
J. Math. Soc. Japan
Vol. 55, No. 1, 2003

Evasion and prediction III

Constant prediction and dominating reals

By Jörg Brendle

(Received Mar. 9, 2001)

(Revised Jul. 2, 2001)

Abstract. We prove that ba vconst2 where b is as usual the unbounding number,

and vconst2 is the constant prediction number, that is, the size of the least family P of

functions p : 2<o ! 2 such that for each x A 2o there are p A P and k such that for

almost all intervals I of length k, one has pðxZ iÞ ¼ xðiÞ for some i A I . This answers

a question of Kamo. We also include some related results.

Introduction.

This work is about evasion and prediction, a combinatorial concept orig-

inally introduced by Blass when studying set-theoretic aspects of the Specker

phenomenon in abelian group theory [Bl1]. It is also about how hard (in a

descriptive set-theoretic sense) it sometimes can be to prove ZFC-inequalities

between cardinal invariants of the continuum.

For our purposes, call a function p : 2<o ! 2 a predictor. Say p k-

constantly predicts a real x A 2o if for almost all intervals I of length k, there

is i A I such that xðiÞ ¼ pðxZ iÞ. In case p k-constantly predicts x for some k,

say that p constantly predicts x. The constant prediction number v
const
2 is the

smallest size of a set of predictors P such that every x A 2o is constantly

predicted by some p A P. As mentioned already, the concept of prediction is

originally due to Blass [Bl1] who also put it into a much more general frame-

work in [Bl2, Section 10]. The notion of constant prediction and the definition

of v
const
2 , however, are due to Kamo (see [Ka1] and [Ka2]), and the notation

v
const
2 is due to Kada (see, e.g., [Kad]).

Kamo observed that v
const
2 b covðMÞ; covðNÞ [Ka1]. He also proved that

v
const
2 may be larger than all cardinal invariants in Cichoń’s diagram [Ka1], and

smaller than the dominating number d [Ka2]. He asked [Ka3] whether it can
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even be smaller than the unbounding number b. In 1.5 we shall show this is

not possible.

Theorem. ba vconst2 .

Two comments concerning this result and its proof are in order. Firstly,

shortly before we obtained our result, Kamo (unpublished) proved that an o-

stage iteration of Laver forcing adjoins x A 2o which is not constantly predicted

by any predictor from the ground model. This shows that vconst2 ¼ @2 after

adding o2 Laver reals with countable support over a model for CH. This was

strong evidence, and also an incentive, for our 1.4 and 1.5. For Zapletal [Za]

has proved, assuming a proper class of measurable Woodin cardinals, that the

iterated Laver model is a minimal model for b in the sense that whenever a

cardinal invariant i with a reasonably easy definition has value @2 in that model,

then ba i is provable. Now, vconst2 indeed falls into Zapletal’s framework.

However, our result does not follow from Kamo’s and Zapletal’s work because

the latter uses a large cardinal assumption while ours is in ZFC alone. More-

over, it turns out our proof of 1.5 is much simpler than Kamo’s argument

referred to above.

Secondly, Kamo [Ka3] showed that after adding one Laver real, every

new real is still 2-predicted by a ground model predictor. It turns out this

is still true for arbitrary finite stage iterations of Laver forcing, with 2 replaced

by some larger k which depends on the length of the iteration (see Theorem

2.5 below). This means in particular that the standard approach to proving

inequalities between cardinal invariants—which would in this case mean exhibit-

ing Borel functions f 7! xf : o
o ! 2o and p 7! gp : 2

2<o

! o
o such that when-

ever f b �gp, then p does not (k-)constantly predict xf —does not work here.

For the latter would mean that given a model M of ZFC and a dominating

real f over M, there is xf not (k-)constantly predicted by any predictor from

M—which fails in the Laver extension of M. Worse still, Theorem 2.5 says

that one cannot get away with using 2 or 3 models, each containing a domi-

nating real over the preceding one (as is usually the case when one model

and one ‘‘generic enough’’ object over the model are not su‰cient, e.g. in

the Bartoszyński-Miller characterization of covðMÞ where two infinitely often

equal reals are needed to get a Cohen real, or in Truss’ Theorem addðMÞb

minfb; covðMÞg where a dominating real over a Cohen real is needed [BJ]). So

the proof of ba vconst2 is hard in a descriptive set-theoretic sense.

In Section 3, we dualize Kamo’s consistency of vconst2 < d [Ka2] to get

the consistency of econst2 > b, and give an alternative proof of Kamo’s result

as well. The subsequent section dualizes Kamo’s CONðvconst2 < vconstÞ [Ka1] to

CONðeconst2 > econstÞ, and, again, reproves his consistency. Further results con-

nected with the work reported herein shall appear in [BSh].
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We keep our notation fairly standard. For basics concerning the cardinal

invariants considered here, as well as the forcing techniques, see [BJ] and [Bl2].

Apart from Section 4 (January 2001), the results in this paper were obtained

in Spring 2000.

I am grateful to S. Kamo and M. Kada for discussions on the material of

this paper and for comments on a preliminary version. I also wish to thank

J. Zapletal for pointing out the connection to his work after a talk I gave at

the Luminy workshop on set theory (September 2000).

1. The ZFC-results.

The following result is the main combinatorial ingredient for the proof of

Theorem 1.5 below. By Theorem 2.5, it is optimal.

