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Exponential decay of stochastic oscillatory integrals

on classical Wiener spaces
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Abstract. An exponential decay of a stochastic oscillatory integral with phase
function determined as a stochastic line integral of a 1-form is studied. A sufficient
condition for such an integral to decay exponentially fast is given in terms of the exterior
derivative of the 1-form, i.e., the magnetic field.

1. Introduction and statement of main result.

A stochastic oscillatory integral is an integral defined by
I(2) ::J exp[V —14g|y dv,
X

where X is a real abstract Wiener space with Wiener measure v, and ¢, i are real
valued Wiener functionals. In general, X is an infinite dimensional vector space.
Studies of oscillatory integrals on infinite dimensional spaces, including stochastic
ones, have a long history (for example, see [1]-[7], [10], [11], [16]-[21], [23], [28]-
[31] and references therein), and are motivated by and closely related to Feyn-
man path integrals. One of the goals of such studies of oscillatory integrals is
to establish a principle of stationary phase. Recently a new approach to study
a stochastic oscillatory integral was introduced by P. Malliavin and the author
by using complex transformations on a complexified Wiener space. In par-
ticular, a general machinery to study an exponential decay of /(1) as 1 — oo
was achieved in [23], [29]. Even though many contributions were made for the
studies of oscillatory integrals on infinite dimensional spaces as mentioned above,
a general scheme to deal with the principle has not been established yet except for
a case where ¢ is a quadratic Wiener functional. For example, see [4], and
the references therein. Then one may ask a question if the principle of station-
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ary phase is really available on an infinite dimensional space. The exponential
decay of I(1) as 4 — oo can be thought of as a positive answer to the question,
as an evidence for a principle of stationary phase to hold on an infinite dimen-
sional space. Namely, the principle of stationary phase on R”" insists that the
oscillatory integral decays at the order of A7 and the exponential decay guar-
antees to substitute oo for n. In this paper, we run the machinery developed
in [23], to show an exponential decay of I(1) as A — oo when the phase
function of stochastic oscillatory integral is given by a stochastic line integral of
a l-form along the Brownian motion. We shall polish up the abstract machin-
ery given in [23], [29], and then run it in a concrete setting where we can take
advantage of the powerful Ito calculus. A sufficient condition for /(1) to decay
exponentially fast in terms of the exterior derivative of the 1-form, 1.e. the mag-
netic field, will be established.

We shall state a main result of the present paper more precisely, and then
make some comments on it. Let De N and (W,H,u) be the D-dimensional
classical Wiener space over [0,1]%;

W ={w:[0,1] = R” : w is continuous and w(0) = 0},

h is absolutely continuous and has a
H=<heW: . . s
square integrable derivative 4 on [0, 1]

and u be the Wiener measure on . The Cameron-Martin subspace H is a real
separable Hilbert space with the inner product <-,-»; given by

1 . .
Chkdy = jo Ch(0), (1)) i,

where (x, 3> =32 x*y* for x=(x',...,x?), y=(",...,»°)eR?. For
x0eRP, NeZ, :=NU{0}, @ =(¢°,.. 0 ) C*(R?;(RP)¥™, V=00, ...,
v¥)e C*(RP;RY™), a= (ay,...,ay) € [O,l) , and 4 >0, we define

1

416,V ] = j (0w (1)), odw(1)y + j 0wy, (1)) dt
0

0
1

+ EN: . {J; 0" (wx, (1)), 0dw(1)) + J

i=1 0

v (wy, (1)) dt},

where wy, (1) = xo + w(t), w(t) = (wl(£),...,wP(t)) is the position of we W at
time ¢, and

In this paper, the lowercase d is used to indicate both exterior and stochastic differentiations.
To emphasize the dimension, we use the uppercase D instead of the standard letter d.
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D

1 1
| <O, catt)y =3 | Ol ) o av (o),
0 =1 J0
0/ being the ath component of ¢/, and odw?(f) being the Stratonovich integral
with respect to w*(z) under x. In the present paper, we investigate an exponen-
tial decay as A — oo of

1(2) = pf(xo,m) = jW exp[V=Tiq’ [0, V. a](w)], (e, (1)) (),

where x; € R? and J, (w,,(1))u(dw) denotes the integration with respect to
Watanabe’s pull-back of Dirac’s delta function J,, concentrating at x; via wy, (1)
([22]). Thus, we are dealing with a stochastic oscillatory integral with the phase
function qi'o [0, V,a](w) and the amplitude function Jy, (wy, (1)) on (W, H,u), and
we will show its exponentlal decay as A — oo, which is governed by the term
fol (0° (wyy (1)), odw(t >+f0 (Wy, (7)) dt.  Our main result is

THEOREM 1.1. Let xo,x; € R? and 6 = (00,...,0N) € C”(RD;(RD)NH).
Suppose that

(A.1) all components (dO ) of the exterior derivative d0' of 0', and v’
(i= o,f=1,...,D) are polynomials on R”,
(A.2) d@o(xo) ;eo.

