [−1, 1] × R as

Ω± = a(x)dy ± xdx

where a(x) is a smooth positive function on [−1,+1] verifying a(−x) = a(x) for any

x and a(x) = 0 exactly for x = ±1. For a fixed function a(x), these forms define

foliations which are tangent to the boundary, symmetric with respect to the transversal

circle Σ = {0} × S1 and such that any interior leaf is diffeomorphic to R and spirals



48

48 G. Hector, R. Langevin and P. Walczak

towards the two boundary circles. They are not isotopic but differentiably conjugate

by the diffeomorphism ψ of A induced by ψ̃ : [−1,+1] × R → [−1,+1] × R given by

ψ̃(x, y) = (x,−y).

Any such foliation is called a 2-dimensional Reeb component (also called Poincaré

component in [LW2], see Figure 2), positive or negative depending on the choice of the

sign ±.

Figure 2. Reeb component.

(2) Now note that the holonomy transformation associated to the boundary circles

of such a Reeb component depends strongly on the choice of the function a(x); for

example it will be flat, that is differentiably tangent to the identity, if a(x) = e−1/(1−x2)

but have non trivial first derivative if a(x) = 1 − x2. As this derivative is invariant by

C1-conjugacy, it follows that there are infinitely many C1-conjugacy classes of these Reeb

components but one verifies that they are all C0-conjugate (see [HH]). Note also that

there are two C0-isotopy classes of these Reeb components characterized by the sign ±
in the definition of Ω±.

(3) Next, rotating a 2-dimensional Reeb component (A,Ω±) around the circle Σ, one

generates the solid torus Θ endowed with a 2-dimensional foliation R± which is griddled

by construction with Σ as set of singularities; the boundary torus is a compact leaf of

R± all interior leaves being proper planes spiraling onto the boundary. It will be called

a griddled Reeb component (see Figure 3).

By construction, isotopy and conjugacy in the family of griddled Reeb components

reduce to the corresponding relation in the family of Reeb Components of dimension 2.

Thus as an immediate consequence of (2) above, there are infinitely many C1-conjugacy

classes but only two C0-isotopy classes and one C0-conjugacy class of griddled Reeb

components.

(4) Finally observe that the boundary torus ∂Θ of a griddled Reeb component Θ

is a canonically griddled torus. Thus identifying the boundaries of two griddled Reeb

components, we define a griddled structure on S2 × S1. The identification is defined up

to a Dehn twist of ∂Θ along the fiber of the griddling of ∂Θ, this twist extends as a

griddled isomorphism of Θ and consequently the gluing of two Reeb components will be

independent of the gluing map. The resulting structure will be called a canonical griddled

Reeb structure of S2×S1. The underlying codimension 1 foliation F is the result of gluing
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Figure 3. Griddled Reeb component.

two Reeb components and it is not difficult to see that there will be two C0-conjugacy

classes of such Reeb structures depending on the fact that we glue two Reeb components

of the same sign or not.

Example 3.3. Regular griddled structures.

(1) Consider an orientable S1-bundle: S1 −−→ M
π−−→ B over a compact connected

surface B endowed with a 1-dimensional foliation L without singularities. The Euler

characteristic of B vanishes so B is either the 2-torus or the annulus A = S1 × [0, 1]

and F = π∗(L) is a codimension 1 foliation on M which is griddled by the S1-fibration:

its leaves are cylinders or tori and its singular set is empty. This family includes the

canonical structures of T2 × [0, 1] or T2 × S1; we call it the family of canonical regular

griddled structures; all these examples are defined by a free action of S1.

In particular, if B = A, the S1-bundle is trivial, M = T2 × [0, 1] and the foliation

F is any foliation by cylinders and tori; due to our conventions in Section 2, L and F
may be tangent to one boundary component and transverse to the other or tangent [resp.

transverse] to both.

(2) It is interesting to observe that the isotopy [or conjugacy] class of a canonical

regular griddled structure (M,F , C) is determined by the isotopy [or conjugacy] class of

the corresponding 1-dimensional foliation (B,L). We refer to [HC] for a classification of

these foliations on T2 or A. Indeed they are defined essentially by the “algebraic number”

of 2-dimensional Reeb components (compare Example 3.2 above). In particular, there

are infinitely many C0-conjugacy classes of such foliations and thus also of griddled

structures on the corresponding S1-bundles (see also [Kn1]).

(3) There are two special cases when the foliation L on the annulus A is either a

2-dimensional Reeb component or a so-called “spiraling zone” defined by the suspension

of a diffeomorphism g : [0, 1] → [0, 1] with {0, 1} as set of fix points. In each case

there is only one C0-conjugacy class and thus exactly one C0-conjugacy class for the

corresponding regular griddled structure on A× S1.
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(4) Finally note that if (B,L) is a Denjoy foliation (with so called exceptional leaves),

then any S1-bundle over B will produce a “Denjoy type” griddled structure: the codi-

mension 1 leaves will be cylinders and some of them are neither proper nor dense (see

[HH] for more details).