Theorem 1.1. Fix k A o. Let l ¼ 2k � 1. Assume there are ZFC-models

M0 HM1 H � � �HMl and reals f0; . . . ; fl�1 A o
o such that fi A Miþ1 is dominat-

ing over Mi. Then there is x A 2o VMl which is not k-constantly predicted by

any predictor from M0.

Proof. Assume without loss all fi are strictly increasing, fið0Þ > 0 and

fiðnþ 1Þ > fiðnÞ þ k. Define hi A o
o VMiþ1 by the recursion hið0Þ ¼ fið0Þ and

hiðnþ 1Þ ¼ fiðhiðnÞÞ. Without loss we may assume ranðhiþ1ÞJ ranðhiÞ for all i.

Clearly hib fi for all i. List fs A 2k; s0 0g (where 0 denotes the sequence with

constant value 0) as fsi; i < lg. Define x A 2o as follows:

xðnÞ ¼

0 if n B fh0ðmÞ þ j;m A o and j < kg

sið jÞ if n is of the form hiðmÞ þ j; i < l� 1 and j < k;

and hiðmÞ B ranðhiþ1Þ

sl�1ð jÞ if n is of the form hl�1ðmÞ þ j; j < k

8

>

>

<

>

>

:

We also define, for each t A 2<o and each ia l, a real xt; i A 2o VMi:

xt;0 ¼ t^0 ðthis means xt;0 is constantly 0 past jtjÞ

xt; iðnÞ ¼

tðnÞ if n A jtj

0 if n B fh0ðmÞ þ j;m A o and j < kgU jtj

si 0ð jÞ if n is of the form hi 0ðmÞ þ j; i 0 < i � 1 and j < k;

hi 0ðmÞ B ranðhi 0þ1Þ; and n B jtj

si�1ð jÞ if n is of the form hi�1ðmÞ þ j; j < k; and n B jtj

8

>

>

>

>

>

<

>

>

>

>

>

:

for i > 0. So x ¼ xh i;l. Moreover, the xt; i can be thought of as approx-

imations to x with initial segment t in the intermediate models Mi.
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Fix a predictor p A M0. In Mi, i < l, define gi A o
o by

g0ðnÞ ¼ minfm; for all t A 2n: if there is m 0
b n such that

pðxt;0Zm
0 þ jÞ0 xt;0ðm

0 þ jÞ for all j < k; then m > m 0 þ kg and

giðnÞ ¼ minfm; for all t A 2n: if there is m 0 A ranðhi�1Þ; m 0
b n; such that

pðxt; iZm
0 þ jÞ0 xt; iðm

0 þ jÞ for all j < k; then m > m 0 þ kg

for i > 0. Now, there is n0 such that for all i < l and all nb n0 we have

fiðnÞ > giðnþ kÞ. The following is clear from the way things were set up.

Claim 1.2. For all i < l, all n; n 0 > n0, all t A 2nþk such that n and n 0

are consecutive members of ranðhiÞ: if there is no m 0 A ranðhi�1ÞV ½nþ k; n 0 � k�

(m 0 A ½nþ k; n 0 � k� in case i ¼ 0) such that pðxt; iZm
0 þ jÞ0 xt; iðm

0 þ jÞ for all j,

then it’s not true that pðxt; iZ n
0 þ jÞ0 xt; iðn

0 þ jÞ for all j.

Proof. If n; n 0 are consecutive members of ranðhiÞ, we must have

n 0 ¼ fiðnÞ. Since giðnþ kÞ < fiðnÞ, the claim follows. r

Put s�1 ¼ 0 (the sequence in 2k with constant value 0).

Claim 1.3. For all i, all n; n 0 > n0, all t as in Claim 1.2: if there is no

m 0 A ½nþ k; n 0 � k� such that pðxt; iZm
0 þ jÞ0 xt; iðm

0 þ jÞ for all j, then for all

i 0 < i, it’s not true that pðxt; iZ n
0 ŝi 0Z jÞ0 ðxt; iZ n

0 ŝi 0Þðn
0 þ jÞ for all j.

Proof. We make induction on i: the case i ¼ 0 is clear from Claim 1.2.

i ! i þ 1. n and n 0 are consecutive members of ranðhiþ1Þ. So there is

n�
b n such that n� and n 0 are consecutive members of ranðhiÞ. Let t� :¼ xt; iþ1Z

n� þ k A 2n�þk. Note that xt �; iZ n
0 ¼ xt; iþ1Z n

0. So we may apply the induction

hypothesis to get the conclusion of the claim for all i 0 < i. The case i 0 ¼ i,

however, follows from Claim 1.2 (for i þ 1). r

Applying Claim 1.3 to i ¼ l� 1, we see that if n; n 0 > n0 are con-

secutive members of ranðhl�1Þ and t A 2nþk, then there is m 0 A ½nþ k; n 0�

such that pðxt;lZm
0 þ jÞ0 xt;lðm

0 þ jÞ for all j. (Using that xt;lZ n
0 ¼ xt;l�1Z n

0,

we see that if there is no m 0 A ½nþ k; n 0 � k� with this property, then, by

the claim, pðxt;l�1Z n
0 ŝl�1Z jÞ0 ðxt;l�1Z n

0 ŝl�1Þðn
0 þ jÞ for all j. However,

xt;l�1Z n
0 ŝl�1Z k ¼ xt;lZ n

0 þ k.) This completes the proof of the theorem. r

Lemma 1.4. Assume there are ZFC-models M0 HM1 H � � �HMi H � � � and

reals f0; . . . ; fi; . . . A o
o such that fi A Miþ1 is dominating over Mi. Also assume

N0 HN1 are ZFC-models containing hMi; i A oi; h fi; i A oi and f A N1 is domi-

nating over N0. Then there is x A 2o VN1 which is not constantly predicted by

any predictor from M0.
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Proof. Assume f is strictly increasing with f ð0Þ ¼ 0, and the fi are as

in the previous proof. For k A o, let xk A M2k�1 be the real from the previous

theorem. Let Ik be the intervals of o defined by consecutive members of ranð f Þ.

