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Abstract. We prove a scale-invariant boundary Harnack principle for
inner uniform domains over a large family of Dirichlet spaces. A novel fea-

ture of our work is that we do not assume volume doubling property for the
symmetric measure.

1. Introduction.

Let (X , d) be a metric space, and assume that associated with this space is a structure

which gives a family of harmonic functions on domains D ⊂ X . (For example, Rd with

the usual definition of harmonic functions.) The elliptic Harnack inequality (EHI) holds

if there exists a constant CH such that, whenever h is non-negative and harmonic in a

ball B(x, r), then, writing B/2 = B(x, r/2),

ess sup
B/2

h ≤ CH ess inf
B/2

h. (1.1)

Thus the EHI controls harmonic functions in a domain D away from the boundary ∂D.

On the other hand, the boundary Harnack principle (BHP) controls the ratio of two

positive harmonic functions near the boundary of a domain. The BHP given in [Anc]

states that if D ⊂ Rd is a Lipschitz domain, ξ ∈ ∂D, r > 0 is small enough, then for any

pair u, v of non-negative harmonic functions in D which vanish on ∂D ∩B(ξ, 2r),

u(x)

v(x)
≤ C

u(y)

v(y)
for x, y ∈ D ∩B(ξ, r). (1.2)

The BHP is a key component in understanding the behaviour of harmonic functions near

the boundary. It will in general lead to a characterisation of the Martin boundary, and

there is a close connection between BHP and a Carleson estimate—see [ALM], [Aik08].

(See also [Aik08] for a discussion of different kinds of BHP.)

The results in [Anc] have been extended in several ways. The first direction has been

to weaken the smoothness hypotheses on the domain D; for example [Aik01] proves a

BHP for uniform domains in Euclidean space. A second direction is to consider functions

which are harmonic with respect to more general operators. The standard Laplacian is

the (infinitesimal) generator of the semigroup for Brownian motion, and it is natural to

ask about the BHP for more general Markov processes, with values in a metric space

2010 Mathematics Subject Classification. Primary 31B25, 31B05.
Key Words and Phrases. boundary Harnack principle, elliptic Harnack inequality.
The first author was partially supported by NSERC (Canada). The second author was partially

supported by NSERC (Canada) and the Pacific Institute for the Mathematical Sciences.

https://doi.org/10.2969/jmsj/77057705


384(36)

384 M. T. Barlow and M. Murugan

(X , d). In [GyS] the authors prove a BHP for inner uniform domains in a measure metric

space (X , d,m) with a Dirichlet form which satisfies the standard parabolic Harnack

inequality (PHI). These results are extended in [L] to spaces which satisfy a parabolic

Harnack inequality with anomalous space-time scaling. In most cases the BHP has

been proved for Markov processes which are symmetric, but see [LS] for the BHP for

some more general processes. All the papers cited above study the harmonic functions

associated with continuous Markov processes: see [Bog], [BKK] for a BHP for a class

of jump processes.

The starting point for this paper is the observation that the BHP is a purely elliptic

result, and one might expect that the proof would only use elliptic data. However, the

generalizations of the BHP beyond the Euclidean case in [GyS], [LS], [L] all use parabolic

data, or more precisely bounds on the heat kernel of the process.

The main result of this paper is as follows. See Sections 2, 3 and 4 for unexplained

definitions and notation.

Theorem 1.1. Let (X , d) be a complete, separable, locally compact, length space,

and let µ be a non atomic Radon measure on (X , d) with full support. Let (E ,F) be a

regular strongly local Dirichlet form on L2(X , µ). Assume that (X , d, µ, E ,F) satisfies

the elliptic Harnack inequality, and has Green functions which satisfy the regularity hy-

pothesis Assumption 4.9. Let U ⊊ X be an inner uniform domain. Then there exist

A0, C1 ∈ (1,∞), R(U) ∈ (0,∞] such that for all ξ ∈ ∂ŨU , for all 0 < r < R(U) and any

two non-negative functions u, v that are harmonic on BU (ξ, A0r) with Dirichlet boundary

conditions along ∂ŨU ∩BŨ (ξ, 2A0r), we have

ess sup
x∈BU (ξ,r)

u(x)

v(x)
≤ C1 ess inf

x∈BU (ξ,r)

u(x)

v(x)
.

The constant R(U) depends only on the inner uniformity constants of U and diameter(U),

and can be chosen to be +∞ if U is unbounded.

Remark 1.2. (1) The constant A0 above depends only on the inner uniformity

constants for the domain U , and C1 depends only on these constants and the constants

in the EHI.

(2) Since the EHI is weaker than the PHI, our result extends the BHP to a wider class

of spaces; also our approach has the advantage that we can dispense with heat kernel

bounds. Our main result provides new examples of differential operators that satisfy the

BHP even in Rn—see [GS, (2.1) and Example 6.14].

(3) By the standard oscillation lemma (see [GT2, Lemma 5.2]), any locally bounded

harmonic function admits a continuous version. The elliptic Harnack inequality implies

that any non-negative harmonic function is locally bounded. Therefore, under our as-

sumptions, every non-negative harmonic function admits a continuous version.

(4) Let µ′ be a measure which is mutually absolutely continuous with respect to the

measure µ in the Theorem above, and suppose that dµ′/dµ is bounded away from 0 and

infinity on compact subsets of X . Then (see Remark 4.13) this change of measure does

not change the family of harmonic functions, or the Green functions, and the hypotheses

of Theorem 1.1 hold for (X , d, µ′, E ,F). On the other hand, heat kernel bounds and
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parabolic Harnack inequality are not in general preserved by such a change of measure

because dµ′/dµ need not be bounded away from 0 or infinity on X .

The contents of this paper are as follows. In Section 2 we give the definition and basic

properties of inner uniform domains in length spaces. Section 3 reviews the properties of

Dirichlet forms and the associated Hunt processes. In Section 4 we give the definition of

harmonic function in our context, state Assumption 4.9, and give some consequences. In

particular, we prove the essential technical result that Green functions are locally in the

domain of the Dirichlet form—see Lemma 4.10. The key comparisons of Green functions,

which follow from the EHI, and were proved in [BM], are given in Proposition 4.11. In

the second part of this section we give some sufficient conditions for Assumption 4.9 to

hold, in terms of local ultracontractivity. We conclude Section 4 with two examples:

weighted manifolds and cable systems of graphs.

After these rather lengthy preliminaries, Section 5 gives the proof of Theorem 1.1.

We follow Aikawa’s approach in [Aik01], which proved the BHP for uniform domains

in Rn. This method has been adapted to more general settings [ALM], [GyS], [LS],

[L]. The papers [GyS], [LS], [L] all consider domains in more general metric spaces,

and use heat kernel estimates to obtain two sided estimates for the Green function in a

domain; these estimates are then used in the proof of the BHP. For example [L, Lemma

4.5] gives upper and lower bounds on gD(x, y) when D is a domain of diameter R, and

the points x, y are separated from ∂D and each other by a distance greater than δR.

These bounds are of the form Ψ(R)/µ(B(x,R)); here Ψ : [0,∞) → [0,∞) is a global

space time scaling function. (See [L] for the precise statement.) In our argument we use

instead the comparison of Green functions given by Proposition 4.11.

We use c, c′, C, C ′ for strictly positive constants, which may change value from line

to line. Constants with numerical subscripts will keep the same value in each argument,

while those with letter subscripts will be regarded as constant throughout the paper.

The notation C0 = C0(a) means that the constant C0 depends only on the constant a.

2. Inner uniform domains.

In this section we introduce the geometric assumptions on the underlying metric

space, and the corresponding domains.

Definition 2.1 (Length space). Let (X , d) be a metric space. The length L(γ) ∈
[0,∞] of a continuous curve γ : [0, 1] → X is given by

L(γ) = sup
∑
i

d(γ(ti−1), γ(ti)),

where the supremum is taken over all partitions 0 = t0 < t1 < · · · < tk = 1 of [0, 1]. It is

clear that L(γ) ≥ d(γ(0), γ(1)). A metric space is a length space if d(x, y) is equal to the

infimum of the lengths of continuous curves joining x and y.

For the rest of this paper we will assume that (X , d) is a complete, separable, locally

compact, length space. We write A and ∂A for the closure and boundary respectively

of a subset A in X . By the Hopf–Rinow–Cohn-Vossen theorem (cf. [BBI, Theorem
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2.5.28]) every closed metric ball in (X , d) is compact. It also follows that there exists

a geodesic path γ(x, y) (not necessarily unique) between any two points x, y ∈ X . We

write B(x, r) = {y ∈ X : d(x, y) < r} for open balls in (X , d).
Next, we introduce the intrinsic distance dU induced by an open set U ⊂ X .

Definition 2.2 (Intrinsic distance). Let U ⊂ X be a connected open subset. We

define the intrinsic distance dU by

dU (x, y) = inf {L(γ) : γ : [0, 1] → U continuous, γ(0) = x, γ(1) = y} .

It is well-known that (U, dU ) is a length space (cf. [BBI, Exercise 2.4.15]). We now

consider its completion.

Definition 2.3 (Balls in intrinsic metric). Let U ⊂ X be connected and open.

Let Ũ denote the completion of (U, dU ), equipped with the natural extension of dU to

Ũ × Ũ . For x ∈ Ũ we define

BŨ (x, r) =
{
y ∈ Ũ : dU (x, y) < r

}
.

Set

BU (x, r) = U ∩BŨ (x, r).

If x ∈ U , then BU (x, r) simply corresponds to the open ball in (U, dU ). However,

the definition of BU (x, r) also makes sense for x ∈ Ũ \ U .

Definition 2.4 (Boundary and distance to the boundary). We denote the bound-

ary of U with respect to the inner metric by

∂ŨU = Ũ \ U,

and the distance to the boundary by

δU (x) = inf
y∈∂ŨU

dU (x, y) = inf
y∈X\U

d(x, y).