Next we generalize the gluing procedure used for the construction of the griddled

Reeb structures on S2 × S1:

Construction 3.4. Observe that for all the compact griddled manifolds with

boundary described in Examples 3.1, 3.2 or 3.3, any boundary component is a canoni-

cally griddled disk, cylinder, sphere or torus and we will obtain more examples by stick-

ing together such basic pieces by means of C1-diffeomorphisms of the boundary pieces

compatible with the codimension 1 foliations and preserving the griddled structures.

Moreover, in order to obtain a global C1-structure, it will be necessary, when gluing two

tangential boundary components, to assume that the derivatives of the corresponding

holonomy transformations coincide.

Finally note that there are two types of gluings: either we take two basic pieces with

isomorphic boundary components and glue them along these two components or we take

a connected manifold whose boundary has two isomorphic connected components and

identify them.

Next we describe some particularly interesting examples:

Example 3.5. Griddled manifolds obtained by gluing basic pieces.

(1) First, suppose that M is one of the four manifolds D2×[0, 1], S2×[0, 1], T2×[0, 1]

or D2 × S1 endowed with its canonical griddled structure coming from the canonical

griddled structure of D2, S2 or T2 (see Examples 3.1 and 2.2).

a) If we glue two copies of M along tangential boundary disks, spheres or tori, we

obtain the same manifold M with a canonical structure; in particular the result

does not depend on the gluing map.

b) We may also identify the transversal boundary components ∂D2×[0, 1] of two copies

of D2×[0, 1] producing a canonical S2×[0, 1]. Similarly, we obtain a canonical S2×S1
when sticking together two copies of the canonical D2 × S1.

c) Finally we identify the two tangential boundary components of one copy of M .

For M = D2 × [0, 1], we get a canonical D2 × S1; the situation is similar for

M = S2 × [0, 1] due to the first observation in 2.5 and we get a canonical S2 × S1.

Last for M = T2 × [0, 1], the gluing is homotopic to a multiple of the Dehn twist

(see Remark 2.5) and the resulting griddled manifold (M̃,F , C) is any S1-bundle

over T2 which is also a T2-fibration over S1.

(2) A little bit more generally, we can stick together two copies of T2 × [0, 1] en-

dowed with a priori different regular structures provided they admit isomorphic boundary

components (tangential or transversal); we obtain a new regular structure. The result

is similar when identifying the two boundary components of some griddled T2 × [0, 1]

assuming they are griddled isomorphic.
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(3) So far, our previous descriptions in (1) and (2), did not produce any new example.

Fortunately, the situation will be different when using Reeb components as basic pieces.

To generalize the construction of the Reeb structure on S2 × S1, we consider a regular

griddled manifold (T2× [0, 1],F , C) with F tangent to the boundary and stick it together

with one or two griddled Reeb components. The global manifold M we obtain, will

be either D2 × S1 or S2 × S1 but due to the presence of the factor T2 × [0, 1], this

construction provides countably many different isotopy or conjugacy classes of griddled

structures on M .

Of course in order to obtain C1-examples, it will be necessary to control the holo-

nomy groups of the tangential boundary pieces.

4. Griddled foliated 3-manifolds: classification.

Here, we want to show that the list of compact griddled foliated manifolds described

in the previous Section 3 is complete; that is any griddled foliated manifold is conjugate

to one of them. To do so we first describe some elementary properties of these manifolds.

So let (M,F , C) be a compact griddled 3-manifold. Its singular set Σ is closed thus

M̂ = M \ Σ is an open subset of M with a regular foliation Ĉ by circles. For x ∈ M̂ we

denote by Lx the leaf of F through x and by cx the corresponding leaf of C. We first

study the holonomy groups hol(cx, C) and hol(Lx,F) of cx and Lx with respect to C and

F respectively:

Lemma 4.1. For any x ∈ M̂ , there is an injective group homomorphism

φ : hol(cx, C) → hol(Lx,F).

In particular if Lx is a plane or a sphere, the group hol(cx, C) is trivial.

Proof. (1) Fix x ∈ M̂ , there exists an open cube U ⊂ M̂ which is a neighborhood

of x and which is distinguished for both foliations F and C. Moreover there exists a system

of coordinates (u, v, t) on U such that the restrictions

a) FU is defined by the equation dt = 0,

b) CU is defined by du = dt = 0.