Define x A 2o by xZ Ik ¼ xkZ Ik. So x A N1.

Let p be a predictor from M0. Assume the gk
i A Mi are defined as

in the proof of Theorem 1.1, i < 2k � 1. So there is nk such that for all

i < 2k � 1 and all nb nk, fiðnÞ > gk
i ðnþ kÞ. The sequence of nk is constructed

in N0 and therefore eventually dominated by f . Similarly, the intervals Ik ¼

½ f ðkÞ; f ðk þ 1Þ� eventually contain two members of ranðh2k�2Þ. Now, if k is

such that f ðkÞb nk and there are two members of ranðh2k�2Þ in Ik, then we

find n A ½ f ðkÞ þ k; f ðk þ 1Þ � k� such that pðxZ nþ jÞ0 xðnþ jÞ for all j < k by

the previous proof. So we’re done. r

Theorem 1.5. ba v
const
2 .

Proof. For indeed, if we had v
const
2 < b, we could find first a model M0

of size v
const
2 , and then Mi ði > 0Þ, fi, N0, N1, and f which satisfy the hypotheses

of the previous lemma. Thus we reach a contradiction. r

2. Finite iterations of Laver forcing.

Recall that Laver forcing L is forcing with trees pJo
<o such that

every node below the stem is an o-splitting node, ordered by inclusion. A node

s A p is called o-splitting if s ĥni A p for infinitely many n. In this case we let

succpðsÞ ¼ fn; s ĥni A pg, the successor nodes of s. The stem of p, denoted by

stemðpÞ, is the unique o-splitting node which is comparable with every node of

p. Given s A p let ps ¼ ft A p; t is comparable with sg, the restriction of p to s.

If stemðpÞJ s, one has stemð psÞ ¼ s. For p; q A L, pa0 q means pa q and

stemðpÞ ¼ stemðqÞ. For simplicity, think of the generic Laver real l as a strictly

increasing function from o to o. (This means we force with p containing only

strictly increasing s.)

Let k A o and f A o
o be strictly increasing. A tree T J 2<o is called an

ð f ; kÞ-tree if there is A ¼ AT
f JT such that

(i) all s A A are splitting nodes,

(ii) if s A A, 1a j2 f ðjsjÞ V ft A T ; sH tgja k,

(iii) if s A A and sH t A 2 f ðjsjÞ VT , then j2 f ðjtjÞ V fu A T ; tH ugj ¼ 1,

(iv) if s A A, ftI s; jtja f 2ðjsjÞgVA ¼ q,

(v) if t A T is a splitting node, then there is s A A such that sJ t and

jtj < f ðjsjÞ.

(Notice (iii) actually follows from (iv) and (v). We state it just for the sake

of clarity.) It is easy to see that AT
f witnessing T is an ð f ; kÞ-tree is unique.

Also if fag everywhere and T is both an ð f ; kÞ-tree and a ðg; kÞ-tree, AT
f KAT

g .
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If s A o
<o is strictly increasing, call T a ðs; kÞ-tree if (i) to (v) are satisfied with f

replaced by s, and AJ 2<jsj. (Of course, this means T has only finitely many

splitting nodes.) Note that an ð f ; 1Þ-tree is nothing but a real number.

Main Lemma 2.1. Let _TT be an L-name for an ð _hh; kÞ-tree where _hh is

forced to dominate _ll, the L-generic real, everywhere. Also let p A L and f A o
o

be arbitrary. Then there are qa p, gb� f , and a ðg; k þ 1Þ-tree S such that

q w _TT JS.

Proof. We may assume that for all s A p with stemðpÞJ s, there are

a number asa jsj and a sequence us A o
as such that ps decides _hhZ as to be us

and for all i A succpðsÞ, ps ĥii w _hhðasÞ > ni where ni ! y as i ! y.

Let p 0
a p arbitrary and observe:

Claim 2.2. Given s A p 0 there are a tree Ss J 2<o and a condition q 0
a0 p

0
s

such that for all i A succq 0ðsÞ,

q 0
s ĥii w

_TTZmi ¼ SsZmi

where mi ! y as i ! y. Furthermore, given t such that jtjb as and

tZ asa us, and AJSsZ jtj such that t2ðjsjÞ < jtj � 1 for all s A A and A witnesses

SsZ jtj is a ðt; kÞ-tree, there are t
0
K t with t

0ð jÞb f ð jÞ for all jtja j < jt 0j and

As JSs containing A such that As witnesses Ss is a ðt 0; kÞ-tree and any node

t A 2jtj�1 VSs has at most one extension in As.