For any open set V ⊂ U , let V
dU

denote the completion of V with respect to the metric

dU . We denote the boundary of V with respect to Ũ by

∂ŨV = V
dU \ V.

Definition 2.5 (Inner uniform domain). Let U be a connected, open subset of

a length space (X , d). Let γ : [0, 1] → U be a rectifiable, continuous curve in U . Let

cU , CU ∈ (0,∞). We say γ is a (cU , CU )-inner uniform curve if

L(γ) ≤ CUdU (γ(0), γ(1)),

and
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δU (γ(t)) ≥ cU min (dU (γ(0), γ(t)), dU (γ(1), γ(t))) for all t ∈ [0, 1].

The domain U is called a (cU , CU )-inner uniform domain if any two points in U can be

joined by a (cU , CU )-inner uniform curve.

The following lemma extends the existence of inner uniform curves between any two

points in U in Definition 2.5 to the existence of inner uniform curves between any two

points in Ũ .

Lemma 2.6. Let (X , d) be a complete, locally compact, separable, length space.

Let U be a (cU , CU )-inner uniform domain and let Ũ denote the completion of U with

respect to the inner metric dU . Then for any two points x, y in (Ũ , dU ), there exists a

(cU , CU )-uniform curve in the dU metric.

Proof. Let x, y ∈ Ũ . There exist sequences (xn), (yn) in U such that xn →
y, yn → y in the dU metric as n→ ∞. Let γn : [0, 1] → U, n ∈ N be a (cU , CU )-inner uni-

form curve in U from xn to yn with constant speed parametrization. By [BBI, Theorem

2.5.28], the curves γn can be viewed as being in the compact space BU (x, 2CUdU (x, y))
dU

for all large enough n. By a version of Arzela–Ascoli theorem the desired inner uniform

curve γ from x to y can be constructed as a sub-sequential limit of the curves (γn)—see

[BBI, Theorem 2.5.14]. □

The following geometric property of a metric space (X , d) will play an important

role in the paper.

Definition 2.7 (Metric doubling property). We say that a metric space (X , d)
satisfies the metric doubling property if there exists CM > 0 such that any ball B(x, r)

can be covered by at most CM balls of radius r/2.

Let U ⊂ X denote the closure of U in (X , d). Let p : (Ũ , dU ) → (U, d) denote the

natural projection map, that is p is the unique continuous map such that p restricted

to U is the identity map on U . The following lemma allows us to compare balls with

respect to the d and dU metrics.

Lemma 2.8. Let (X , d) be a complete, length space satisfying the metric doubling

property. Let U ⊂ X be a connected, open, (cU , CU )-inner uniform domain. Then there

exists C̃U > 1 such that for all balls B(p(x), r/C̃U ) with x ∈ Ũ and r > 0, we have

BŨ (x, r/C̃U ) ⊂ D′ ⊂ BŨ (x, r),

where D′ is the connected component of p−1(B(p(x), r/C̃U ) ∩ U) containing x.

Proof. See [LS, Lemma 3.7] where this is proved under the hypothesis of vol-

ume doubling, and note that the argument only uses metric doubling. (Alternatively, a

doubling measure exists by [LuS, Theorem 1], and one can then use [LS]). □

The following lemma shows that every point in an inner uniform domain is close to

a point that is sufficiently far away from the boundary.
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Lemma 2.9 ([GyS, Lemma 3.20]). Let U be a (cU , CU )-inner uniform domain

in a length space (X , d). For every inner ball B = BŨ (x, r) with the property that

B ̸= BŨ (x, 2r) there exists a point xr ∈ B with

dU (x, xr) =
r

4
and δU (xr) ≥

cUr

4
.

Lemma 2.10. Let U be a (cU , CU )-inner uniform domain in a length space (X , d).
If x, y ∈ U , then there exists a (cU , CU )-inner uniform curve γ connecting x and y with

δU (z) ≥ (cU/2) (δU (x) ∧ δU (y)) for all z ∈ γ.

Proof. Write t = δU (x)∧δU (y). Let γ be an inner uniform curve from x to y and

let z ∈ γ. If dU (x, z) ≤ t/2, then δU (z) ≥ δU (x) − dU (x, z) ≥ t/2, and the same bound

holds if dU (y, z) ≤ t/2. Finally if dU (x, z) ∧ dU (y, z) ≥ t/2, then δU (z) ≥ cU t/2. □

3. Dirichlet spaces and Hunt processes.

Let (X , d) be a locally compact, separable, metric space and let µ be a Radon

measure with full support. Let (E ,F) be a regular, strongly local Dirichlet form on

L2(X , µ)—see [FOT]. Recall that a Dirichlet form (E ,F) is strongly local if E(f, g) = 0

for any f, g ∈ F with compact supports, such that f is constant in a neighbourhood

of supp(g). We call (X , d, µ, E ,F) a metric measure Dirichlet space, or MMD space for

short.

Let L be the generator of (E ,F) in L2(X , µ); that is L is a self-adjoint and non-

positive-definite operator in L2(X , µ) with domain D(L) that is dense in F such that

E(f, g) = −⟨Lf, g⟩,

for all f ∈ D(L) and for all g ∈ F ; here ⟨·, ·⟩, is the inner product in L2(X , µ). The

associated heat semigroup

Pt = etL, t ≥ 0,

is a family of contractive, strongly continuous, Markovian, self-adjoint operators in

L2(X , µ). We set

E1(f, g) = E(f, g) + ⟨f, g⟩, ||f ||E1 = E1(f, f)1/2. (3.1)

It is known that corresponding to a regular Dirichlet form, there exists an essentially

unique Hunt process X = (Xt, t ≥ 0,Px, x ∈ X ). The relation between the Dirichlet form

(E ,F) on L2(X , µ) and the associated Hunt process is given by the identity

Ptf(x) = Exf(Xt),

for all f ∈ L∞(X , µ), for every t > 0, and for µ-almost all x ∈ X . Also associated with

the Dirichlet form and f ∈ F is the energy measure dΓ(f, f). This is defined to be the

unique Radon measure such that for all g ∈ F ∩ Cc(X ), we have
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X
g dΓ(f, f) = 2E(f, fg)− E(f2, g).

We have

E(f, f) = 1

2

∫
X
dΓ(f, f).

Definition 3.1. For an open subset of U of X , we define the following function

spaces associated with (E ,F).

Floc(U) =
{
u∈L2

loc(U, µ) : ∀ relatively compact open V ⊂U,∃u#∈F , u=u#
∣∣
V
µ-a.e.

}
,

F(U) =

{
u ∈ Floc(U) :

∫
U

|u|2 dµ+

∫
U

dΓ(u, u) <∞
}
,

Fc(U) = {u ∈ F(U) : the essential support of u is compact in U} ,
F0(U) = the closure of Fc(U) in F in the norm || · ||E1 .

We define capacities for (X , d, µ, E ,F) as follows. Let U be an open subset of X . By

A ⋐ U , we mean that the closure of A is a compact subset of U . For A ⋐ U we set

CapU (A) = inf{E(f, f) : f ∈ F0(U) and f ≥ 1 in a neighbourhood of A}. (3.2)

A statement depending on x ∈ A is said to hold quasi-everywhere on A (abbreviated as

q.e. on A), if there exists a set N ⊂ A of zero capacity such that the statement is true for

every x ∈ A\N . It is known that every function f ∈ F admits a quasi-continuous version,

which is unique up to a set of zero capacity (cf. [FOT, Theorem 2.1.3]). Throughout this

paper we will assume that every f ∈ F is represented by its quasi-continuous version.

For an open set U an equivalent definition of F0(U) is given by

F0(U) = {u ∈ F : ũ = 0 q.e. on X \ U} , (3.3)

where ũ is a quasi-continuous version of u—see [FOT, Theorem 4.4.3(i)]. Thus we can

identify F0(U) as a subset of L2(U, µ), where in turn L2(U, µ) is identified with the

subspace
{
u ∈ L2(X , µ) : u = 0 µ-a.e. on X \ U

}
.

Definition 3.2. For an open set U ⊂ X , we define the part of the Dirichlet form

(E ,F) on U by

D(EU ) = F0(U) and EU (f, g) = E(f, g) for f, g ∈ F0(U).

By [CF, Theorem 3.3.9] (EU ,F0(U)) is a regular, strongly local Dirichlet form on

L2(U, µ). We write (PU
t , t ≥ 0) for the associated semigroup, and call (PU

t ) the semi-

group of X killed on exiting U . The Dirichlet form (EU ,F0(U)) is associated with the

process X killed upon exiting U—see [CF, Theorem 3.3.8(ii)].

For an open set U we need to consider functions that vanish on a portion of

the boundary of U , and we therefore define the following local spaces associated with

(EU ,F0(U)).
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Definition 3.3. Let V ⊂ U be open subsets of X . Set

F0
loc(U, V ) ={f ∈ L2

loc(V, µ) : ∀ open A ⊂ V relatively compact in U with

dU (A,U \ V ) > 0, ∃f ♯ ∈ F0(U) : f ♯ = f µ-a.e. on A}.

Note that F0
loc(U, V ) ⊂ Floc(V ). Roughly speaking, a function in F0

loc(U, V ) vanishes

along the portion of boundary given by ∂ŨV ∩ ∂ŨU .

4. Harmonic functions and Green functions.

4.1. Harmonic functions.

We begin by defining harmonic functions for a strongly local, regular Dirichlet form

(E ,F) on L2(X , µ).

Definition 4.1. Let U ⊂ X be open. A function u : U → R is harmonic on U if

u ∈ Floc(U) and for any function φ ∈ Fc(U) there exists a function u# ∈ F such that

u# = u in a neighbourhood of the essential support of φ and

E(u#, φ) = 0.

Remark 4.2.

(a) By the locality of (E ,F), E(u#, φ) does not depend on the choice of u# in Definition

4.1.

(b) If U and V are open subsets of X with V ⊂ U and u is harmonic in U , then the

restriction u
∣∣
V

is harmonic in V . This follows from the locality of (E ,F).