Finally take a global section Tx of CU through x. Then as C is a subfoliation of F , the

holonomy transformation associated to the loop cx with respect to C is a local transfor-

mation hx : (Tx, x) → (Tx, x) which preserves the foliation induced on Tx by F . This

means that in our system of coordinates hx can be written as

hx(y) = hx(u, t) = [f(u, t), g(t)]

for any point y = (u, t) in Tx sufficiently close to x = (0, 0), where f and g are two

real valued functions. The germ [g] of g defines an element in hol(Lx,F) and we define

φ by setting φ([hx]) = [g], where [hx] is the germ of hx in x; it is of course a group

homomorphism.
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(2) To prove the injectivity of φ, observe that [hx] belongs to the kernel of φ means

that the germ [g] is trivial that is g(t) = t in a neighborhood of 0 and for any y = (u, t),

hx(y) = hx(u, t) = [f(u, t), t].

Moreover, for t = 0, the function f(u, 0) defines the holonomy transformation associated

to the loop cx with respect to the foliation CLx induced by C on the leaf Lx ∈ F . This

latter foliation is a transversely oriented foliation by circles on a surface thus without

holonomy, hol(cx, CLx) is trivial and

f(u, 0) = u

in a neighborhood of x in Lx.

As the similar observation holds for any y = (u, t) close to x and the foliation CLy

induced by C on the leaf Ly ∈ F , we get

hx(y) = hx(u, t) = [f(u, t), t] = (u, t) = y

and hol(cx, C) is trivial. The rest follows. □

Lemma 4.2. If Σ = ∅, the griddled structure C is a locally trivial S1-bundle:

S1 −−→M
π−−→ B defining a canonical regular structure as in Example 3.3.

In particular, for J equal to [0, 1] or S1, any griddled structure supported by the

trivial fibration π : T2 × J → J is a canonical one.

Proof. As M is compact (possibly with boundary) and C is of class C1, the

fundamental theorem of [E] implies that C may be defined by a locally free action of

S1 so that any holonomy group hol(cx, C) is finite cyclic. On the other hand, as F is

transversely orientable, any non trivial element of hol(Lx,F) has infinite order so that the

image of the homomorphism φ provided by Lemma 4.1 is trivial implying that hol(cx, C)

is trivial. This means that the action of S1 is free and C is a locally trivial fibration. We

conclude that C is canonical.

In the particular case when M = T2×J , any bundle S1 →M → B over a surface B

is determined by the common homotopy class of the fibers: it is indeed a trivial bundle

therefore conjugate to a canonical regular structure. Our proof is complete. □

Remark 4.3. The previous result applies in particular to the case of T2 × [0, 1] ∼=
A×S1 where A is foliated as a 2-dimensional Reeb component or a spiraling zone (compare

with point (3) in Example 3.3).

The proof of the previous lemma uses strongly the fact that M is compact; in

particular the argument does not extend a priori to (M̂, Ĉ). Nevertheless we will see

later that, in any case, all regular leaves of C have trivial holonomy. Before proving this

point we focus on the description of the singular set Σ.

Lemma 4.4. If F is the trivial fibration by disks π : D2×J → J , where J is either

[0, 1] or S1, then C is topologically conjugate to the canonical griddled structure on D2×J .
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In particular Σ is a topological submanifold (possibly not differentiable) of D2 × J .

Proof. By definition, any fiber of π is endowed with a structure conjugate to

the canonical griddled structure of D2. Therefore, there is a section σ of π such that

Σ = σ(J) and due to the continuity of C, this section is continuous and Σ is a continuous

arc transverse to F ; we may identify it with {0} × J by means of a fiber preserving

isotopy.

On the other hand, it is not difficult to see that there exists a family of fiberwise

conjugacies which depend continuously on the transverse parameter defined by J thus

defining a global conjugacy. Indeed according to Lemma 4.1, the foliation Ĉ has trivial

holonomy, therefore the length (for some Riemannian metric) of its leaves defines a C1-

function α that extends continuously to {0}×J . Then take a unit vector field X tangent

to Ĉ and note that αX is a periodic vector field whose flow defines an S1 action generating

Ĉ. By averaging, one gets a C1-Riemannian metric on M̂ invariant by this action; one

can see this metric as a C1 path of invariant Riemannian metrics on the punctured disk

and the wanted conjugacy is then given by a parametric version of the Gauss Lemma

expressing a Riemannian metric in polar coordinates. □

Lemma 4.5. Any connected component Σ0 of Σ is homeomorphic to [0, 1] or S1
and admits a closed tubular neighborhood τ(Σ0) which is C-saturated and isomorphic to

a canonically griddled D2 × [0, 1] or D2 × S1.
Globally, Σ is a compact 1-manifold transverse to F ; ifM is closed, it is a transverse

link.

Proof. Let U0 be a F-distinguished open cube which is a neighborhood of a point

z0 ∈ Σ0 and let P0 ⊂ U0 be the F-plaque of U0 containing z0. According to Lemma 2.3,

we know that z0 is a center for the local restriction of C to P0 and that Lz0 is a plane or

a sphere. Then there exists a point x ∈ P0 such that cx bounds a closed disk Dx ⊂ P0

with z0 ∈ Dx.