Proof. Given i A succp 0ðsÞ, find q i
a0 p

0
s ĥii and a finite tree T i

J 2<o

of height i such that q i w _TTZ i ¼ T i. By König’s lemma (or, alternatively, by a

compactness argument), there are an infinite BJ succp 0ðsÞ, a tree Ss J 2<o, and

mi for i A B with mi ! y such that T iZmi ¼ SsZmi for all i A B. Now define

q 0 by stemðq 0Þ ¼ s, succq 0ðsÞ ¼ B, and q 0
s ĥii ¼ q i.

We may assume there are A i
JT i such that q i w A

_TT
_hh
Z i ¼ A i. We may also

suppose there is As JSs such that A iZmi ¼ AsZmi for all i A B. We must have

AKAsZ jtj � 1 (because _hh is above t). Consider t A Ss V 2jtj�1. To be able to

construct the required As and t
0 it su‰ces to show that t has at most k exten-

sions in Ss on any level bjtj.

To this end, let sH t be maximal with s A As. If jsjb as or jsj < as and

usðjsjÞb as, s can have at most k extensions on any level bjsj (by (iv) and

because q 0 forces no bound on _hhðasÞ there can be no s 0 I s belonging to As).

So assume jsj < as and usðjsjÞ < as. Then either the set of nodes in Ss

extending t form a branch or there is s 0 K t belonging to As and no splitting

occurs between t and s 0. Again s 0 can have at most k extensions on any level

bjs 0j, and we’re done. r
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Let ftn; n A og be a canonical enumeration of o
<o, that is, such that

.
tn H tm implies n < m,

.
tn ¼ t ĥii and tm ¼ t ĥ ji and i < j imply n < m.

By recursion on n, define nodes sn, trees Sn J 2<o, conditions pn, numbers jn,

the strictly increasing function gZ jn, and finite sets An such that

(a) sn J sm if and only if tn J tm,

(b) stemðpnÞ ¼ sn; in fact if m < nþ 1 and i are such that snþ1 ¼ sm ĥii,

then pnþ1
a0 p

m
snþ1

,

(c) there are mi ! y such that for all i A succp nðsnÞ, pn
sn ĥii w

_TTZmi ¼

SnZmi,

(d) if m < nþ 1 and i are such that snþ1 ¼ sm ĥii, then SmZ jn ¼ Snþ1Z jn,

(e) An JSn V 2<jn witnesses Sn is a ðg; kÞ-tree and g2ðjsjÞ < jn � 1 for all

s A An,

(f ) if m < nþ 1 and i are such that snþ1 ¼ sm ĥii, then Am JAnþ1 and

each t A 2 jn�1 has at most one extension in Anþ1,

(g) gð jÞb f ð jÞ for all jb j0,

(h) if m < nþ 1 and i are such that snþ1 ¼ sm ĥii, gð jnÞ is larger than the

level of any splitting node of Sm USnþ1.

Basic step n ¼ 0. Let s0 ¼ stemðpÞ. Applying the claim with p 0 ¼ p and

s ¼ s0, we get Ss ¼ S0 and q 0 ¼ p0 satisfying (b) and (c). By an argument like

in the claim find A0 and tK us such that t
2ðjsjÞ < jtj � 1 for all s A A0 and A0

witnesses S0 is a ðt; kÞ-tree. Put j0 ¼ jtj and let gZ j0 ¼ t. So (e) holds.

Recursion step n ! nþ 1. Fix ma n such that tm ¼ tnþ1Z ðjtnþ1j � 1Þ.

By (c) for m, we can choose snþ1 I sm with jsnþ1j ¼ jsmj þ 1 such that

pm
snþ1

w _TTZ jn ¼ SmZ jn:

So (a) holds. Applying the claim with p 0 ¼ pm
snþ1

and s ¼ snþ1, we get

Ss ¼ Snþ1 and q 0 ¼ pnþ1 satisfying (b) and (c). Since pnþ1
a0 p

m
snþ1

, we must

have Snþ1Z jn ¼ SmZ jn, i.e. (d). Let t ¼ gZ jn and A ¼ Am. Then t
2ðjsjÞ <

jtj � 1 for all s A A and A witnesses SmZ jtj is a ðt; kÞ-tree (by (e) for m) so

that we can use the claim to get As ¼ Anþ1 and t
0 ¼ gZ jt 0j witnessing Snþ1 is

a ðt 0; kÞ-tree as well as satisfying (f ), (g) and (h) (by choosing gð jnÞ large

enough). Extending t
0, if necessary, we may assume ðt 0Þ2ðjsjÞ < jt 0j � 1 for all

s A Anþ1 so that, letting jnþ1 ¼ jt 0j, we have (e).

This completes the recursive construction. Letting q ¼ fsn; n A ogU

fs0Z i; i < js0jg, qa0 p is immediate by (a). (g) entails gb� f . Putting S ¼

6fSn; n A og, q w _TT JS is also straightforward (use (c)). So it remains to see

S is a ðg; k þ 1Þ-tree. Construct the set of witnesses AS
g by recursion on jn.