(c) It is known that u ∈ L∞
loc(U, µ) is harmonic in U if and only if it satisfies the following

property: for every relatively compact open subset V of U , t 7→ ũ(Xt∧τV ) is a

uniformly integrable Px-martingale for q.e. x ∈ V . (Here ũ is a quasi-continuous

version of u on V .) This equivalence between the weak solution formulation in

Definition 4.1 and the probabilistic formulation using martingales is given in [Che,

Theorem 2.11].

Definition 4.3. Let V ⊂ U be open. We write Ṽ dU for the closure of V in (Ũ , dU ).

We say that a harmonic function u : V → R satisfies Dirichlet boundary conditions on

the boundary ∂ŨU ∩ Ṽ dU if u ∈ F0
loc(U, V ).

4.2. Elliptic Harnack inequality.

Definition 4.4 (Elliptic Harnack inequality). We say that (E ,F) satisfies the local

elliptic Harnack inequality, denoted EHIloc, if there exist constants CH <∞, R0 ∈ (0,∞]

and δ ∈ (0, 1) such that, for any ball B(x,R) ⊂ X satisfying R ∈ (0, R0), and any non-

negative function u ∈ Floc(B(x,R)) that is harmonic on B(x,R), we have

ess sup
z∈B(x,δR)

u(z) ≤ CH ess inf
z∈B(x,δR)

u(z). (EHI)
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We say that (E ,F) satisfies the elliptic Harnack inequality, denoted (EHI), if EHIloc holds

with R0 = ∞.

An easy chaining argument along geodesics shows that if the EHI holds for some

δ ∈ (0, 1), then it holds for any other δ′ ∈ (0, 1). Further, if the local EHI holds for some

R0, then it holds (with of course a different constant CH) for any R′
0 ∈ (0,∞).

We recall the definition of Harnack chain—see [JK, Section 3]. For a ball B =

B(x, r), we use the notation M−1B to denote the ball B(x,M−1r).

Definition 4.5 (Harnack chain). Let U ⊊ X be a connected open set. For x, y ∈
U , an M -Harnack chain from x to y in U is a sequence of balls B1, B2, . . . , Bn each

contained in U such that x ∈ M−1B1, y ∈ M−1Bn, and M−1Bi ∩M−1Bi+1 ̸= ∅, for
i = 1, 2, . . . , n − 1. The number n of balls in a Harnack chain is called the length of

the Harnack chain. For a domain U write NU (x, y;M) for the length of the shortest

M -Harnack chain in U from x to y.

Remark 4.6. Suppose that (E ,F) satisfies the elliptic Harnack inequality with

constants CH and δ. If u is a positive continuous harmonic function on a domain U ,

then

C
−NU (x1,x2;δ

−1)
H u(x1) ≤ u(x2) ≤ C

NU (x1,x2;δ
−1)

H u(x1) (4.1)

for all x1, x2 ∈ U .

Lemma 4.7. Let (X , d) be a locally compact, separable, length space that satisfies

the metric doubling property. Let U ⊊ X be a (cU , CU )-inner uniform domain in (X , d).
Then for each M > 1 there exists C ∈ (0,∞), depending only on cU , CU and M , such

that for all x, y ∈ U

C−1 log

(
dU (x, y)

min(δU (x), δU (y))
+ 1

)
≤ NU (x, y;M) ≤ C log

(
dU (x, y)

min(δU (x), δU (y))
+ 1

)
+C.

Proof. See [GO, Equation (1.2) and Theorem 1.1] or [Aik15, Theorems 3.8 and

3.9] for a similar statement for the quasi-hyperbolic metric on U ; the result then follows

by a comparison between the quasi-hyperbolic metric and the length of Harnack chains

as in [Aik01, p. 127]. □

4.3. Green function.

Let (E ,F) be a regular, strongly local Dirichlet form and let Ω ⊊ X be open. We

define

λmin(Ω) = inf
u∈F0(Ω)\{0}

EΩ(u, u)
∥u∥22

.

Writing LΩ for the generator of (EΩ,F0(Ω)), we have λmin(Ω) = inf spectrum(−LΩ).

The next Lemma gives the existence and some fundamental properties of the Green

operator on a domain Ω ⊂ X .
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Lemma 4.8 ([GH1, Lemma 5.1]). Let (E ,F) be a regular, Dirichlet form in

L2(X , µ) and let Ω ⊂ X be open and satisfy λmin(Ω) > 0. Let LΩ be the generator

of (EΩ,F0(Ω)), and let GΩ = (−LΩ)−1 be the inverse of −LΩ on L2(Ω, µ). Then the

following statements hold :

(i)
∥∥GΩ

∥∥ ≤ λmin(Ω)
−1, that is, for any f ∈ L2(Ω, µ),∥∥GΩf

∥∥
L2(Ω)

≤ λmin(Ω)
−1 ∥f∥L2(Ω) ;

(ii) for any f ∈ L2(Ω), we have that GΩf ∈ F0(Ω), and

EΩ(GΩf, φ) = ⟨f, φ⟩ for any φ ∈ F0(Ω);

(iii) for any f ∈ L2(Ω),

GΩf =

∫ ∞

0

PΩ
s f ds;

(iv) GΩ is positivity preserving : GΩf ≥ 0 if f ≥ 0.

We now state our fundamental assumption on the Green function.

Assumption 4.9. Let (X , d) be a complete, locally compact, separable, length

space and let µ be a non-atomic Radon measure on (X , d) with full support. Let (E ,F)

be a strongly local, regular, Dirichlet form on L2(X , µ). Let Ω ⊂ X be a non-empty

bounded open set with diameter(Ω, d) ≤ diameter(X , d)/5. Assume that λmin(Ω) > 0,

and there exists a function gΩ(x, y) defined for (x, y) ∈ Ω×Ω with the following properties:

(i) (Integral kernel)GΩf(x) =
∫
Ω
gΩ(x, z)f(x)µ(dz) for all f ∈ L2(Ω) and µ-a.e. x ∈ Ω;

(ii) (Symmetry) gΩ(x, y) = gΩ(y, x) ≥ 0 for all (x, y) ∈ Ω× Ω \ diag;

(iii) (Continuity) gΩ(x, y) is jointly continuous in (x, y) ∈ Ω× Ω \ diag;

(iv) (Maximum principles) If x0 ∈ U ⋐ Ω, then

inf
U\{x0}

gΩ(x0, ·) = inf
∂U

gΩ(x0, ·),

sup
Ω\U

gΩ(x0, ·) = sup
∂U

gΩ(x0, ·).

We now give some consequences of this assumption; in the next subsection we will

give some sufficient conditions for it to hold.

We begin by showing that the Green function gΩ(x, ·) is harmonic in Ω \ {x} and

vanishes along the boundary of Ω. Since we are using Definition 4.1, we need first

to prove that this function is locally in the domain of the Dirichlet form, that is that

gΩ(x, ·) ∈ Floc(Ω\{x}). For this it is enough that gΩ(x, ·) ∈ F0
loc(Ω,Ω\{x}). This result

was shown under more restrictive hypothesis (Gaussian or sub-Gaussian heat kernel

estimates) in [GyS, Lemma 4.7] and by similar methods in [L, Lemma 4.3]. Our proof

is based on a different approach (see [GyS, Theorem 4.16]), using Lemma 4.8.
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Lemma 4.10. Let (X , d, µ, E ,F), Ω be as in Assumption 4.9. For any fixed x ∈ Ω,

the function y 7→ gΩ(x, y) is in F0
loc(Ω,Ω \ {x}), and is harmonic in Ω \ {x}.

Proof. Fix x ∈ Ω. Let V ⊂ Ω be an open set such that V ⊂ Ω \ {x}. Let

Ω1,Ω2 be precompact open sets such that Ω ⊂ Ω1 ⊂ Ω1 ⊂ Ω2. Let r > 0 be such that

B(x, 4r) ⊂ Ω ∩ V c. Let φ ∈ F be a continuous function such that 0 ≤ φ ≤ 1 and

φ =

{
1 on B(x, 3r)c ∩ Ω1,

0 on B(x, 2r) ∪
(
Ω2

)c
.

Since φ ≡ 1 on V , to prove that gΩ(x, ·) ∈ F0
loc(Ω,Ω \ {x}) it is sufficient to prove that

φgΩ(x, ·) ∈ F0(Ω).

For k ≥ 1 set Bk = B(x, r/k). Consider the sequence of functions defined by

hk(y) =
1

µ(Bk)

∫
Bk

gΩ(z, y)µ(dz), y ∈ Ω, k ∈ N. (4.2)

By Lemma 4.8(ii) we have hk ∈ F0(Ω) for all k ≥ 1.

By the maximum principle, we have

M := sup
z∈B(x,r),y∈B(x,2r)c

gΩ(z, y) = sup
z∈B(x,r),y∈∂B(x,2r)

gΩ(z, y) <∞,

since the image of the compact set B(x, r)× ∂B(x, 2r) under the continuous map of gΩ
is bounded. Thus the functions φhk are bounded uniformly by M1Ω\B(x,2r). By the

continuity of gΩ(·, ·) on Ω × Ω \ diag, the functions φhk converge pointwise to φgΩ(x, ·)
on Ω, and using dominated convergence this convergence also holds in L2(Ω).

For the remainder of the proof we identify L2(Ω) with the subspace{
f ∈ L2(X ) : f = 0, µ-a.e. on Ωc

}
.

Similarly, we view F0(Ω) as a subspace of F(Ω)—see [CF, (3.2.2) and Theorem 3.3.9].

In particular, we can view the functions φhi as functions over X . By [FOT, Theorem

1.4.2(ii),(iii)], φhi = φ(hi ∧M) ∈ F0(Ω), and φ2hi = φ2(hi ∧M) ∈ F0(Ω).