Assume that z0 belongs to the interior of M ; again by Lemma 4.1, the loop cx has

trivial C-holonomy. This means that any arc γ : [−1, 1] → Tx ⊂ U0, γ(0) = x, transverse

to F will be pointwise fixed by the holonomy transformation hx thus generates a compact

cylinder Γ = ∪t∈[−1,+1]cγ(t) transverse to F . Each circle cγ(t) bounds a C-saturated disk

Dγ(t) contained in Pγ(t) and by Lemma 2.3, Dγ(t) supports a canonical griddled structure

with a unique singularity zγ(t). Consequently according to Lemma 4.4, Θ = ∪t∈[−1,1]Dγ(t)

is isomorphic to the canonically griddled D2 × [0, 1] (see Figure 4). We proceed in a

similar way when z0 belongs to ∂M with the difference that γ will be parametrized by

[0, 1] instead of [−1,+1]. We conclude that Σ is a 1-dimensional manifold transverse to

F and to the boundary when ∂M ̸= ∅.

Finally, we globalize the previous argument as follows: we take a global tubular

neighborhood U of Σ0 and a transverse arc γ ⊂ U parametrized by Σ0 which meets

every fiber of U in exactly one point. Again we may assume that the corresponding

circles cγ(t) are contained in U and dealing as before, we construct a C-saturated tubular

neighborhood of Σ0 contained in U . It is the wanted neighborhood τ(Σ0). □
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Figure 4. Conjugation of a neat tubular neighborhood of closed singular

curve of the griddling with the standard one.

Definition 4.6. The tubular neighborhood τ(Σ0) provided by Lemma 4.5 will be

called a neat tubular neighborhood of Σ0. If Σ has several connected components, we

define a neat tubular neighborhood τ(Σ) of Σ as being the topological sum of pairwise

disjoint neat neighborhoods of each component.

Lemma 4.7. In any case, the restriction Ĉ of C is a locally trivial fibration by

circles of M̂ = M \ Σ.

Proof. Indeed for any point x ∈ M̂ , there exists a neat tubular neighborhood

τ(Σ) of Σ which does not intersect the circle cx. Applying Lemma 4.2 to the compact

griddled submanifold M \ int[τ(Σ)], we see that cx has trivial holonomy. As this holds

for any x ∈ M̂ , we conclude that Ĉ has trivial holonomy thus is a fibration by circles. □

There are two more particular cases of interest:

Lemma 4.8. If F is the trivial fibration by spheres π : M = S2 × J → J , where J

is either [0, 1] or S1, then C is topologically conjugate to the canonical griddled structure

on S2 × J .

In particular, the singular set Σ has two connected components.

Proof. In any case, the restriction of π to Σ is a two fold covering of J . Now,

there are two possibilities:

(1) First, if J = [0, 1], the singular set Σ has two connected components Σ0 and

Σ1 both homeomorphic to [0, 1] and if τ(Σ0) is a neat tubular neighborhood of Σ0, then

M \ int[τ(Σ0)] is a neat neighborhood τ(Σ1) of Σ1. Gluing these neighborhoods together,

we obtain a canonical griddled S2 × [0, 1].

(2) For J = S1, we claim that Σ has still two connected components and the re-

striction of π to any of these components is a homeomorphism onto S1. Indeed, assume

that Σ is connected; it still cuts each fiber of π in two points. Take a neat tubular

neighborhood τ(Σ), the restriction of π to the compact manifold N = M \ int[τ(Σ)] will

define an orientable fibration of N over the circle with fiber the annulus A. But ∂τ(Σ)
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being connected, so will be ∂N and thus the monodromy map ϕ : A → A exchanges the

two oriented boundary components of A. Since these boundary components are circles

belonging to C, we get a contradiction with the assumption that C is orientable.

Now the argument already used in (1) above applies showing that the griddled

structure on S2 × S1 is the canonical one. □

Lemma 4.9. Any griddled structure C supported by a Reeb component is conjugate

to a canonical one.

Proof. Take a griddled Reeb component (D2 × S1,R, C). As each planar leaf

of R contains exactly one singularity, it follows that the singular set Σ of C is a closed

transversal to R ambient isotopic with the transversal {0}× S1 by an isotopy preserving

each individual leaf of R. Take a neat tubular neighborhood τ(Σ) of Σ, the compact

submanifold

N = (D2 × S1) \ int[τ(Σ)]

is homeomorphic to T2 × [0, 1] with the foliation induced by R tangent to one boundary

component and transverse to the other. The traces on N of the planar leaves are cylinders

homeomorphic to S1 × [0,+∞[ while the restriction of C is a circle bundle over A =

N/C. Except the border leaves, all leaves of the one-dimensional foliation L = R/C are

homeomorphic to [0,+∞[, transverse to one boundary component of A and spiraling

around the other. We say that L is the “suspension” of a contraction [0, 1] → [0, x0], 0 <

x0 < 1 (see Figure 5). We recover D2 × S1 by gluing together τ(Σ) and N along their

transverse boundary tori.