Assume AS
g V jn has been produced and witnesses 6

man
Sm is a ðgZ jn; k þ 1Þ-

tree. So consider jnþ1. Let ma n be such that sm ĥii ¼ snþ1 for some i. By
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(f ), each t A 2 jn�1 has at most one extension in Anþ1, say s. In case s A Sm,

put s into AS
g . Since Sm is not branching anymore and Snþ1 branches to at

most k incompatible nodes beyond s, (ii) above is OK for k þ 1. In case

s B Sm there is a maximal s 0 H s with js 0jb jn belonging to Sm (by (d)). So put

s 0 into AS
g . Again (ii) is satisfied, and (i) is because s 0 must be a splitting node

of Sm USnþ1. (v) holds in both cases because we made gðjsjÞ for new s A AS
g go

beyond all splitting levels of Sm USnþ1 (by (h) and because g is strictly increas-

ing), and (iv) holds because we chose jnþ1 beyond all g2ðjsjÞ for new s A AS
g (by

(e) and because g is strictly increasing). This completes the proof of the main

lemma. r

Let Lk denote the finite iteration of L of length k. It generically adds a

sequence hlj; j < ki of Laver reals.

Lemma 2.3. Let Gk be Lk-generic over V, and let x A 2o VV ½Gk�. Then

there are f A o
o VV and an ð f ; k þ 1Þ-tree T A V such that x A ½T �.

Proof. Repeatedly applying the previous lemma, we find, by backwards

recursion on j < k, reals fj A V ½Gj� and ð fj; k þ 1� jÞ-trees Tj A V ½Gj� such that
. fj eventually dominates lj�1, the j-th Laver real (in case j > 0),
. x A ½Tk�1�J � � �J ½Tj�J � � �J ½T0�.

This is done in straightforward fashion. The only thing to notice is

Main Lemma 2.1 also holds for functions eventually dominating the Laver-

generic. r

Lemma 2.4. Given f A o
o strictly increasing, k A o, an ð f ; kÞ-tree T, and j

with 2 j > k, there is a predictor p : 2<o ! 2 which j-constantly predicts every

x A ½T �.

Proof. Let A ¼ AT witness T is an ð f ; kÞ-tree. Recursively define p.

Assume s A A and pZ ft A T ; tH sg has been defined already. Then define p for

all t A T with sJ t and jtj < f ðjsjÞ such that

pðtÞ ¼ i if and only if
j2 f ðjsjÞ V fu A T ; t̂ hiiJ ugj

j2 f ðjsjÞ V fu A T ; tH ugj
b

1

2
:

Next define p for all t A T with sJ t, jtjb f ðjsjÞ, and tZm B A for all jsj < ma

jtj such that pðtÞ is the unique i such that t̂ hii A T .

To see p j-constantly predicts all of ½T �, fix x A ½T � and let n A o.

Assume pðxZ nþmÞ0 xðnþmÞ for all m < j. By the fact T is an ð f ; kÞ-tree,

j2nþj V ft A T ; xZ nJ tgja k. By definition of p and the fact that p mispredicts

x on the interval ½n; nþ jÞ, we see that j2nþj V ft A T ; xZ nþmJ tgja k=2m for

all 0ama j. For m ¼ j, k < 2 j contradicts xZ nþ j A T , and we’re done. r
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Theorem 2.5. Let Gk be Lk-generic over V, and let x A 2o VV ½Gk�. Given j

with 2 j > kþ 1, there is a predictor p : 2<o ! 2 in V which j-constantly predicts x.

Proof. This is immediate by Lemmata 2.3 and 2.4. r

By Theorem 1.1, this result is best possible. Namely, if j is such that

2 j
a k þ 1, then there is x A V ½Gk� which is not constantly j-predicted by any

predictor p A V .

3. Duality and consistency.

The constant evasion number e
const
2 is the size of the least family FJ 2o

of reals such that for each predictor p there is x A F which is not constantly

predicted by p (see also [Kad]). e
const
2 is dual to v

const
2 in a natural sense. This

means the dual version of Theorem 1.5, namely the inequality e
const
2 a d, should

be a result of ZFC. Yet, since Lemma 1.4 involved an o-sequence of models,

we have no proof for this.

Conjecture 3.1 (Kada, [Kad]). econst2 a d.

However, the other results concerning v
const
2 which we have mentioned do dualize.

Namely, econst2 anonðMÞ;nonðNÞ [Ka1], econst2 is consistently smaller than all

cardinal invariants in Cichoń’s diagram [BSh], and e
const
2 is consistently larger

than b. To show the latter, define the following p.o. Po. Conditions are triples

ðk; s;FÞ such that k A o, s : o
<o ! o is a finite partial function, and FJo

o is

finite, and such that the following requirements are met:
. jsja k for all s A domðsÞ,
. f Z n A domðsÞ for all f A F and all na k,
. f Z k0 gZ k for all f 0 g belonging to F,
.

sð f Z kÞ ¼ f ðkÞ for all f A F .

The order is given by: ðl; t;GÞa ðk; s;F Þ if and only if lb k, tK s, GKF , and

for all f A F and all n with k < n < l� 1, either tð f Z nÞ ¼ f ðnÞ or tð f Z nþ 1Þ ¼

f ðnþ 1Þ. It is easy to seea is transitive. Po adds a generic predictor which 2-

constantly predicts all f A o
o from the ground model in a canonical fashion.

Lemma 3.2. P
o is s-linked.