Put
K = max{(deg(d0'),;) + 1,(deg v') = 1:i=0,...,.N, o, f=1,...,D}.
Then there exist Cy,Cy, > 0 such that
(1.1) |pf(x0,x1)| < Crexp[—CA Y ) for any 1> 0.
We shall make several remarks on the theorem.

REmMARK 1.2. (i) Set
) N . ) N .
OH*=70"+> 10", VA ="+ A
i=1 j=

and define a Schrédinger operator S$»¢ relative to the magnetic field dO@** (the
exterior derivative of @%%) and V*“ by

= (1/2)du+ V=10 duy + {V=1((1/2) d" 6" +- V%) - (1/2)|0"*}u,
where ue C*(RP;R), 4 is the Laplacian on R”, and

D a@i,a

ox*
oa=1

d*@}.,a —
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As is well-known, p{(xo,x;) is the value of the heat kernel corresponding to S**
at time 1.

(i) According to the previous remark, the assumptions (A.l1) and (A.2)
are of interest from the point of view of the gauge invariance of Schrodinger
operators.

(iii) Let N =0 and v° =0. Suppose (A.1) and (A.2). Due to the gauge
invariance, without loss of generality, we may assume that each component 93
of 0° is a polynomial on R? (also see the proof of Theorem 1.1). Decomposing
00 as 0°(xo+ %) =SE, 0, where L =max{degf’:1<a<D} and 0 is a
homogeneous polynomial of order i if i < deg 92 and equal to 0 if i > deg «92, we
then have

J V=100 x;—
Pl(xo>x1) —e O™, x1=x07

L

1
<] ew {/‘u (Z RGO odw<z>>)] oy O0(1) ).

i=1

Intuitively speaking, each fol 0 (w(t)), 0dw(1)> is a homogeneous polynomial of
order i+ 1 on W (cf. [28]). Moreover, d0°(xo) = d0'V(0). Thus the assump-
tion (A.2) may be thought of as a condition which indicates that the asymptotic
behaviour is dominated by the quadratic term fol 0 (w(1)), 0dw(1)) of the phase
function %, fol 0V (w(1)),0dw(r)y. Such a domination by the quadratic term
of the phase function is one of the key ingredients to achieve a principle of
stationary phase in R" ([8]).

(iv) We shall give an explanation about the rather complicated forms of
the phase function qi'o[@, V,a] and the corresponding 1 form 0% To do this,
consider a long time asymptotic behavior of stochastic oscillatory integral

T
J(T) := J exp [\/ —1 J 0°(x + b(1)), odb(t))} Ox(x+b(T))dP,
Q 0

where b(t) is a D-dimensional Brownian motion on a probability space (2, %, P)
and x € RP. Suppose that every component 02 of 0° is a polynomial, and decom-
pose them as in the previous paragraph. Then, by the space-time scaling prop-
erty of the Brownian motion, we have

51 =177 exp {ﬁ S g2 J 09 (w(1)), odw(r)>] So(w(1))u(d).
w ry 0

Thus such stochastic oscillatory integrals as discussed in the theorem appear
naturally in a study of long time asymptotic behavior of heat kernels associated
with Schrodinger operators with magnetic fields. The theorem may be regarded
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as a first step toward the study in such a direction via the complex analysis on the
Wiener space W introduced in [23], [29].

(v) Consider the case where N =0. If v =0, then p{(x¢,x;) is the heat
kernel at time ¢ = 1 corresponding to the Schrédinger operator with vector poten-
tial 20°. In this case, upper estimations of the heat kernel is closely related to
asymptotic behaviors of the infimum of the spectra of the Schrodinger operator,
and, via a precise analytic estimation of the asymptotic behavior of its infimum of
the spectra, Ueki [30], obtained much sharper exponential decay than ours.
When ©° is general, assuming the uniform positivity of d6°, Prat [25] obtained
a pre01se estimation of derivatives of the distribution of jo "0 (w(2)),dw(t)) +

Jo ))dt on R under J,(x+ w(t))u(dw) and showed that the distribution
admlts an analytic density function with respect to the Lebesgue measure.
implies that the distribution of [, <0°(w(z)),dw(£)) + [, v(w(2)) dt

possesses a density function of the Gevrey class of order K + 5.