We now show that φhi is Cauchy in the seminorm induced by E(·, ·). By the Leibniz

rule (cf. [FOT, Lemma 3.2.5]) we have

E(φ(hi − hj), φ(hi − hj)) =

∫
X
(hi − hj)

2 dΓ(φ,φ) + E(hi − hj , φ
2(hi − hj)). (4.3)

Since 1Bi −1Bj and φ2(hi−hj) have disjoint support the second term is zero by Lemma

4.8(ii).

For the first term in (4.3), we use the fact that the function hi vanishes on Ωc

together with strong locality to obtain∫
X
(hi − hj)

2 dΓ(φ,φ) =

∫
B(x,3r)\B(x,2r)

(hi − hj)
2 dΓ(φ,φ). (4.4)
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Let F = B(x, 3r) \ B(x, 2r). Since B(x, r) × F is compact, by Assumption 4.9(iii) the

function gΩ(·, ·) is uniformly continuous on B(x, r) × F . This in turn implies that hi
converges uniformly to gΩ(x, ·) as i → ∞ on F , and so by (4.4) we have that φhi is

Cauchy in the (EΩ(·, ·))1/2-seminorm. Since φhi converges pointwise and in L2(Ω) to

φgΩ(x, ·), and (EΩ,F0(Ω)) is a closed form, this implies that φgΩ(x, ·) ∈ F0(Ω).

Finally, we show that gΩ(x, ·) is harmonic on Ω \ {x}. Let ψ ∈ Fc(Ω \ {x}), and
let V ⋐ Ω be a precompact open set containing supp(ψ) such that d(x, V ) > 0. Choose

r > 0 such that B(x, 4r) ∩ V = ∅, and let φ and hk be as defined above. Then as φ ≡ 1

on V , using strong locality,

E(φhk, ψ) = E(hk, ψ) = µ(Bk)
−1⟨1Bk

, ψ⟩ = 0.

As φhk converge to φgΩ(x, ·) in the E1(·, ·)1/2 norm, it follows that E(φgΩ(x, ·), ψ) = 0.

This allows us to conclude that gΩ(x, ·) is harmonic on Ω \ {x}. □

The elliptic Harnack inequality enables us to relate capacity and Green functions,

and also to control their fluctuations on bounded regions of X .

Proposition 4.11 (See [BM, Section 3]). Let (X , d, µ, E ,F) be a metric measure

Dirichlet space satisfying the EHI and Assumption 4.9. Then the following hold :

(a) For all A1, A2 ∈ (1,∞), there exists C0 = C0(A1, A2, CH) > 1 such that for all

bounded open sets D and for all x0 ∈ X , r > 0 that satisfy B(x0, A1r) ⊂ D, we have

gD(x1, y1) ≤ C0gD(x2, y2) ∀x1, y1, x2, y2 ∈ B(x0, r),

satisfying d(xi, yi) ≥ r/A2, for i = 1, 2.

(b) For all A ∈ (1,∞), there exists C1 = C1(A,CH) > 1 such that for all bounded open

sets D and for all x0 ∈ X , r > 0 that satisfy B(x0, Ar) ⊂ D, we have

inf
y∈∂B(x0,r)

gD(x0, y) ≤ CapD

(
B(x0, r)

)−1

≤ CapD (B(x0, r))
−1 ≤ C1 inf

y∈∂B(x0,r)
gD(x0, y).

(c) For all 1 ≤ A1 ≤ A2 < ∞ and a ∈ (0, 1] there exists C2 = C2(a,A1, A2, CH) > 1

such that for x ∈ X , and r > 0 with r ≤ diameter(X )/5A,

CapB(x0,A2r) (B(x0, ar)) ≤ CapB(x0,A1r) (B(x0, r)) ≤ C2 CapB(x0,A2r) (B(x0, ar)) .

(d) For all A2 > A1 ≥ 2 there exists C3 = C3(A1, A2, CH) > 1 such that for all x, y ∈ X ,

with d(x, y) = r > 0 and such that r ≤ diameter(X )/5A2,

gB(x,A1r)(x, y) ≤ gB(x,A2r)(x, y) ≤ C3gB(x,A1r)(x, y).

(e) (X , d) satisfies metric doubling.

The statements given above are slightly stronger than those in [BM, Section 3], but

Proposition 4.11 easily follows from the results there using additional chaining arguments.
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We will need the following maximum principle for Green functions.

Lemma 4.12. Suppose that (X , d, µ, E ,F) and Ω satisfy Assumption 4.9. Let c0 ∈
(0, 1), y, y∗ ∈ Ω, such that B(y∗, r) ⋐ Ω and

gΩ(y, x) ≥ c0gΩ(y
∗, x) for all x ∈ ∂B(y∗, r).

Then

gΩ(y, x) ≥ c0gΩ(y
∗, x) for all x ∈ Ω \ ({y} ∪B(y∗, r)).

Proof. If y ∈ B(y∗, r), then the function gΩ(y, ·) − c0gΩ(y
∗, ·) is bounded and

harmonic on Ω \ B(y∗, r), so the result follows by the maximum principle in [GH1,

Lemma 4.1(ii)].

Now suppose that y ̸∈ B(y∗, r). Choose r′ > 0 small enough so that B(y, 4r′) ⊂
Ω \B(y∗, r), and as in (4.2) set

hn(x) = µ(B(y, r′/n))−1

∫
B(y,r′/n)

gΩ(z, x)µ(dz).

Then hn ∈ F0(Ω) and hn → gΩ(y, ·) pointwise on Ω \ {y}. Let M =

2 supz∈∂B(y∗,r) gΩ(z, y
∗). By [FOT, Corollary 2.2.2 and Lemma 2.2.10] the functions

M ∧ hn are bounded and superharmonic on Ω.

Set fn =M ∧ hn − c1gΩ(y
∗, ·), where c1 ∈ (0, c0). Then fn is a bounded, superhar-

monic function in Ω \ B(y∗, r) that is non-negative on the boundary of Ω \ B(y∗, r) for

all sufficiently large n. By the maximum principle in [GH1, Lemma 4.1(ii)] we obtain

that fn ≥ 0 in Ω \B(y∗, r) for all sufficiently large n. Since c1 ∈ (0, c0) was arbitrary, we

obtain the desired conclusion by letting n→ ∞. □

Remark 4.13. Suppose that Assumption 4.9 holds for (X , d, µ, E ,F). Let µ′ be

a measure which is mutually absolutely continuous with respect to the measure µ, and

suppose that dµ′/dµ is uniformly bounded away from 0 and infinity on bounded sets. It

is straightforward to verify that if Ω is a bounded domain and the operator G′
Ω is defined

by

G′
Ωf(x) =

∫
Ω

gΩ(x, y)f(y)µ
′(dy), for f ∈ L2(Ω, µ′),

then G′
Ω is the Green operator on the domain Ω for the Dirichlet form (E ,F ′) on

L2(X , µ′), where F ′ is the domain of the time-changed Dirichlet space (cf. [FOT, p. 275]).

It follows that gΩ(x, y) is the Green function for both (X , d, µ, E ,F) and (X , d, µ′, E ,F ′),

and thus that Assumption 4.9 holds for (X , d, µ′, E ,F ′).

4.4. Sufficient conditions for Assumption 4.9.

We begin by recalling the definition of an ultracontractive semigroup, a notion in-

troduced in [DS].

Definition 4.14. Let (X , d, µ) be a metric measure space. Let (Pt)t≥0 be the
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semigroup associated with the Dirichlet form (E ,F) on L2(X , µ). We say that the semi-

group (Pt)t≥0 is ultracontractive if Pt is a bounded operator from L2(X , µ) to L∞(X , µ)
for all t > 0. We say that (E ,F) is ultracontractive if the associated heat semigroup is

ultracontractive.

We will use the weaker notion of local ultracontractivity introduced in [GT2, Defi-

nition 2.11].

Definition 4.15. We say that an MMD space (X , d, µ, E , F ) is locally ultracon-

tractive if for all open balls B, the killed heat semigroup (PB
t ) given by Definition 3.2 is

ultracontractive.

It is well-known that ultracontractivity of a semigroup is equivalent to the existence

of an essentially bounded heat kernel at all strictly positive times.

Lemma 4.16 ([Dav, Lemma 2.1.2]). Let U be a bounded open subset of X .

(a) Suppose that (PU
t ) is ultracontractive. Then for each t > 0 the operator PU

t has an

integral kernel pU (t, ·, ·) which is jointly measurable in U × U and satisfies

0 ≤ pU (t, x, y) ≤
∥∥∥PU

t/2

∥∥∥2
L2(µ)→L∞(µ)

for µ× µ-a.e. (x, y) ∈ U × U .

(b) If PU
t has an integral kernel pU (t, x, y) satisfying

0 ≤ pU (t, x, y) ≤ at <∞

for all t > 0 and for µ× µ-a.e. (x, y) ∈ U × U , then (PU
t )t≥0 is ultracontractive with∥∥PU

t

∥∥
L2(µ)→L∞(µ)

≤ a
1/2
t for all t > 0.

The issue of joint measurability is clarified in [GT2, p. 1227].

We now introduce a second assumption on the Dirichlet form (E ,F), and will prove

below that it implies Assumption 4.9.

Assumption 4.17. Let (X , d) be a complete, locally compact, separable, length

space and let µ be a non-atomic Radon measure on (X , d) with full support. Let (E ,F)

be a strongly local, regular, Dirichlet form on L2(X , µ). We assume that the MMD

space (X , d, µ, E ,F) is locally ultracontractive and that λmin(Ω) > 0 for any non-empty

bounded open set Ω ⊂ X with diameter(Ω, d) ≤ diameter(X , d)/5.

This assumption gives the existence of a Green function satisfying Assumption 4.9.

Lemma 4.18 (See [GH1, Lemmas 5.2 and 5.3]). Let (X , d, µ, E ,F) be a metric

measure Dirichlet space which satisfies the EHIloc and Assumption 4.17. Then Assump-

tion 4.9 holds.