Proof. Note that given k; s and F0;F1, the conditions ðk; s;F0Þ and

ðk; s;F1Þ are compatible: first find lb k such that f Z l0 gZ l for all f 0 g

in F0 UF1. Then extend s to t such that f Z n A domðtÞ for all f A F0 UF1 and

all n with k < na l, guaranteeing that
.

tð f Z lÞ ¼ f ðlÞ for all f A F0 UF1,
. for all f A F0 UF1 and all n with k < n < l� 1, either tð f Z nÞ ¼ f ðnÞ or

tð f Z nþ 1Þ ¼ f ðnþ 1Þ.
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It is easy to see this can indeed be done for, given any s A 2k, there can be at

most two f ; g A F0 UF1 with f Z k ¼ gZ k ¼ s. r

In fact, the argument above shows P
o is s� 3-linked (i.e. it’s the union

of countably many sets Pn such that for all n, any three elements of Pn have

a common extension). However, it cannot possibly be s� 4-linked [BSh]. See

also [Kad] for related results.

We proceed to show a strong version of ‘‘Po does not add a dominating

real.’’

Lemma 3.3. Given a P
o-name _hh for a real in oo, there is H A oo such that

whenever xE� H, then w b
yn ðxðnÞ > _hhðnÞÞ.

Proof. Given k, s, and f ¼ ff0; . . . ; fi�1gJok, define

H
k;s;f

ðnÞ ¼ minfm;:bðk; s;FÞ A P
o ðjF j ¼ i5Ef A F bj < i ð f Z k ¼ fjÞ

5ðk; s;FÞ w _hhðnÞbmÞg:

Clearly H ¼ H
k;s;f

A ðoþ 1Þo. The point, however, is

Claim 3.4. H A oo.

Proof. Assume not. Then there are n0 and ðk; s;F mÞ A P
o, m A o,

such that jF mj ¼ i, for all f A F m there is j < i with f Z k ¼ fj , and ðk; s;F mÞ w
_hhðn0Þbm. Let F m ¼ f f m

j ; j < ig where f m
j Z k ¼ fj. Using a standard com-

pactness argument to prune the collection of F m’s, if necessary, we may assume

without loss that for all j < i, either

ð�jÞ there is gj A oo such that f m
j ! gj as m ! y, or

ðþjÞ there are lj b k and cj A olj such that f m
j Z lj ¼ cj for all m, and the

values f m
j ðljÞ are all distinct.

For j satisfying ðþjÞ choose gj Icj arbitrarily. Let G ¼ fgj ; j < ig. Extend

ðk; s;GÞ to ðl; t;GÞ such that l > lj for all j which satisfy ðþjÞ and such that

prediction is correct everywhere, that is, tðgjZ nÞ ¼ gjðnÞ for all j and all n with

k < na l.

Find ðl 0
; t 0;G 0Þa ðl; t;GÞ forcing a value to _hhðn0Þ, say ðl 0

; t 0;G 0Þ w _hhðn0Þ ¼

m. Next choose m0 such that
. m0 > m,
. f m0

j Z l 0 þ 1 ¼ gjZ l
0 þ 1 for all j which satisfy ð�jÞ,

. f m0

j Z n B domðt 0Þ for all j which satisfy ðþjÞ and all lj < na l.

Then define t0 K t 0 such that for all j which satisfy ðþjÞ and all n with lj <

nal
0, f m0

j Z n A domðt0Þ and t0ð f
m0

j Z nÞ ¼ f m0

j ðnÞ. It is straightforward to check

that ðl 0
; t0;F

m0Þ A P
o and ðl 0

; t0;F
m0Þa ðk; s;F m0Þ. Furthermore, ðl 0

; t0;G
0Þa

J. Brendle110



ðl 0
; t 0;G 0Þ is trivial. This means ðl 0

; t0;F
m0Þ and ðl 0

; t0;G
0Þ force contradictory

statements about the value of _hhðn0Þ, yet, by the argument of 3.2, they are com-

patible. This contradiction completes the proof of the claim. r

Now choose H A oo such that Hb� H
k;s;f

for all k, s, and f. Fix

x A oo with xE� H. A standard argument shows x is indeed forced not to

be eventually dominated by _hh, and we’re done with the lemma. r

Corollary 3.5. Po preserves unbounded families.

Before stating and proving the main result of this section, let us introduce

the constant prediction and evasion numbers for the Baire space oo. This is

done in exactly the same fashion as for the Cantor space 2o: say p : o<o ! o

k-constantly predicts f A oo if for almost all intervals I of length k, pð f Z iÞ ¼

f ðiÞ for some i A I . Let v
const be the size of the least family of predictors P

such that for all f A oo there are k and p A P such that p k-constantly predicts

f , and let e
const be the size of the least FJoo such that for each predictor p

there is f A F which is not k-constantly predicted by p for any k. Clearly,

e
const a e

const
2 and v

const
2 a v

const. Furthermore, e
const a covðMÞ and v

const b

nonðMÞ [Ka1], and vconst2 < vconst [Ka1] and vconst < d [Ka2] are both consistent.

Theorem 3.6. (a) e
const > b is consistent; in fact, given k < l ¼ l<k regular

uncountable, there is a p.o. P forcing e
const ¼ l ¼ c and b ¼ k.

(b) (Kamo, [Ka2]) v
const < d is consistent; in fact, given k regular uncount-

able and l ¼ lo
> k, there is a p.o. P forcing v

const ¼ k and d ¼ l ¼ c.

Note that Kamo’s original proof of (b) uses a countable support iteration of

Miller’s rational perfect set forcing, and thus works only in case k ¼ @1 and

l ¼ @2. (In fact, in light of Zapletal’s result [Za] that the iterated Miller model

is a minimal model for d, Kamo’s v
const ¼ @1 [Ka2] in the latter model follows

from our result.) (a) answers another question of Kamo’s [Ka2].