Now, take another griddled Reeb structure C∗ supported by the same foliation R and

consider the corresponding decomposition [τ(Σ∗), N∗] of the Reeb component (D2×S1,R)

obtained from C∗. The 1-dimensional foliation L∗ is conjugate to L, because both are

“suspension” of contractions as above. Therefore the two griddled manifolds N and N∗
are conjugate as well. The two neighborhoods τ(Σ) and τ(Σ∗) are conjugate according to

Lemma 4.5. Finally, these conjugacies are compatible with the gluing maps and provide

a global conjugacy between the two structures C and C∗. □

x0

1

0

Figure 5. “Suspension” of a contraction.
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Remark 4.10. Observe that any example of compact griddled 3-manifolds we have

obtained so far is one of the following list:

i) D2 × [0, 1], D2 × S1, S2 × [0, 1] or T2 × [0, 1] if ∂M ̸= ∅,

ii) S2 × S1 or any S1-bundle over T2 if ∂M = ∅.

Moreover on D2 × [0, 1] or S2 × [0, 1] there is just one griddled structure while on all

others, there exist countably many different ones.

We come to our classification result. Take again a connected component Σ0 of

the singular set Σ of the griddled foliated manifold (M,F , C) and observe that the F-

saturation Ω0 of Σ0 is an open F-saturated subset of (M,F) thus its closure Ω0 is

saturated as well and we have two partial results:

Lemma 4.11. If some leaf L ⊂ Ω0 is a disk or a sphere, then Ω0 = M and (M,F)

is the trivial L-bundle over S1 or [0, 1] with its canonical griddled structure.

Proof. The first part of the statement is a direct consequence of the global Reeb

stability theorem in codimension 1 (see for example [CC]). We identify the griddled

structure using Lemmas 4.4 and 4.8. □

Lemma 4.12. If some leaf L ⊂ Ω0 is a plane, then Ω0 is a canonically griddled

Reeb component.

Proof. Of course any leaf in Ω0 admits a singularity and having one planar leaf,

we deduce from Lemma 4.11, that all leaves in Ω0 are planes. Moreover because the

griddled structure of a plane has just one singularity, these planes cut Σ0 in exactly one

point, so they are proper leaves closed in Ω0. Consequently as M is compact, L cannot

be closed in M and therefore Ω0 ̸= M . Now, there exists a transverse arc γ : [0, 1] →M

which does not meet Σ and verifies

γ(0) ∈ Ω0 \ Ω0 and γ(t) ∈ Ω0 for t ∈ ]0, 1].

We make two observations:

(1) According to Lemma 4.11, the leaf Lγ(0) through γ(0) is neither a disk nor a

sphere. Nor is it a plane because if this would be the case, Lγ(0) would meet a component

Σ1 of Σ which by continuity would also meet the nearby planes Lγ(t) for small t. But any

such plane meets Σ in a unique point, so we would conclude that Σ1 = Σ0 contradicting

the fact that Lγ(0) is not contained in Ω0.

(2) From (1) above, we deduce that Lγ(0) is a torus or a cylinder and the leaf c0 ∈ C
through γ(0) is not null homotopic in Lγ(0). But according to Lemma 4.7, its holonomy

transformation is trivial so that the one parameter family Γ = {cγ(t)}t∈[0,1] is a continuous

family of embedded circles such that cγ(t) is null-homotopic in Lγ(t) because the latter is a

plane for any t ∈ ]0, 1]. In other words, the loop cγ(0) is a non trivial vanishing cycle which

by Novikov’s celebrated theorem, is supported by a 2-torus bounding a Reeb component

(note that Novikov’s theorem initially stated for C2-foliations (see [N]), remains valid in

class C0 see [AHS]). The final result follows using Lemma 4.9. □
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Lemma 4.13. If F has at least one planar leaf, M will be obtained by gluing one or

two griddled Reeb components along the boundaries of some regularly griddled T2× [0, 1],

possibly reduced to a single torus. Moreover M is diffeomorphic to D2 × S1 or S2 × S1
with one of the structures described in (3) of Construction 3.4.