2. General estimation on a pinned Wiener space.

In this section, we develop a general scheme to estimate asymptotic behaviors
of stochastic oscillatory integrals on a pinned Wiener space, which is an exten-
sion of the estimation obtained in [29]. To do this, let (W, Ho, 1) be a pinned
Wiener space;

:{WEWZW(I):O}, H():HﬂW()

and y, is the pinned Wiener measure on W,. H, is a Hilbert space with the
inner product <-,-) inherited from H.

We shall review a definition of analytic functions on W;,. For a separable
Hilbert space E, ne N, and pe (1,0), we denote by D™?(Wj;E) a Sobolev
space of E-valued n-times differentiable functions on W, in the sense of the
Malliavin calculus, whose derivatives of order up to n are all p-th integrable
with respect to u,. The m-th Malliavin gradient of F € D"’ (Wy; E) (m < n) is
denoted by V'F. We use V,; to denote the adjoint operator of V. For details,

see [22].  Set
PP (W E)= () () D" (WE).
neN pe(l,)

We say Fe D™ “ (Wy;R) is analytic (Fe C®(W,) in notation) if there is
p e (1,00) such that

>

n=0

n

=

' |V0"F||L”(/40;H§”) < o0, for every r >0,

S
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where H(?” is a Hilbert space of n-linear mappings of H{ to R of Hilbert-Schmidt
type, and [|G||;(,,.r) 18 the LP-norm of G: Wy — E with respect to p,. For
properties of analytic functions on Wy, see [23],[28]. Forr>0, jeZ.,,NeZ.,
de C?(Wy), and ¢ = (qo,...,qn) € (C?(Wy))*', we define random variables

o0 rn )
Mg, r] = Vo dllen, and
n=j '

N N 12
Lilg, ) =Y AM;nlgir] + My [ViVogi, 1} + (1 + Z(VO*VO%)Z> :

=0 i=0
Set

o) = {qecopmye Ll L (iR and L

" exp[Lig. 71/ Lolg, 1]°] € L (up; R)
Y (r) = {y € C°(Wo) : Molyh,r] € L' (u; R)},

AN)={z=("... .2V e RV : 1< |7* <2},

where L% (ug; E) = (), (1 ) L7 (10: E) and L7 (ug; E) = (o, o) L' (103 E).
For ge Q(N,r) and z e A(N), we define ¢ by

We are now ready to state our general estimation, which is an extension of
[29, Theorem 1.2].

THEOREM 2.1.  There exist constants Cy,Cy > 0 such that, if 1 <r <e, ¢>0,
NeZ,., qe Q(N,r), and y € ¥(¢), then there is a ko€ N so that

1/2
1 Lilg,r| 1
sz Lola. 1]3] My llﬁ%] dﬂo)

. . 1/2
) J xp _ min{[[Vog"” o 1} ”
W S4ekLylg, 1] 0

for any ze A(N), k> ko and 7 > 1.

(2.1) H eﬁ*q(”wdﬂo'sa (J exp
Wo M

Proor. Let 1 <r<e, e¢>0, NeZ,, qeQ(N,r), ye¥(e), and ze A(N).
It is easily seen that
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N
Mi[g9,1] <2 Mg, 1].

i=0
Hence
(2.2) M :=2eLolq,1] = e(1 + M[¢"), 1]).
Due to [23, Lemma 8.5], we have, for ¢ € D™~ (Wy; R) and r > 1,
H%%mumpﬁGéﬁm%mummﬂmﬂﬂ

Moreover, it is easily seen that

N 1/2 N
Vo<{1+2(\70*\70q,~)2} ) < MV Vogi 1],
i=0 i=0
Hy

Since Li[q,r] > 1, these estimates yield that

1 1/2
H%u@W@s5W+UG@Q Lo[g, 1] Li[g, ',

Hence
23 IVoM||7, - 25(N+1)* Li[g,7]

' M4 T derlogr Lo[(],l]y

Moreover 1t holds that
N * 2 V2
g P10
(2.4) 0o 71 o =0 <1.
M 2eLo[q, 1]