Proof. (a) Let hPa;
_QQa; a < li be a finite support iteration of ccc forcing

such that
. for even a, wa _QQa ¼

_PPo, the forcing defined above,
. for odd a, wa _QQa is a subforcing of Hechler forcing of size < k.

Guarantee that we take care of all small subforcings of Hechler forcing by

a book-keeping argument. Then bb k is straightforward. e
const b lb cb

e
const is clear because we iteratively add predictors which 2-constantly predict all

ground model reals. To show ba k, argue by induction that a family FJoo

of size k such that given any GJoo of size < k there is f A F with f E� g for

all g A G (such a family is added after the first k stages of the iteration, simply use

the family of Cohen reals adjoined in the limit steps up to k) is preserved along
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the iteration. For the even successor step, this follows from Lemma 3.3, for

the odd successor step, use the well-known analog of 3.3 for forcing notions of

size < k, and for the limit step, use a standard argument.

(b) First add l many Cohen reals. Then make a finite support itera-

tion hPa;
_QQa; a < ki of the forcing Po defined above. Again, vconst ¼ k is clear.

d ¼ c ¼ l follows from Lemma 3.3 using standard arguments (the point is that

d ¼ c ¼ l in the intermediate model, and this is preserved along the iteration

because the analog of 3.3 holds for any Pa). r

4. Baire space versus Cantor space.

To dualize Kamo’s consistency of vconst2 < vconst [Ka1], use the forcing

P2 which is the analog of Po in the Cantor space. That is, conditions are of

the form ðk; s;F Þ such that k A o, s : 2<o ! 2 is a finite partial function, and

F J 2o is finite satisfying the same requirements as Po in Section 3. Addi-

tionally stipulate domðsÞ ¼ 2ak.

Given a predictor p : o<o ! o, say x A oo strongly evades p if for all k

there is an interval I of length k such that pðxZ iÞ < xðiÞ for all i A I . Obviously,

if x strongly evades p, then p does not constantly predict x.

Crucial Lemma 4.1. Given a P2-name _pp : o<o ! o for a predictor, there is

a predictor c : o<o ! o such that whenever x strongly evades c, then w ‘‘ _pp does

not constantly predict x.’’

Proof. Given conditions ðk; s;FÞ, ðl; t;GÞ, say that ðl; t;GÞ is an almost

extension of ðk; s;FÞ if there is G0 JG with jG0j ¼ jF j such that ðk; s;G0Þb

ðl; t;GÞ and for all f A F there is g A G0 such that f Z l ¼ gZ l. Note that if

ðl; t;GÞ is an almost extension of ðk; s;FÞ, then ðk; s;FÞ and ðl; t;GÞ are com-

patible (use the argument of the proof of Lemma 3.2).

Fix k; s. Let f ¼ ff0; . . . ; fi�1gJ 2k. Define A
k;s;f

¼ fðk; s;FÞ A P2;

jF j ¼ i and Ef A F bj < i ð f Z k ¼ fjÞg.

Claim 4.2. Given DJP2 open dense and finitely many conditions

ðl j
0 ; t

j
0 ;G

j
0Þ, j < m0, such that for all ðk; s;FÞ A A

k;s;f
there is j such that

ðl j
0 ; t

j
0 ;G

j
0Þ is an almost extension of ðk; s;F Þ, there are finitely many conditions

ðl j
1 ; t

j
1 ;G

j
1 Þ A D, j < m1, such that

. each ðl j
1 ; t

j
1 ;G

j
1 Þ extends some ðl j

0 ; t
j
0 ;G

j
0Þ,

. for all ðk; s;F Þ A A
k;s;f

there is j such that ðl j
1 ; t

j
1 ;G

j
1 Þ is an almost

extension of ðk; s;FÞ.

Proof. Note first that if there is some number m such that the conditions

of the form ðl; t;GÞ where lam satisfy the conclusion of the claim, then finitely
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many such ðl; t;GÞ are su‰cient, and we are done (this is immediate from the

definition of ‘‘almost extension’’).

Therefore, assuming the claim is false, we may suppose there are

ðk; s;F mÞ such that for all m, no condition of the form ðl; t;GÞ with lam is

simultaneously in D, an extension of some ðl j
0 ; t

j
0 ;G

j
0Þ and an almost extension

of ðk; s;F mÞ. Let F m ¼ f f m
j ; j < ig. Without loss there are fj A 2o such that

f m
j ! fj as m ! y. Put F ¼ f fj; j < ig and consider ðk; s;F Þ. Find j < m0

such that ðl j
0 ; t

j
0 ;G

j
0Þ is an almost extension of ðk; s;F Þ. Choose a common

extension ðl; t;GÞ. Then find ðl�
; t�;G �Þa ðl; t;GÞ with ðl�

; t�;G �Þ A D.