Proof. According to Lemma 4.11, any leaf of F is a torus, a cylinder or a plane

and by Lemma 4.12, any plane is contained in a griddled Reeb component. Now as M is

compact, it contains at most finitely many Reeb components and if we cut them off, the

remainder will be a compact saturated submanifold N supporting a regularly griddled

foliation. If N is empty, M will be obtained by gluing two Reeb components, on the

other hand, if N ̸= ∅, Lemma 4.2 implies that any connected component N0 of N is an

orientable S1-bundle over A, thus N0
∼= T2 × [0, 1] and ∂N0 is the union of two griddled

tori. If we stick N0 together with at most two Reeb components, we obtain a closed

manifold. We conclude that N is indeed connected, diffeomorphic to T2× [0, 1] and M is

obtained by gluing one or two griddled Reeb components along the boundary components

of N : the resulting manifold is D2 × S1 or S2 × S1 with the structure described in (3) of

Construction 3.4. □

We now reach to the wanted classification (compare with Theorem A):

Theorem 4.14. The list of griddled foliated 3-manifolds described in Section 3 is

complete. More precisely, a compact 3-manifold M supports a griddled foliation of class

C1 if and only if M is diffeomorphic to one of the following manifolds:

i) D2 × [0, 1], D2 × S1, S2 × [0, 1] or T2 × [0, 1] if ∂M ̸= ∅,

ii) S2 × S1, T3 or any S1-bundle over T2 if ∂M = ∅.

Moreover if M is either D2 × [0, 1] or S2 × [0, 1], all griddled structures on M are C0-

isotopic while in the remaining cases, M supports countably many different C0-isotopy

and C0-conjugacy classes of griddled structures.

Proof. If F has a leaf homeomorphic to D2 or S2, we conclude by Lemma 4.11

and if Σ is empty we apply Lemma 4.2. So, according to Lemma 4.12, it remains to

consider the case when F has a planar leaf and we conclude using Lemma 4.13.

Concerning the number of isotopy classes of griddled structures, we remark that the

only allowed codimension 1 foliations on D2× [0, 1] or S2× [0, 1] are just the trivial fibra-

tions: this implies that any griddled structure is a canonical one (see Remark 4.10), on

the other hand all other manifolds which are considered contain eventually a submanifold

diffeomorphic to T2 × [0, 1], thus support infinitely many griddled structures according

to Remark 4.10. □

It is worth noting that the 3-sphere does not support any griddled structure.

5. Topological canal foliations on 3-manifolds.

Consider a finite family D = {F1, F2, . . . , Fk} of compact leaves of a codimension

1 compact foliated manifold (M,F). Cutting M along these leaves, we produce a fi-
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nite family {N1, N2, . . . , Nl} of compact foliated manifolds and a foliation preserving

submersive map

ψ :
⨿
j

Nj →M.

The restriction of ψ either to the interior or to any boundary component of any Nj is

injective. We call ψ a foliated decomposition of (M,F) defined by the fundamental family

D of compact leaves. Now we introduce our last concept to be considered:

Definition 5.1. A codimension 1 foliation F on a compact connected 3-manifold

M (possibly with boundary) is a topological canal foliation if there exists a foliated

decomposition ψ :
⨿

j Nj →M of (M,F) defined by a fundamental family D of compact

leaves verifying the two following conditions:

i) for each j, the foliation Fj induced by F on Nj is tangent to the boundary, admits

a griddled structure Cj and any component of ∂Nj is a regularly griddled torus,

ii) any fundamental torus Fi ∈ D being the image by ψ of two boundary components

of
⨿

j Nj will be endowed with two griddled structures and these structures are

transverse to each other.

The elements of D are called the turning leaves of F and the manifolds Nj are its

griddled components.

One justification for this definition is that we want geometric canal foliations of the

3-sphere to be a special case of topological canal foliations. Note also that our topological

canal foliations may be of any differentiability class.

Example 5.2. (1) Taking the empty fundamental family of compact leaves, we

see immediately that any griddled foliation is a topological canal foliation.

(2) Any geometric canal foliation of S3 where no planar leaf of a Reeb component

has a spherical cap, that is a disc isometric to a piece of a round sphere, is a topological

canal foliation (see Theorems 4.2.1 and 4.2.3 in [LW2]). Indeed, in a geometric canal

foliation, there exists a finite number of Dupin cyclides Di with two orthogonal griddled

structures induced and the pieces obtained by cutting along these Dupin cyclides are

griddled.

(3) Next we adapt Construction 3.4 to this more general setting: we glue together

griddled pieces along tangential boundary components with the weaker requirement that

the gluing maps either identify the corresponding griddled structures or map one trans-

versely to the other. The manifold obtained by this procedure will be endowed with a

topological canal foliation.

There are two particularly interesting cases:

(3.1) as any lens space is obtained by sticking together two solid tori, thus we can de-

fine a canal foliation on any lens space by gluing conveniently two griddled Reeb

components (with flat holonomy); its singular set will be a link with two branches;
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(3.2) identifying the two boundary components of some griddled T2× [0, 1], we construct

similarly a regular canal foliation on any T2-bundle over S1.