Remark 4.19. A similar result is stated in [GH1, Lemma 5.2]. Unfortunately, the

proof in [GH1] of Assumption 4.9(i) and (iv) have gaps, which we do not know how to fix

without the extra hypothesis of local ultracontractivity. For (i) the problem occurs in the
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proof of [GH1, (5.8)] from [GH1, (5.7)]. In particular, while one has in the notation of

[GH1] that GΩfk → GΩf in L2(Ω), this does not imply pointwise convergence. On the

other hand the proof of [GH1, (5.8)] does require pointwise convergence at the specific

point x.

The following example helps to illustrate this gap. Consider the Dirichlet form

E(f, f) = ∥f∥22 on Rn; this satisfies [GH1, (5.7)] for any bounded open domain Ω with

gΩx ≡ 0 but it fails to satisfy [GH1, (5.8)]. This Dirichlet form does not satisfy the

hypothesis of [GH1, Lemma 5.2] since it is local rather than strongly local, but it still

illustrates the problem, since strong locality was not used in the proof of [GH1, (5.8)]

from [GH1, (5.7)].

Proof of Lemma 4.18. Let Ω be a non-empty bounded open set with

diameter(Ω, d) ≤ diameter(X , d)/5; we need to verify properties (i)–(iv) of Assumption

4.9.

We use the construction in [GH1]. We denote by gΩ(·, ·) the function constructed

in [GH1, Lemma 5.2] off the diagonal, and extend it to Ω × Ω by taking gΩ equal to 0

on the diagonal. By [GH1, Lemma 5.2] the function gΩ(·, ·) satisfies (ii) and (iii). (The

proofs of (ii) and (iii) do not use [GH1, (5.8)].)

Next, we show (i), using the additional hypothesis of local ultracontractivity. Define

the operators

St = PΩ
t ◦GΩ = GΩ ◦ PΩ

t , t ≥ 0.

Formally we have St =
∫∞
t
Psds. Since P

Ω
t is a contraction on all Lp(Ω), we have by

Lemma 4.8(i)

∥St∥L2 7→L2 ≤
∥∥GΩ

∥∥
L2 7→L2

∥∥PΩ
t

∥∥
L2 7→L2 <∞. (4.5)

Therefore by [FOT, Lemma 1.4.1], for each t ≥ 0 there exists a positive symmetric

Radon measure σt on Ω× Ω such that for all functions f1, f2 ∈ L2(Ω), we have

⟨f1, Stf2⟩ =
∫
Ω×Ω

f1(x)f2(y)σt(dx, dy). (4.6)

By [FOT, Lemma 1.4.1] St+r − St is a positive symmetric operator on L2(Ω). Thus

(σt, t ∈ R+) is a family of symmetric positive measures on Ω × Ω with σs ≥ σt for all

0 ≤ s ≤ t. Note that the measures σt are finite, since for any t ≥ 0 by using Lemma

4.8(i), we have

σt(Ω× Ω) ≤ σ0(Ω× Ω) = ⟨1Ω, G
Ω
1Ω⟩ ≤ ||1Ω||22λmin(Ω)

−1 = µ(Ω)λmin(Ω)
−1. (4.7)

Let A,B be measurable subsets of Ω. Since PΩ
t is a strongly continuous semigroup,

we have

σ0(A×B) = ⟨GΩ
1A,1B⟩ = lim

t↓0
⟨St1A,1B⟩ = lim

t↓0
σt(A×B).

The above equation implies that, for all measurable subsets F ⊂ Ω× Ω, we have
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lim
n→∞

σ1/n(F ) = σ0(F ). (4.8)

For each t > 0 by local ultracontractivity, we have

∥St∥L2→L∞ ≤
∥∥GΩ

∥∥
L2→L2

∥∥PΩ
t

∥∥
L2→L∞ <∞. (4.9)

By [GH2, Lemma 3.3], there exists a jointly measurable function st(·, ·) on Ω× Ω such

that

⟨f1, Stf2⟩L2(Ω) =

∫
Ω

∫
Ω

f1(x)f2(y)st(x, y)µ(dx)µ(dy), (4.10)

for all f1, f2 ∈ L2(Ω). By (4.6) and (4.10), we have

σ1/n(dx, dy) = s1/n(x, y)µ(dx)µ(dy) (4.11)

for all n ∈ N. Therefore by (4.11), (4.7), (4.8) and Vitali-Hahn-Saks theorem (cf. [Yos,

p. 70]), the measure σ0 is absolutely continuous with respect to the product measure

µ×µ on Ω×Ω. Let s(·, ·) be the Radon–Nikodym derivative of σ0 with respect to µ×µ.
By (4.6) and Fubini’s theorem, for all f ∈ L2(Ω) and for almost all x ∈ Ω,

GΩf(x) =

∫
Ω

s(x, y)f(y)µ(dy). (4.12)

If B and B′ are disjoint open balls in Ω, then for all f1 ∈ L2(B), f2 ∈ L2(B′), we have

⟨GΩf1, f2⟩ =
∫
B

∫
B′
f1(x)f2(y)s(x, y)µ(dy)µ(dx)

=

∫
B

∫
B′
f1(x)f2(y)gΩ(x, y)µ(dy)µ(dx). (4.13)

We used [GH1, (5.7)], along with (4.10), to obtain the above equation. By the same

argument as in [GH2, Lemma 3.6(a)], (4.13) implies that

s(x, y) = gΩ(x, y) for µ× µ-almost every (x, y) ∈ B ×B′. (4.14)

By an easy covering argument Ω×Ω\diag can be covered by countably many sets of

the form Bi×B′
i, i ∈ N, such that Bi and B

′
i are disjoint balls contained in Ω. Therefore

by (4.14), we have

s(x, y) = gΩ(x, y) (4.15)

for almost every (x, y) ∈ Ω × Ω. In the last line we used that since µ is non-atomic the

diagonal has measure zero. Combining (4.15) and (4.12) gives property (i).

The maximum principles in (iv) are proved in [GH1, Lemma 5.3] by showing the

corresponding maximum principles for the approximations of Green functions given by

(4.2). This maximum principle for the Green functions follows from [GH1, Lemma 4.1],

provided that the functions hk in (4.2) satisfy the three properties that hk ∈ F0(Ω), hk is

superharmonic, and hk ∈ L∞(Ω). As in [GH1], the first two conditions can be checked
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by using Lemma 4.8(i) and (ii). To verify that hk ∈ L∞(Ω) it is sufficient to prove that

GΩ
1Ω ∈ L∞(Ω). By Lemma 4.8(iii) and the semigroup property, for any t > 0,

GΩ
1Ω =

∫ t

0

PΩ
s 1Ω ds+ PΩ

t ◦GΩ
1Ω.

For the first term, we use
∥∥PΩ

s

∥∥
L∞→L∞ ≤ 1, and for the second term we use local

ultracontractivity and Lemma 4.8(i). □

We now introduce some conditions which imply local ultracontractivity. We say

that a function u = u(x, t) is caloric in a region Q ⊂ X × (0,∞) if u is a weak solution

of (∂t + L)u = 0 in Q; here L is the generator corresponding to the Dirichlet form

(E ,F , L2(X , µ)). Let Ψ : [0,∞) → [0,∞) have the property that there exist constants

1 < β1 ≤ β2 <∞ and C > 0 such that

C−1

(
R

r

)β1

≤ Ψ(R)

Ψ(r)
≤ C

(
R

r

)β2

. (4.16)

Definition 4.20. We say that an MMD space (X , d, µ, E ,F) satisfies the local

volume doubling property (VD)loc, if there exist R ∈ (0,∞], CV D > 0 such that

V (x, 2r) ≤ CV DV (x, r) for all x ∈ X and for all 0 < r ≤ R. (VD)loc

We say an MMD space (X , d, µ, E ,F) satisfies the local Poincaré inequality

(PI(Ψ))loc, if there exist R ∈ (0,∞], CPI > 0, and A ≥ 1 such that∫
B(x,r)

∣∣f − fB(x,r)

∣∣2 dµ ≤ CPIΨ(r)

∫
B(x,Ar)

dΓ(f, f) (PI(Ψ))loc

for all x ∈ X and for all 0 < r ≤ R, where Γ(f, f) denotes the energy measure, and

fB(x,r) = (1/µ(B(x, r)))
∫
B(x,r)

f dµ.

We say that an MMD space (X , d, µ, E ,F) satisfies the local parabolic Harnack

inequality (PHI(Ψ))loc, if there exist R ∈ (0,∞], CPHI > 0 such that for all x ∈ X , for

all 0 < r ≤ R, any non-negative caloric function u on (0, r2)×B(x, r) satisfies

sup
(Ψ(r)/4,Ψ(r)/2)×B(x,r/2)

u ≤ CPHI inf
(3Ψ(r)/4,Ψ(r))×B(x,r/2)

u. (PHI(Ψ))loc

We will write (PI(β))loc and (PHI(β))loc for the conditions (PI(Ψ))loc and (PHI(Ψ))loc
if Ψ(r) = rβ .

Lemma 4.21. Let (X , d) be a complete, locally compact, separable, length space

with diameter(X ) = ∞, let µ be a Radon measure on (X , d) with full support and let

(E ,F) be a strongly local, regular, Dirichlet form on L2(X , µ). If (X , d, µ, E ,F) satisfies

the properties (VD)loc and (PI(2))loc, then (X , d, µ, E ,F) satisfies Assumption 4.9, and

the property EHIloc.
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Proof. First, the property (PHI(2))loc is satisfied; this is immediate from [CS,

Theorem 8.1] and [HS, Theorem 2.7], which prove that the property (PHI(2))loc is equiv-

alent to the conjunction of the properties (PI(2))loc and (VD)loc.

To prove Assumption 4.9 it is sufficient to verify the property EHIloc and Assumption

4.17. Of these, the property EHIloc follows immediately from the local PHI.

The heat kernel corresponding to (X , d, µ, E ,F) satisfies Gaussian upper bounds

for small times by [HS, Theorem 2.7]. Since the heat kernel of the killed semigroup is

dominated by the heat kernel of (X , d, µ, E ,F), local ultracontractivity follows using the

property (VD)loc. The fact that µ is non-atomic follows from the property (VD)loc due

to a reverse volume doubling property—see [HS, (2.5)].