Note that for large enough m, ðl�
; t�;G �Þ is an almost extension of ðk; s;F mÞ

(because ðk; s;F Þb ðl�
; t�;G �Þ and f m

j Z l� ¼ fjZ l
� for large enough m). For

m > l
�, this contradicts the choice of F m, and the claim is proved. r

Let fsn; n A og list o<o. For each n, put Dn ¼ fðl; t;GÞ A P
2; ðl; t;GÞ

decides _ppðsnÞg. Clearly this set is open dense. Still keeping k; s; f fixed, and

using the claim we can easily construct conditions ðl j

n;k;s;f
; t

j

n;k;s;f
;G

j

n;k;s;f
Þ ¼

ðl j
n ; t

j
n;G

j
n Þ A Dn, j < mn, such that

. for all n, ðl j
nþ1; t

j
nþ1;G

j
nþ1Þ extends some ðl j

n ; t
j
n ;G

j
n Þ,

. for all ðk; s;FÞ A A
k;s;f

there is j < mn such that ðl j
n ; t

j
n;G

j
n Þ is an almost

extension of ðk; s;FÞ.

Define w
k;s;f

ðsnÞ ¼ maxfa; some ðl j
n ; t

j
n;G

j
n Þ forces _ppðsnÞ ¼ ag þ 1.

Finally unfix ðk; s; fÞ, and let cðsnÞ ¼ maxfw
k;s;f

ðsnÞ; ka n; domðsÞ ¼ 2ak

and fJ 2kg.

To see this works, choose x strongly evading c. Also fix a condition

ðk; s;FÞ, and k0b k such that for all i A ½k0; k0 þ kÞ, we have cðxZ iÞ <

xðiÞ. Let f ¼ f f Z k; k A Fg. Let ni be such that xZ i ¼ sni . Without loss

ka nk0
< � � � < nk0þk�1. Put n ¼ nk0þk�1. Find j < mn such that ðl j

n ; t
j
n;G

j
n Þ ¼

ðl j

n;k;s;f
; t

j

n;k;s;f
;G

j

n;k;s;f
Þ is an almost extension of ðk; s;F Þ. Let ðl; t;GÞ be a

common extension. Then

ðl; t;GÞ w _ppðxZ iÞ < w
k;s;f

ðxZ iÞacðxZ iÞ < xðiÞ

for all i A ½k0; k0 þ kÞ, as required. r

Notice the argument really showed

Lemma 4.3. Given a P
2-name _pp : o<o ! o for a predictor, there is a pre-

dictor c : o<o ! o such that whenever x strongly evades c, then w ‘‘x strongly

evades _pp.’’

Call FJoo a strongly evading family if given any predictor p : o<o ! o,

there is f A F which strongly evades p.
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Corollary 4.4. P2 preserves strongly evading families.

We are ready to prove the main result of this section. Part (a) answers

another question of Kamo’s [Ka2].

Theorem 4.5. (a) e
const
2 > e

const is consistent; in fact, given k < l ¼ l
<k

regular uncountable, there is a p.o. P forcing e
const
2 ¼ l ¼ c and e

const ¼ k.

(b) (Kamo, [Ka1]) v
const
2 < v

const is consistent; in fact, given k regular

uncountable and l ¼ l
o
> k, there is a p.o. P forcing v

const
2 ¼ k and

v
const ¼ l ¼ c.

Proof. This proof is similar to the one of Theorem 3.6.

(a) Let hPa;
_QQa; a < li be a finite support iteration of ccc forcing such that

. for even a, wa _QQa ¼
_PP2,

. for odd a, wa _QQa is a subforcing of _PPo of size < k.

Guarantee that we take care of all small subforcings of Po by a book-keeping

argument. Then the only thing we need to prove is e
const
a k: argue by induc-

tion that a strongly evading family of size k (which is added after the first k

stages of the iteration) is preserved along the iteration. For the even successor

step, this follows from the crucial lemma, for the odd successor step, use the well-

known analog of 4.1 for forcing notions of size < k, and for the limit step, use a

standard argument.

(b) First add l many Cohen reals. Then make a finite support iteration

hPa;
_QQa; a < ki of P2. v

const ¼ c ¼ l follows from Lemma 4.1 using standard

arguments. r

5. Problems.

Apart from Conjecture 3.1 mentioned at the beginning of Section 3, the

following are open.

Question 5.1 (Kamo [Ka2]). Is v
const < nonðNÞ consistent? If yes, is even

v
const < minfd;nonðNÞg consistent? If no, what about v

const
2 ? Dually, is e

const >

covðNÞ consistent?

In view of Theorem 1.5, the following is of interest as well.

Question 5.2 (Kamo [Ka1], [Ka2]). Is v
const
2 < nonðMÞ consistent? Dually,

is e
const
2 > covðMÞ consistent?

Recall that vconstbnonðMÞ is a theorem of ZFC [Ka1]. In case both questions

have a positive answer, we may even ask

Question 5.3. Is v
const
2 consistently smaller than the splitting number s?

Dually, is econst2 consistently larger than the reaping number r?
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To appreciate the connection, recall that sanonðMÞ;nonðNÞ in ZFC. Apart

from Question 5.3, there is no connection between the prediction and evasion

numbers on one hand and s and r on the other hand: vconst2 is consistently larger

than r (either use the model for v
const
2 > cofðNÞ of [Ka1] and note the forcing

involved is P-point preserving, or make a short iteration of s-centered forcing

over a model of MA and use arguments of [BSh] to see v
const
2 stays large), vconst is

consistently smaller than r (this holds in the model for Theorem 3.6 (b) because

the iterands of the short iteration are Suslin ccc forcing notions [BJ] so that r

stays large) and v
const
2 is consistently larger than s (e.g. in the Cohen real model).

Dual statements hold for e
const
2 and e

const, as well.
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