Putting together the classification Theorem 4.14 of griddled 3-manifolds and the

results of construction (3) in the above Example 5.2, we will obtain a complete description

of all manifolds which support topological canal foliations. Recall that a canal foliation

is regular if it is without singularities, then the following is an analogue of Lemma 4.13.

Lemma 5.3. Let (M,F) be a topological canal foliation on a compact manifold

M . If F has a planar leaf, M will be obtained by gluing one or two griddled Reeb

components along the boundaries of some T2× [0, 1], possibly reduced to a single leaf, and

endowed with a regular topological canal foliation tangent to the boundary. Moreover M

is diffeomorphic to D2 × S1, S2 × S1, S3 or any lens space.

Proof. Observe that any griddled component of F is F-saturated, any planar

leaf of F is contained in a griddled Reeb component and Lemmas 4.11, 4.12 and 4.13

can be adapted to topological canal foliations. Thus proceeding exactly as in the proof

of Lemma 4.13, we conclude that M is obtained by sticking together one or two Reeb

components with a manifold P = T2 × [0, 1] endowed with a topological canal foliation

without singularities. The class of resulting manifolds is larger than that of griddled

foliated manifolds (see Lemma 4.13) because of the weaker requirements on the gluing

maps; in particular we obtain all lens spaces as observed in (3.1) of Example 5.2. □

Again, we get the following complete classification (compare with Theorem B):

Theorem 5.4. A topological canal foliation of class C1 on a compact manifold is

either griddled or obtained by gluing two or three compact griddled foliated pieces. There-

fore a compact 3-manifold M supports such a foliation if and only if it is diffeomorphic

to one of the following :

i) D2 × [0, 1], D2 × S1, S2 × [0, 1] or T2 × [0, 1] if ∂M ̸= ∅,

ii) S2 × S1, S3 or any lens space, T3 or any S1-bundle over T2 if ∂M = ∅.

Moreover all manifolds M listed in ii) support countably many different C0-isotopy and

C0-conjugacy classes of such foliations.

Observation 5.5. The meaning of ∼= depends on the differentiability class of a

foliation under consideration. In Theorem 5.4, the foliation is of class C1, we make the

same assumption in this observation, so ∼= should mean “diffeomorphic of class C1”.

(1) Observe that any topological canal foliation (M,F) on a closed manifold M , is

of one of the following two types:

a) either it admits a maximal regular component P ∼= T2 × [0, 1], possibly reduced to

a single toral leaf,

b) or it is a T2-bundle over S1 thus is the quotient of a maximal regular component

P ∼= T2 × [0, 1] by a monodromy map φ : T2 × {0} → T2 × {1}.
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In both cases, we call P the kernel of (M,F).

(2) Now write T2 as a product A×B of two circles and lift this product structure to

all toral leaves in the kernel P ∼= T2 × [0, 1]; we will say that it defines a coherent system

of meridians and parallels on P .

Using the previous notion, we introduce a particular class of topological canal foli-

ations:

Definition 5.6. i) A griddled structure on T2 × [0, 1] endowed with a coherent

system of meridians and parallels will be called of meridian (resp. parallel) type if all its

fibers are homotopic to A (resp. to B).

ii) A topological canal foliation F on M will be called of strong type if there exists

a coherent systems of meridians and parallels on the kernel of F such that the griddled

structure induced on any toral leaf of F is either of meridian or of parallel type.

Now, observe that the group Γ of isotopy classes of orientation preserving diffeomor-

phisms of T2 which preserve a product structure T2 = A × B identifies with the group

of matrices {
±
(

0 1

−1 0

)
,±Id

}
.

Thus, for canal foliations of strong type, Theorem 5.4 reduces to the following:

Corollary 5.7. There are only finitely many closed 3-manifolds M which support

a topological canal foliation of strong type; precisely M will be diffeomorphic to one of

the following :

i) S3 or S2 × S1,

ii) a T2-bundle over S1 with monodromy map φ whose isotopy class belongs to Γ.

But on each of these manifolds there are infinitely many different C0-isotopy or

C0-conjugacy classes of canal foliations of strong type.

Recall that geometric canal foliations were supposed to be of class C2, and we get

Theorem C:

Theorem 5.8. A topological canal foliation F of class C2 on S3 is C0-conjugate

to a geometric one if and only if it is of strong type.

Proof. The characteristic circles of a geometric canal foliation on S3 define a

coherent system of meridians and parallels on its kernel and thus any geometric canal

foliation is a topological canal foliation of strong type (see [LW2]).

To prove the converse statement, recall that a topological canal foliation F of strong

type on S3 will be obtained by gluing two griddled Reeb components along the boundary

components of its kernel P ∼= T2 × [0, 1]. As F is of strong type, P will admit a coherent

system of meridians and parallels and the two Reeb components will be one of meridian

and the other of parallel type.