By domain monotonicity, it suffices to verify that λmin(B(x, r)) > 0 for all balls

B = B(x, r) with 0 < r < diameter(X )/4. Consider a ball B(z, r) such that B(x, r) ∩
B(z, r) = ∅ and d(x, z) ≤ 3r. By the Gaussian lower bound for small times [HS, Theorem

2.7] and the property (VD)loc, there exists t0 > 0, δ ∈ (0, 1) such that

Py(Xt0 ∈ B(z, r)) ≥ δ, ∀y ∈ B(x, r),

where (Xt)t≥0 is the diffusion corresponding to the MMD space (X , d, µ, E ,F). This

implies that PB
t0 1B ≤ (1− δ)1B , which in turn implies that

PB
t 1B ≤ (1− δ)⌊(t/t0)⌋1B , ∀t ≥ 0.

It follows that
∥∥GB

1B

∥∥
L∞ <∞. By Riesz–Thorin interpolation we have

∥∥GB
∥∥
L2→L2 ≤∥∥GB

∥∥1/2
L1→L1

∥∥GB
∥∥1/2
L∞→L∞ , while by duality

∥∥GB
∥∥
L∞→L∞ =

∥∥GB
∥∥
L1→L1 . Thus

λmin(B)−1 =
∥∥GB

∥∥
L2→L2 ≤

∥∥GB
∥∥
L∞→L∞ =

∥∥GB
1B

∥∥
L∞ <∞. □

4.5. Examples.

In this section, we give some examples of MMD spaces which satisfy Assumption 4.9:

weighted Riemannian manifolds and cable systems of weighted graphs. We also briefly

describe some classes of regular fractals which satisfy Assumption 4.9—see Remark 4.23.

Example 1 (Weighted Riemannian manifolds). Let (M, g) be a Riemannian man-

ifold, and ν and ∇ denote the Riemannian measure and the Riemannian gradient respec-

tively. Write d = dg for the Riemannian distance function. A weighted manifold (M, g, µ)

is a Riemannian manifold (M, g) endowed with a measure µ that has a smooth (strictly)

positive density w with respect to the Riemannian measure ν. The weighted Laplace

operator ∆µ on (M, g, µ) is given by

∆µf = ∆f + g (∇ (lnw) ,∇f) , f ∈ C∞(M).

We say that the weighted manifold (M, g, µ) has controlled weights if w satisfies

sup
x,y∈M:d(x,y)≤1

w(x)

w(y)
<∞.

The construction of heat kernel, Markov semigroup and Brownian motion for a weighted
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Riemannian manifold (M, g, µ) is outlined in [Gri, Sections 3 and 8]. The corresponding

Dirichlet form on L2(M, µ) given by

Ew(f1, f2) =
∫
X
g(∇f1,∇f2) dµ, f1, f2 ∈ F ,

where F is the weighted Sobolev space of functions in L2(M, µ) whose distributional

gradient is also in L2(M, µ). See [Gri] and [CF, pp. 75–76] for more details.

Example 2 (Cable systems of weighted graphs). Let G = (V, E) be an infinite

graph, such that each vertex x has finite degree. For x ∈ V we write x ∼ y if {x, y} ∈ E.

Let w : E → (0,∞) be a function which assigns weight we to the edge e. We write wxy

for w{x,y}, and define

wx =
∑
y∼x

wxy.

We call (V, E, w) a weighted graph. An unweighted graph has we = 1 for all e ∈ E. We

say that G has controlled weights if there exists p0 > 0 such that

wxy

wx
≥ p0 for all x ∈ V, y ∼ x. (4.17)

The cable system of a weighted graph gives a natural embedding of a graph in a

connected metric length space. Choose a direction for each edge e ∈ E, let (Ie, e ∈ E)

be a collection of copies of the open unit interval, and set

X = V ∪
∪
e∈E

Ie.

(We call the sets Ie cables). We define a metric dc on X by using Euclidean distance

on each cable, and then extending it to a metric on X ; note that this agrees with the

graph metric for x, y ∈ V. Let m be the measure on X which assigns zero mass to points

in V, and mass we|s − t| to any interval (s, t) ⊂ Ie. It is straightforward to check that

(X , dc,m) is an MMD space. For more details on this construction see [V], [BB3].

We say that a function f on X is piecewise differentiable if it is continuous at

each vertex x ∈ V, is differentiable on each cable, and has one sided derivatives at the

endpoints. Let Fd be the set of piecewise differentiable functions f with compact support.

Given two such functions we set

dΓ(f, g)(t) = f ′(t)g′(t)m(dt), E(f, g) =
∫
X
dΓ(f, g)(t), f, g ∈ Fd,

and let F be the completion of Fd with respect to the E1/2
1 norm. We extend E to F ; it

is straightforward to verify that (E ,F) is a closed regular strongly local Dirichlet form.

We call (X , dc,m, E ,F) the cable system of the graph G.

We will now show that both these examples satisfy the conditions (VD)loc and

(PI(2))loc, and therefore Assumption 4.9.
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Lemma 4.22.

(a) Let (M, g, µ) be a weighted Riemannian manifold with controlled weights w which is

quasi isometric to a Riemannian manifold (M′, g′) with Ricci curvature bounded below.

Then the MMD space (M, dg, µ, Ew) satisfies the conditions (VD)loc and (PI(2))loc.

(b) Let G be a weighted graph with controlled weights. Then the corresponding cable

system satisfies the conditions (VD)loc and (PI(2))loc.

Proof. (a) The properties (VD)loc and (PI(2))loc for (M′, g′) follow from

the Bishop–Gromov volume comparison theorem [Cha, Theorem III.4.5] and Buser’s

Poincaré inequality (see [Sal02, Lemma 5.3.2]) respectively. Since quasi isometry only

changes distances and volumes by at most a constant factor, we have that (VD)loc and

(PI(2))loc also hold for (M, g). The controlled weights condition on w implies that these

two conditions also hold for (M, g, µ).

(b) Using the controlled weights condition and the uniform bound on vertex degree, one

can easily obtain the two properties (VD)loc and (PI(2))loc. □

Remark 4.23. The paper [L] proves a BHP on MMD spaces which are length

spaces and satisfy a weak heat kernel estimate associated with a space time scaling

function Ψ, where Ψ satisfies the condition (4.16). By [BGK, Theorem 3.2] these spaces

satisfy (PHI(Ψ))loc with R = ∞. The same argument as in Lemma 4.21 then proves that

these spaces satisfy Assumption 4.9.

Examples of spaces of this type are the Sierpinski gasket, nested fractals, and gen-

eralized Sierpinski carpets—see [BP], [Kum1], [BB].

5. Proof of boundary Harnack principle.

In this section we prove Theorem 1.1. For the remainder of the section, we assume

the hypotheses of Theorem 1.1, and will fix a (cU , CU )-inner uniform domain U . We can

assume that cU ≤ 1/2 ≤ 2 ≤ CU , and will also assume that the EHI holds with constants

δ = 1/2 and CH . We will use Ai to denote constants which just depend on the constants

cU and CU ; other constants will depend on cU , CU and CH .

Since by Proposition 4.11(e), (X , d) has the metric doubling property, we can use

Lemma 2.8. In addition we will assume that

diameter(U) = ∞,

so that R(U) = ∞. The proof of the general case is the same except that we need to

ensure that the balls BU (ξ, s) considered in the argument are all small enough so that

they do not equal U .

Definition 5.1 (Capacitary width). For an open set V ⊂ X and η ∈ (0, 1), define

the capacitary width wη(V ) by

wη(V ) = inf

r > 0 :
CapB(x,2r)

(
B(x, r) \ V

)
CapB(x,2r)

(
B(x, r)

) ≥ η ∀x ∈ V

 . (5.1)
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Note that wη(V ) is an increasing function of η ∈ (0, 1) and is also an increasing

function of the set V .

Lemma 5.2 (See [Aik01, (2.1)] and [GyS, Lemma 4.12]). There exists η =

η(cU , CU , CH) ∈ (0, 1) and A1 > 0 such that

wη ({x ∈ U : δU (x) < r}) ≤ A1r.

Proof. Set Vr = {x ∈ U : δU (x) < r}. By Lemma 2.9 there is a constant A1 > 1

such that for any point x ∈ Vr, there is a point z ∈ U ∩B(x,A1r) with the property that

δU (z) > 2r. By domain monotonicity of capacity, we have

CapB(x,2A1r)

(
B(x,A1r) \ Vr

)
≥ CapB(x,2A1r)

(
B(z, r)

)
≥ CapB(z,3A1r)

(
B(z, r)

)
.

The capacities CapB(z,3A1r)

(
B(z, r)

)
and CapB(x,2A1r)

(
B(x,A1r)

)
are comparable by

Proposition 4.11(a)–(c), and so the condition in (5.1) holds for some η > 0, with r

replaced by A1r. □

We now fix η ∈ (0, 1) once and for all, small enough such that the conclusion

of Lemma 5.2 applies. In what follows, we write f ≍ g, if there exists a constant

C1 = C1(cU , CU , CH) such that C−1
1 g ≤ f ≤ C1g.

Definition 5.3. Let (Xt, t ≥ 0,Px, x ∈ X ) be the Hunt process associated with

the MMD space (X , d, µ, E ,F). For a Borel subset U ⊂ X set

τU := inf {t > 0 : Xt /∈ U} . (5.2)

Let Ω ⊂ X be open and relatively compact in X . Since the process (Xt) is continuous,

XτΩ ∈ ∂Ω a.s. We define the harmonic measure ω(x, ·,Ω) on ∂Ω by setting

ω(x, F,Ω) := Px(XτΩ ∈ F ) for F ⊂ ∂Ω.