By virtue of [2.2}-{2.4) and [29, Theorem 1.2], we can find k¢ € IV such that
each k > ko possesses ¥, € L*(uy; R) satisfying that

(25) U e\/—_llq(z)w d,u()‘
Wy

2 min{|Vog 13, 11] , )"
< P2 d ) J exp|—4 Hy! d
(J% k AUy ( e p |: 54ekL()[q, 1] Ko
for any 2 > 1. While Theorem 1.2 in does not state explicitly about depen-
dence of ¥} and ko on ¢©) and y, tracing its proof carefully and making use of
and [2.4), we can find constants C3, C4 > 0, which are independent of ¢, z, r,
e, N and , such that
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1 25(N +1)* Lifg,7] :
w1 < C Ca75 MR
= Gexp | s L ogr Lol 17| i

At the same time, we also notice that what was required of k¢ was only that the
RHS of the above inequality is in L!(uy; R) if k > ko (see the proofs of Lemmas
2.16 and 2.19 in [29]). Hence ko can be taken to be independent of z € A(N).
Thus, we obtain the desired constants C;,C; > 0 and estimation (2.1). ]

In repetition of the argument employed in the proof of [23, Scholium 8.1],
we can conclude from [Theorem 2.1 the following.

COROLLARY 2.2. Let 1 <r<e e¢>0, NeZ,, qe Q(N,r), Yy € ¥(e) and
A < A(N). Suppose that, for some d,a,b >0, it holds that

26 sup | explolVog )iy < o0 and | exploLalg, 1))y < o
zed Jw, W

Then there are Cy,Cy, > 0 such that

(2.7) sup
zeA

< Ciexp[—Cy|A|"] for every L eR,

J e " Y duy
W

where y = ab/(a + ab + 2b).
As an application of the corollary, we obtain

COROLLARY 2.3. Let NeZ., ¢>0, ¢=(qo,...,qn) € D~ (Wp; RN 1),
Ve ¥(e), and A = A(N). Suppose that there is K € N such that V{q; =0, 0 <
i <N, and that (2.6) holds for some J,a,b > 0. Then, (2.7) holds.

PrROOF. On account of the commutation rule
VoVo =VeVo+1 on D™ (Wy; HQ E),
E being a real separable Hilbert space, we have
VE(WViVoq) =0, i=0,...,N.
It is then straightforward to see that
Molqi, 1), Mo[VyVogi, 1] € L™ (13 R),  Lilg,r] < r*'Lo[q, 1] r> 1.

Since Ly[g, 1] > 1, this implies that

ge () O(N,r).

>1

The assertion then follows from [Corollary 2.2 ]
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3. Calculus on classical Wiener spaces.

In this section, we shall develop some estimations on the classical Wiener
space (W, H,u) which will be used to show Theorem 1.1.

For a Hilbert space E, we denote by D™?(W;E) a Sobolev space of E-
valued n-times differentiable p-th integrable functions on W in the sense of the
Malliavin calculus with p-th integrable derivatives of all orders up to n. The
m-th Malliavin derivative of F e D"?(W;E) is denoted by V"F. Let P, be
the orthogonal projection of H onto Hy. Through an inclusion W, < W, we can
identify PyoV on W with V, on W,. Namely, every F € D™~ (W; E) admits a
quasi-continuous version (cf. [22]), which can be evaluated on W, while W} is a u-
null set. If we write again F for the restriction of the quasi-continuous version to
Wo, then <VoF h) =VF hy =<{PyoVF,hy for any he Hy with p,-probability
1. In what follows, we shall also write V|, for PyoV.

We shall introduce some more notations. For xg,x; € R?, set

Wyoox () = X0 +w(t) +t(x1 — x0), 1€]0,1].
For ne C*(R?;R®) and 1 <o < D, define H' € C*(R”; R”) by

no_ 67706 anﬁ

Hj = (Hgﬁ)lsﬁsD’ B 0B ox

Notice that HZZB’S are coefficients of —2dy, dn being the exterior derivative of #;
D
—2dn = Z H;fﬁdxOC A dxP.
o, f=1

Lemma 3.1. Let ¢e C*([0,1] x RP;R). Suppose that, for every ne Z,,
there exist C, >0 and K, € Z. such that