61

Topological canal foliations 61

Then the conformal structure on the torus defined by the product decomposition

T2 = A×B extends to all leaves of F and defines a structure of geometric canal foliation

on F . □

Finally we construct a smooth topological canal foliation on S3 which is not conjugate

to a geometric one.

Example 5.9. Write T2 = A × B as in Definition 5.6 and consider the trivial

fibration C∗ by circles π : P = T2 × [0, 1] → A whose fibers are in the homotopy class of

A+B. According to example (1) in Example 3.3, there exists a codimension 1 foliation

F∗ on P tangent to the boundary such that C∗ is a griddled structure on F∗. We glue a

griddled Reeb component R0 along T2 × {0} in such a way that the griddled structure

on ∂R0 is identified with a fibration of meridian type of T2 × {0} and a second one R1

along T2 × {1} with the griddled structure of ∂R1 identified with a parallel fibration.

We obtain a foliated closed 3-manifold (M,F) which is the 3-sphere endowed with a

topological canal foliation F . It is not a geometric one because it is not of strong type.

As no manifold listed in Theorem 5.8 admits a hyperbolic metric, we get:

Corollary 5.10. There are no canal foliations on compact hyperbolic 3-manifolds.

6. The non-orientable case.

There are three ways to enlarge the family of griddled or canal foliated manifolds by

allowing the griddled structure C, the codimension 1 foliation F or even the manifold M

to be non orientable. We describe next some new examples and new phenomena which

will occur already when keeping M orientable.

Example 6.1. (1) Let σ : S2 → S2 be the diffeomorphism of the unit sphere

S2 ⊂ R3(x, y, z) obtained by composing the symmetries with respect to the planes y = 0

and z = 0. It enjoys the following properties:

a) σ is orientation preserving thus isotopic to the identity,

b) it preserves globally the canonical griddled structure C∗ of S2 but reverses its ori-

entation.

Thus the S2-bundle F0 over S1 with monodromy σ is the trivial bundle endowed

with a non orientable griddled structure C0 and as σ exchanges the two singularities of

C∗, the singular set Σ of C0 is connected.

As in the orientable case, the singular set Σ admits a neat tubular neighborhood

τ(Σ) and the compact griddled manifold N = M \ int[τ(Σ)] will be an orientable bundle

F1 over the circle with fiber the annulus A = S1 × [−1,+1]. Its monodromy exchanges

the two boundary components of A so that the boundary of N is connected and is indeed

a torus. This monodromy preserves globally the natural fibration of A by circles thus

induces a canonical regular griddled structure C1 supported by F1.

(2) Take the griddled manifold (N,F1, C1) described above; the foliation F1 is trans-

verse to the boundary; we make it spiral along ∂N and obtain a foliation F tangent to
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the boundary whose non compact leaves are cylinders: it is the cylindrical component

of Moussu–Roussarie (see [MR]). It is not difficult to see that we may assume the spi-

raling to be compatible with the fibration C1 and we obtain a regular griddled structure

C supported by F which is tangent to the boundary of N ; we call (N,F , C) a griddled

cylindrical component.

More generally, the total space of a non-orientable S1-bundle over the Klein bottle

or the Möbius band will be orientable thus providing more examples of regular griddled

foliated manifolds.

(3) Gluing a (N,F , C) with a griddled Reeb component we obtain a non orientable

griddled structure on S2 × S1 whose singular set is now connected.

References

[AHS] F. Alcalde, G. Hector and P. Schweitzer, Vanishing cycles and generalized Reeb components,

preprint, 2017.

[BLW] A. Bartoszek, R. Langevin and P. Walczak, Special canal surfaces of S3, Bull. Braz. Math.

Soc., 42 (2011) 301–320.

[BW] A. Bartoszek and P. Walczak, Foliations by surfaces of a peculiar class, Ann. Polon. Math., 94

(2008), 89–95.

[CSW] G. Cairns, R. W. Sharpe and L. Webb, Conformal invariants for curves in three dimensional

space forms, Rocky Mountain J. Math., 24 (1994), 933–959.

[CC] A. Candel and L. Conlon, Foliations I, II, Amer. Math. Soc., Providence, 2000 and 2003.

[EMS] R. D. Edwards, K. C. Millet and D. Sullivan, Foliations with all leaves compact, Topology, 16

(1977), 13–32.

[ E ] D. B. A. Epstein, Periodic flows on three-manifolds, Annals of Math., 95 (1972), 66–82.

[H ] G. Hector, Feuilletages en cylindres, In: Geometry and Topology, Rio de Janeiro, 1976, Lecture

Notes in Math., 597, Springer, 1977, 252–270.

[HC] G. Hector and M. A. Chaouch, Dynamiques source-puits et flots transversalement affines, Con-

temp. Math., 498 (2009), 99–126.

[HH] G. Hector and U. Hirsch, Introduction to the geometry of foliations, Part A and B, Vieweg,

1981.
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