The following lemma provides an useful estimate of the harmonic measure in terms

of the capacitary width.

Lemma 5.4 (See [Aik01, Lemma 1], and [GyS, Lemma 4.13]). There exists a1 ∈
(0, 1) such that for any non-empty open set V ⊂ X and for all x ∈ X , r > 0,

ω (x, V ∩ ∂B(x, r), V ∩B(x, r)) ≤ exp

(
2− a1r

wη(V )

)
.

Proof. The proof is same as [GyS, Lemma 4.13] except that we use Proposition

4.11(a),(b) instead of [GyS, Lemma 4.8]. □

In the following lemma, we provide an upper bound of the harmonic measure in

terms of the Green function. It is an analogue of [Aik01, Lemma 2].
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Lemma 5.5 (cf. [GyS, Lemma 4.14], [LS, Lemma 4.9] and [L, Lemma 5.3]). There

exists A2, C4 ∈ (0,∞) such that for all r > 0, ξ ∈ ∂ŨU , there exist ξr, ξ
′
r ∈ U that satisfy

dU (ξ, ξr) = 4r, δU (ξr) ≥ 2cUr, d(ξr, ξ
′
r) = cUr and

ω
(
x,U ∩ ∂ŨBU (ξ, 2r), BU (ξ, 2r)

)
≤ C4

gBU (ξ,A2r)(x, ξr)

gBU (ξ,A2r)(ξ
′
r, ξr)

, ∀x ∈ BU (ξ, r).

Proof. Let ξ ∈ ∂ŨU and r > 0. Fix A2 ≥ 2(12 + CU ) so that all (cU , CU )-inner

uniform curves that connect two points in BU (ξ, 12r) stay inside BU (ξ, A2r/2). Fix

ξr, ξ
′
r ∈ U satisfying the given hypothesis: these points exist by Lemma 2.9. Define

g′(z) = gBU (ξ,A2r)(z, ξr), for z ∈ BU (ξ, A2r).

Set s = min(cUr, 5r/CU ). Note that BU (ξr, s) = B(ξr, s) ⊂ U . Since B(ξr, s) ⊂
BU (ξ, A2r) \ BU (ξ, 2r), using the maximum principle given by Assumption 4.9(iv) we

have

g′(y) ≤ sup
z∈∂B(ξr,s)

g′(z) for all y ∈ BU (ξ, 2r).

By Proposition 4.11(a), we have

sup
z∈∂B(ξr,s)

g′(z) ≍ g′(ξ′r),

and hence there exists ε1 > 0 such that

ε1
g′(y)

g′(ξ′r)
≤ exp(−1) ∀y ∈ BU (ξ, 2r).

For all non-negative integers j, define

Uj :=

{
x ∈ BU (ξ, A2r) : exp

(
−2j+1

)
≤ ε1

g′(x)

g′(ξ′r)
< exp

(
−2j

)}
,

so that BU (ξ, 2r) =
∪

j≥0 Uj ∩ BU (ξ, 2r). Set Vj =
∪

k≥j Uk. We claim that there exist

c1, σ ∈ (0,∞) such that for all j ≥ 0

wη (Vj ∩BU (ξ, 2r)) ≤ c1r exp

(
−2j

σ

)
. (5.3)

Let x be an arbitrary point in Vj ∩ BU (ξ, 2r). Let z be the first point in the inner

uniform curve from x to ξr which is on ∂UBU (ξr, cUr). Then by Lemma 4.7 there

exists a Harnack chain of balls in BU (ξ, A2r) \ {ξr} connecting x to z of length at most

c2 log (1 + c3r/δU (x)) for some constants c2, c3 ∈ (0,∞). Hence, there are constants

ε2, ε3, σ > 0 such that

exp(−2j) > ε1
g′(x)

g′(ξ′r)
≥ ε2

g′(x)

g′(z)
≥ ε3

(
δU (x)

r

)σ

.
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The first inequality above follows from definition of Vj , the second follows from Proposi-

tion 4.11(a) and the last one follows from Harnack chaining. Therefore, we have

Vj ∩BU (ξ, 2r) ⊂
{
x ∈ U : δU (x) ≤ ε

−1/σ
3 r exp

(
−2j

σ

)}
,

which by Lemma 5.2 immediately implies (5.3).

Set R0 = 2r and for j ≥ 1,

Rj =

(
2− 6

π2

j∑
k=1

1

k2

)
r.

Then Rj ↓ r and as in [GyS]

∞∑
j=1

exp

(
2j+1 − a1(Rj−1 −Rj)

c2r exp(−2j/σ)

)
< C <∞; (5.4)

here C depends only on σ, c2 and the constant a1 in Lemma 5.4.

Let ω0(·) = ω(·, U ∩ ∂ŨBU (ξ, 2r), BU (ξ, 2r)) and set

dj =


sup

x∈Uj∩BU (ξ,Rj)

g′(ξ′r)ω0(x)

g′(x)
, if Uj ∩BU (ξ,Rj) ̸= ∅,

0, if Uj ∩BU (ξ,Rj) = ∅.

It suffices to show that supj≥0 dj ≤ C1 < ∞, and this is proved by iteration exactly as

in [LS, Lemma 4.9] or [L, Lemma 5.3]. The only difference is that we replace r2/V (ξ, r)

in [LS] (or Ψ(r)/V (ξ, r) in [L]) by g′(ξ′r). □

By using a balayage formula (cf. [L, Proposition 4.3]) and a standard argument (cf.

[GyS, pp. 75–76], [L, Theorem 5.2]), the proof of Theorem 1.1 reduces to the following

estimate on the Green function.

Theorem 5.6 (See [Aik01, Lemma 3]). There exist C1, A4, A3 ∈ (1,∞) such that

for all ξ ∈ ∂ŨU and for all r > 0, we have, writing D = BU (ξ,A4r),

gD(x1, y1)

gD(x2, y1)
≤ C1

gD(x1, y2)

gD(x2, y2)
for all x1, x2 ∈ BU (ξ, r), y1, y2 ∈ U ∩ ∂ŨBU (ξ,A3r).

Our proof follows Aikawa’s approach, replacing the use of bounds on the Green

function with Proposition 4.11. However, as we are working on domains in a metric

space rather than Rd, we need to be careful with Harnack chaining. On a general metric

space one cannot control the length of a Harnack chain in a punctured domain D \ {z}
by the length of a Harnack chain in D, as is done in [ALM, (2.15)]. For a general inner

uniform domain D on a metric space, the domain D \ {z} need not even be connected.

Since this is the key argument in this paper, we provide the full proof, and as the proof

is long we split it into several Lemmas.

We define
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A3 = max(2 + 2c−1
U , 7). (5.5)

Lemma 5.7. Let ξ ∈ ∂ŨU , r > 0, and y1, y2 ∈ U ∩ ∂ŨBU (ξ,A3r). If γ is a

(cU , CU )-inner uniform curve from y1 to y2 in U , then γ ∩ BU (ξ, 2r) = ∅ and γ ⊂
BU (ξ, A3(CU + 1)r).

Proof. Let z ∈ γ. If dU (y1, z) ∧ dU (y2, z) ≤ (A3 − 2)r, then by the triangle

inequality dU (z, ξ) ≥ 2r. If dU (y1, z) ∧ dU (y2, z) > (A3 − 2)r, then using the inner

uniformity of γ,

δU (z) ≥ cU (dU (y1, z) ∧ dU (y2, z)) > cU (A3 − 2)r ≥ 2r,

which implies that z ̸∈ BU (ξ, 2r).

For the second conclusion, note that for all z ∈ γ,

dU (ξ, z) ≤ A3r +min (dU (y1, z), dU (y2, z)) ≤ A3r + L(γ)/2 ≤ A3(CU + 1)r. □

For ξ ∈ ∂ŨU choose x∗ξ ∈ U ∩ ∂ŨBU (ξ, r) and y∗ξ ∈ U ∩ ∂ŨBU (ξ, A3r) such that

δU (x
∗
ξ) ≥ cUr and δU (y

∗
ξ ) ≥ A3cUr. Note that we have

δU (y
∗
ξ ) ≥ A3cUr > 2r, (5.6)

so that B(y∗ξ , 2r) ⊂ U . Let γξ be an inner uniform curve from y∗ξ to x∗ξ , and let z∗ξ be the

last point of this curve which is on ∂B(y∗ξ , cUr). We will write these points as x∗, y∗, z∗

when the choice of the boundary point ξ is clear.

Define

A4 = A2 + CU

(
A3 +

1

4
c2U + 8

)
.

To prove Theorem 5.6 it is sufficient to prove that, writing D = BU (ξ, A4r), we have for

all x ∈ BU (ξ, r) and for all y ∈ U ∩ ∂ŨBU (ξ,A3r)

gD(x, y) ≍ gD(x∗, y)

gD(x∗, y∗)
gD(x, y∗). (5.7)

Lemma 5.8. Let ξ ∈ ∂ŨU , r > 0 and let D = BU (ξ,A4r). If x ∈ BU (ξ, r) and

y ∈ U ∩ ∂ŨBU (ξ,A3r) with δU (y) ≥ c2Ur/4, then (5.7) holds.

Proof. Fix x ∈ BU (ξ, r). Set

u1(y
′) = gD(x, y′), v1(y

′) =
gD(x∗, y′)

gD(x∗, y∗)
gD(x, y∗).