(3.1)  max{|oL(t,x)| : I = (ir,...,in) € {1,...,D}"} < Co(1 + |x)%"

for any (t,x) € [0,1] x R?, where 01 = (8/0x™)---(8/0x™) and max{---} = §(t,x)
for n=0. Then, for every hy,...,h, € Hy and 1 <o < D, it holds that

(3.2) <\70" (J; (1, w(1)) dt) @ ® hn>H®”
_ %;n E (J; oL (s, w(s)) ds) dit (H hj/‘(z)) di

and
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(3.3) <\70" (Jl Bt w(2)) odw“(t)),hl ®: ®hn>

0 H®n

;J:@;www»odww)z(ﬁhﬂfﬁ :

+3 5 [ et i, 0 )izt
m=1|I|=n-1
where |I| =n for Te{l,...,D}", and k(m,j)=j if j<m—1 and =j+1 if
Jj=m.
In particular, if each component n, of ne C*(R?;R”) and ve C*(RP;R)
enjoys (3.1) with ¢(t,x) =n,(x) and =v(x) for any ne Z., then, for every
X0, x1 € R? and h e H,,

1

(3.4) <Vo (JOI (W 2 (1)), 0dWy (1) + J

0

V(W x, (1)) dt) ,h>

H

= ZJ (J {(H Wyo 3, (5)), 0wy, x, (8) —%(wxo,xl (S))ds})h“(t) dr.

Finally, if n,’s and v are all polynomials and K = max{degn,, (degv) —1:
1 <o < D}, then

(3.5) e (J; Wy, (1)), 0y (1) + Jol v(Wyyx, (2)) dt> = 0.

Proor. Since VoG, hyy =<VG,hyy and h(l) =0 for Ge D™ “ (W;R)
and he Hy, (3.2) and are obtained as an application of the derivation
property of V, and an integration by parts formula on [0,1]. (3.4) follows from

these two identities in conjunction with It6’s formula. is an immediate
consequence of (3.2) and |3.3). O

If f:R— R has a property that sup,_g|f(x)|/(1+|x))* < co for some
Le Z., then, for some p >0, exp[p|f (x)\z/ ] is integrable with respect to the
normal Gaussian measure (27z)_1/ 2exp[—x2/2] on R. We shall continue such an
estimation to the Wiener space W.

LemMa 3.2, Let g e C*([0,1] x R”;R) be as in Lemma 3.1.  Then, for each
neZ,, there are py,p, >0 such that

2/K,

1
v | oo a

H®

(3.6) JW exp [pn ],u(dw) <
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2/K,

1
v | dtemo)o )

0

Hen

(3.7) J exp [pl/1 ]u(dw) <o, l<a<D,
w

where K| = max{K, 1,1+ K, K,+1} and K_; = 0.
Proor. We first show [3.6). Since

n

Vept,w(t) b ® - @ hyyy =Y olg(t,w() [[ ) (1), hi,... 5y € Ho,

[|=n J=1

by virtue of (3.1), we obtain that, for € [0, 1],

2K,
Vbt (D) en < D" 3 0740, (s <<72D2"<1+ sup |w<>> .

1]=n sl
I (] te.vton )

Remembering that a D-dimensional Brownian motion b(z) on a probability
space (Q, %, P) enjoys a property that

Hence

Kn
<C,D" <l—l— sup w(t)) :
H

t€0,1]

(3.8) exp{ sup |b(1)|*| € L**(P;R) for any T >0,

tel0,T]

we can conclude from the above estimation.
We now show (3.7). We fix e {1,...,D}. On account of (3.1)-3.3), we
have

1 2

VO”J d(t,w(t)) o dw®(t)

0

H@n

2

<2’D" ) Jl Jlaqu(s w(s)) o dw*(s)| 1"V dr
[1]=n"0

0

+22° D" Y J 0142, w()) 71"V dt

[I|=n—1

< 4n’D" Z Jl

[|=n "0

2
1= gy

rt

quﬁ(s, w(s)) dw”(s)

0

2
(=D g

2"y Jl Jlaia 04 (s, w(s)) ds

[|=n "0
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+22°D"" Y J 0L p(2, w(0)) 2"V dt

|I|=n—1
t 2
£4n2D”Z sup J oL (s, w(s)) dw*(s)
\I|:nte[071] 0

2Kn+1
+n*D*'C; (1 + sup w(t))
t€0,1]

2Kn 1
+ 20’ D2 C2 (1 + sup w(t)) :
te[0,1]

Hence, by (3.8), in order to see (3.7), it suffices to show that

(3.9) exp

sup Jl 8§¢(s, w(s)) dw”(s)

tef0,1]1Jo

2/K!
] e L (1;R)

for any I € {l,...,D}". To do this, fix I € {1,...,D}" arbitrarily. By a stan-
dard time change argument, we can find a 1-dimensional Brownian motion
{B(t)},5( such that

J; OLp(s, w(s)) dw*(s) = B<J(: 01 (s, W(S))|2ds>,

By (3.1) and (3.8), we can find p) such that

¢ JW exp !p,'; (JO 2Lt w(0))|? dr)l/K"] uldw) < o0

which means that

1
,u(J 0L p(2, w(1))|* dt > k”) < Cexp[—p/k“® ] for any ke N,a > 0.
0

)

exp[—pé’k“/’(”]+ﬂ< sup |B(7)| >k)

0<t<k@

This implies that

| sup
tefo,1]1Jo

[[etots.wiop s

IA
(@Y

IA

C exp|—p!k®] + 2D exp[—(1/2D)k>~]
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(for the last inequality, see [26, Theorem 4.2.1]). Setting a = 2K,/(1 + K,), we

arrive at
ul sup >k
te[0,1]

< (C 4+ 2D)exp[-min{p/, (1/2D)}k*/&*D] " ke N,

J[ 6§¢(s, w(s)) dw”(s)

0

which yields (3.9). ]

We shall close this section with an estimation of the reciprocal of the pinned
Malliavin covariance of a stochastic line integral.

Lemma 3.3. Let xo,x1€R?, NeZ,, #°,....n" e C*(R?;RP”), and ¢ =
(8°,...,¢") e C*(R?; RN*Y).  Suppose that all ath components ' of n', and ¢',
a=1,...,D, i=0,...,N satisfy the condition (3.1) with ¢ =n. or = ¢' for any
neZ., and that

(3.10) dn®(xo) # 0.

For &= (&',..., V) eR", define n© =n+ 3, &N, ¢ =4+, &9
and

1

1
Fiy (0 = | < 0 (0) 0 (0 4 | 99002 (0) .
0 0
Then there are &,0 >0 such that
(3.11) sup [ expldIFoF, , 00)” lula) < oo
i |

[SE

ProoFr. Define

! : 00
FrvomialWi1) = L{wf s ) 60351 = 2 O () s .
Due to (3.4), we have
= 2 D
VoFg, o Iz = vi0,1(f5 v (3 ®)),
o=1

where

=5 (r0-7 16 ds>2 &, £ e L0, THR),T >0,
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By the assumption (3.10), there exists o e {I,...,D} such that H,"(xq) # 0.
Then, to show [3.11), it suffices to find constants &, Cj, C, > 0 such that

1
(3.12) lSTlp,u 00,1](f5 i (W3 ®)) < £ <G exp[-Cok!3), keN.
{<e
In What follows, for the sake of simplicity, we shall erte H¢ and ¢€ for H| ’7 and
099 Jox™, respectively.  Then HE(x) = (H{(x),...,H5(x)) € R and ¢f( ) €

Since H'(xo) = H;]O (x0) # 0 and the mapping (x ,f) — H¢(x) is continuous, there
exist &,0p,01 > 0 so that
(3.13) inf  |H(x)| = 6.

|€] <o, |x—x0] <o
In the remainder of the proof, we shall use C;, j =1,2,..., to denote constants

which are independent of ¢ with |&| <& and ke N.
Define

7 = min{inf{z > 0 : |wy, , (1) — xo| > 0o}, k" >*}, keN.
Then it holds ([26, Theorem 4.2.1]) that

2 3/2
2xy —
(3.14)  plze <k7P) <2Dexp _% k2/3] for any k > (M)
0

8D

Observe that

T

jo CH (wyq 2, (1)), oy (1)) =J CHE (wyq 2, (1)), dw(1)y

0
X0, X1

T
+J HE  (wy (1) dt, Tel0,1],
0

where HS, . = (H,x; —xo) + (1/2) d*H* (recall that d*H* = 37 | (0HS /0x*)).
Since

(3.15) vp, 1) (f) = =vp.s)(f), 0<S<T,

N[

the above identity implies that

om0 2 2 (| <t ()0

~ Vg (J.{Hfo,xl — Wy, (1)) dz) }

Notice that
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(3.16) Cii=  sup  {[§°N)|+[H ()| +[d"H (x)[} < 0
|€] <eo, |x—x0| <o

to see that

12 ([° -~ . ) )
U[O/’Tk} (Jo {Hfo’xl B ¢é}(on,x1(f))df) < Ck™*3 on {rp = k7¥3},
where €y = C3(|x1 - X()| + 2) Thus, we have

(3.17)  {w: o2 (FE  (wye)) <k L t(w) = k23

[0, 1]\ x0,x1;00

c {w T (JO <Hf(wx07m(t)),dw(t)>> < (14 CKP, 1e(w) = k—2/3}
for any ke N.