The functions u1 and v1 are harmonic in D \ {x, x∗}, vanish quasi-everywhere on the

boundary of D, and satisfy u1(y
∗) = v1(y

∗). Let γ be a (cU , CU )-inner uniform curve

from y to y∗; by Lemma 5.7 this curve is contained in U \BU (ξ, 2r). So by Lemma 2.10

δU (z) ≥ (cU/2) (δU (y) ∧ δU (y∗)) ≥ c3Ur/8 for z ∈ γ. Thus we can find a Harnack chain

of balls in U \ {x, x∗} of radius c3Ur/8 with length less than C = C(cU , CU , CH) which
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connects y and y∗. Therefore, (5.7) follows from (4.1). □

Lemma 5.9. Let ξ ∈ ∂ŨU , r > 0, and let D = BU (ξ,A4r). If x ∈ BU (ξ, r) and

y ∈ U ∩ ∂ŨBU (ξ,A3r) with δU (y) < c2Ur/4, then

gD(x, y) ≥ c
gD(x∗, y)

gD(x∗, y∗)
gD(x, y∗). (5.8)

Proof. Fix y and call u (respectively, v) the left-hand (resp. right-hand) side of

(5.8), viewed as a function of x. By Assumption 4.9, u is harmonic in D \ {y} and v is

harmonic in D \{y∗}. Moreover, both u and v vanish quasi-everywhere on the boundary

of D, and u(x∗) = v(x∗).

Let γξ and z
∗ be as defined above. By Lemma 2.10, we have δU (z) ≥ (cU/2)δU (x

∗) ≥
c2Ur/2 for all z ∈ γξ, and so this curve lies a distance at least c2Ur/4 from y. By the choice

of z∗ the part of the curve from z∗ to x∗ lies outside BU (y
∗, cUr/2). Thus there exists

N1 = N1(cU , CU ) such that there is a 2-Harnack chain of balls in U \ {y, y∗} connecting

x∗ with z∗ of length at most N1. Using this we deduce that there exists C < ∞ such

that

C−1v(z∗) ≤ v(x∗) ≤ Cv(z∗), C−1u(z∗) ≤ u(x∗) ≤ Cu(z∗). (5.9)

Since B(y∗, 2cUr) ⊂ U \ {y}, we can use the EHI and Proposition 4.11 to deduce that

C−1v(z∗) ≤ v(z) ≤ Cv(z∗), C−1u(z∗) ≤ u(z) ≤ Cu(z∗) for all z ∈ ∂BU (y
∗, cUr).

Thus there exist c1, c2 such that

c1u(z) ≥ u(x∗) = v(x∗) ≥ c1c2v(z) for all z ∈ ∂BU (y
∗, cUr). (5.10)

Using Lemma 4.12 it follows that u ≥ c2v on U \BU (y
∗, cUr), proving (5.8). □

For ξ ∈ ∂ŨU set

F (ξ) = BU (ξ, (A3 + 3)r) \BU (ξ, (A3 − 3)r).

Let A5 = A3 +A4.

Lemma 5.10. Let ξ ∈ ∂ŨU , and D = BU (ξ,A4r). Then

gD(x, z) ≤ C1gD(x, y∗), for all x ∈ BU (ξ, 2r), z ∈ F (ξ). (5.11)

Proof. We begin by proving that

gD(x, y) ≤ C1gD(x∗, y∗), for all x ∈ BU (ξ, 2r), y ∈ F (ξ). (5.12)

Let x ∈ BU (ξ, 2r), y ∈ F (ξ). Let C̃U be the constant from Lemma 2.8. We have D ⊂
B(y∗, A5r), and therefore by domain monotonicity of the Green function and Proposition

4.11 we have for any z ∈ D with d(x, z) ≥ r/(2C̃U ),
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gD(x, z) ≤ gB(y∗,A5r)(x, z) ≤ gB(y∗,A5r)(x
∗, y∗) ≤ C1gD(x∗, y∗). (5.13)

If d(x, y) ≥ r/(2C̃U ) this gives (5.12).

Figure 1. The inner uniform domain U = R2 \ ([−1, 0]× {0}) showing the

set F (ξ).

Next, we consider the case d(x, y) < r/(2C̃U ). (See Figure 1 for an example of

a slit domain containing such points). Let By denote the connected component of

p−1(B(p(y), r/C̃U ) ∩ U) that contains y. By Lemma 2.8, we have By ⊂ BŨ (y, r). As

gD(x, ·) is harmonic in By ∩ U , by the maximum principle, we have

gD(x, y) ≤ sup
z∈U∩∂ŨBy

gD(x, z) ≤ sup
z∈∂B(y,r/C̃U )

gD(x, z).

By the triangle inequality, we have d(x, z) ≥ r/(2C̃U ) for all z ∈ ∂B(y, r/C̃U ), and

therefore (5.12) follows from (5.13). This completes the proof of (5.12).

By the continuity of the Green function, we can extend (5.12) as follows:

gD(x, y) ≤ C1gD(x∗, y∗), for all x ∈ U ∩BU (ξ, 2r)
dU
, y ∈ F (ξ). (5.14)

Now, let x ∈ BU (ξ, 2r), z ∈ F (ξ). Since gD(·, z) is harmonic in D \{z}, by the maximum

principle we have

gD(x, z) ≤ ω(x,U ∩ ∂ŨBU (ξ, 2r), BU (ξ, 2r)) sup
x′∈U∩∂ŨBU (ξ,2r)

gD(x′, z). (5.15)

We use Lemma 5.5 to bound the first term, and (5.14) to bound the second, and obtain

gD(x, z) ≤ c
gBU (ξ,A2r)(x, ξr)

gBU (ξ,A2r)(ξ
′
r, ξr)

gD(x∗, y∗). (5.16)

We then have by Proposition 4.11(a)–(c), Harnack chaining, and domain monotonic-

ity

gBU (ξ,A2r)(ξ
′
r, ξr) ≍ gD(x∗, y∗), gBU (ξ,A2r)(x, ξr) ≤ cgD(x, y∗),
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and combining these inequalities completes the proof of (5.11). Note that for the second

inequality above, one needs to consider two different cases: δU (x) ≤ c2Ur/2 and δU (x) >

c2Ur/2. □

Lemma 5.11. Let ξ ∈ ∂ŨU , and D = BU (ξ, A4r). If x ∈ BU (ξ, r) and y ∈
∂UBU (ξ, A3r) with δU (y) < c2Ur/4, then

gD(x, y) ≤ c
gD(x∗, y)

gD(x∗, y∗)
gD(x, y∗). (5.17)

Proof. Let ζ ∈ ∂ŨU be a point such that dU (y, ζ) < c2Ur/4, and let ζr and ζ ′r be

the points given by Lemma 5.5 corresponding to the boundary point ζ. Since gD(x, ·) is
harmonic in BU (ζ, 2r), we have

gD(x, y) ≤ ω(y, ∂UBU (ζ, 2r), BU (ζ, 2r)) sup
z∈U∩∂ŨBU (ζ,2r)

gD(x, z). (5.18)

Since BU (ζ, 2r) ⊂ F (ξ), by Lemma 5.10, the second term in (5.18) is bounded by

cgD(x, y∗). Using Lemma 5.5 to control the first term, we obtain

gD(x, y) ≤ cgD(x, y∗)
gBU (ζ,A2r)(y, ζr)

gBU (ζ,A2r)(ζ
′
r, ζr)

. (5.19)

Again by Harnack chaining, Proposition 4.11, and domain monotonicity we have

gBU (ζ,A2r)(ζ
′
r, ζr) ≍ gD(x∗, y∗),

and

gBU (ζ,A2r)(y, ζr) ≤ cgD(y, x∗),

and combining these estimates completes the proof. □

Proof of Theorem 5.6. The estimate (5.7) follows immediately from Lemmas

5.8, 5.9 and 5.11, and as remarked before, the Theorem follows from (5.7). □

Remark 5.12. One might ask if the converse to Theorem 1.1 holds. That is,

suppose (X , d, µ, E ,F) is an MMD space such that for every inner uniform domain the

BHP holds. Then does the EHI hold for (X , d, µ, E ,F)?

The following example shows this is not the case. Consider the measures µα on

R given by µα(dx) = (1 + |x|2)α/2 λ(dx), where λ denotes the Lebesgue measure. (See

[GS].) The Dirichlet forms

Eα(f, f) =
∫
R
|f ′(x)|2µα(dx)

do not satisfy the Liouville property if α > 1. This is because the two ends at ±∞
are transient, so the probability that the diffusion eventually ends up in (0,∞) is a
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non-constant positive harmonic function. Since the Liouville property fails, so does the

EHI.

On the other hand, the space of inner uniform domains in R is same as the space of

(proper) intervals in R. The space of harmonic functions in a bounded interval vanishing

at a boundary point is one dimensional, and hence the BHP holds. We can take R(U) in

Theorem 1.1 as diameter(U)/4. In view of this example, the following question remains

open: Which diffusions admit the scale invariant BHP for all inner uniform domains?

Theorem 1.1 shows that the EHI provides a sufficient condition for the scale invariant

BHP, but the example above shows that the EHI is not necessary.

We now give two examples to which Theorem 1.1 applies but earlier results do not.

Example 5.13. (1) (See [GS, Example 6.14].) Let n ≥ 2. Consider the measure

µα(dx) = (1 + |x|2)−α/2 λ(dx), where λ is Lebesgue measure on Rn. The second order

‘weighted Laplace’ operator Lα on Rn associated with the measure µα is given by

Lα =
(
1 + |x|2

)−α/2 n∑
i=1

∂

∂xi

((
1 + |x|2

)α/2 ∂

∂xi

)
= ∆+ α

x.∇
1 + |x|2

.

The operator Lα is the generator of the Dirichlet form

Eα(f, f) =
∫
Rn

∥∇f∥2 dµα,

on L2(Rn, µα). Grigor’yan and Saloff-Coste [GS] show that Lα satisfies the PHI if and

only if α > −n but satisfies the EHI for all α ∈ R. If α ≤ n, the measure µα does

not satisfy the volume doubling property. Assumption 4.9 for this example follows from

Lemmas 4.22(a) and 4.21.

(2) The first example of a space that satisfies the EHI but fails to satisfy the volume

doubling property was given by Delmotte [Del], in the graph context. A general class of

examples similar to [Del] is given in [Bar, Lemma 5.1]. The associated cable systems of

these graphs do satisfy the EHI, but do not satisfy a global parabolic Harnack inequality

of the kind given in Definition 4.20, i.e. (PHI(Ψ))loc with R = ∞.
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