By a standard time change argument, we can find a 1-dimensional Brownian
motion {B%(#)},.,, Which may depend on ¢, such that

JT <H6(Wx07xl(t))7dw(t)> = B (JT |H5(WXO,x1(Z))|2dt>a T>0.

0 0

Observe that, if T >0, ¢ e C'([0,T];[0,0)), #(0) =0, and ¢’ > 0, then
(.19 on (1) = 2

0<t<T

U[o,¢(T)](f)-

Due to [3.13),
T

[H(wyo, 0 (1)) 201, t€[0,7], and L [H (W (1)1 dt 2 67

Hence, by virtue of (3.15), (3.16) and (3.18), we have

0[0, ] (J CH* (Wyq 5, (1)), dW(t)>>

0
Tk Hf t Zdl‘ V 52
= jO | (WX07X1( ))| 21) Ty ¢ ) (Bg) Z _121)[0 (52k72/3](Bé)
e sup [HE (g o ()2 105 180 ) ] c2'0s
0<t<ty

Plugging this into (3.17), we obtain

(3.19) (w02 (FS (wye)) <k L e(w) = k23

[0,1)\/oxo,x1;00

1/2 ¢ G(1+Cy), 5
Lol (89 = SUET ] ke
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Remember (cf. [14, Lemma V.10.6]) that
1/2 T
u(v [O/T](Bé) <¢) < ﬁexp[—ﬁ], T,e>0.

Combining this with [3.19), we obtain a constant Cs > 0 such that

oS o)) <k ' 1 =k < V2exp[-Csk*?], keN,

X0,X1; O(()(

Hlvg,
which, in conjunction with (3.14), implies that there are Cg, C;7 > 0 such that

ulog s (£ g (919) k71 < Coexp[-Cik*%), keN.

Thus (3.12) has been verified and the proof completes. O

4. Proof of Theorem 1.1.

In this section, we give a proof of [Theorem 1.1. A key ingredient to com-
bine observations made in the preceding two sections is Watanabe’s pull-back of
tempered distributions via non-degenerate Wiener functionals. Namely, as a
measure on W, the following identification holds;

(@1) S(w(1) ) = \ﬁl polc).

2n

By virtue of the quasi-sure analysis ([22]), we can restrict @ € D~ (W;R) to
W, and may think of it as a functional on W, even though W} is a p-null set.
Namely, @ admits a quasi-continuous version, which can be evaluated on Wj.
Then, because of [4.1), several L?-estimations on W, follow from those on W.

LemMa 4.1. (i) There exists C >0 such that

1/4
(4.2) JW e duy < C(1+ H¢|’D+2,4(D+2))D+2 (JW e*? dﬂ)
0

for any ® € D™~ (W;R) with [, e*®du < o, where

n
||dj||n,p = Z ||Vm¢HL1’(,u;H®’“)'

m=0

(ii) Let a>0. There is C' >0 such that

» o\
: ¢ Ho = D+2,4(D+2) P ¢ H
(4.3) y P ldu, < C'(1+ 12 )7t y d
0

for any non-negative ¥ € D**~(W;R) with [,,e3¥ " du< .
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Proor. Recall (27]) that do(w(1)) e D~P*2:2(W:R), the dual space of
DP™22(W;R). Hence, by [4.1), to show the assertions, it suffices to estimate the
DP22.norms of ¢? and e “. To do this, notice that there are universal con-
stants ¢, and ¢, ; ., such that

lj

n

Vet =" N (VR @Vid)”

Jj=1 iy+etij=n

Vet =0 D D G (VI @ @V

Jj=1 i++i=n ki, ky=1

for any @, ¥ € D™ (W;R) with ¥ >0 p-a.s.. Since

phiahe o (k + lkl - 1>

where [b] = max{m e Z : m < b}, applying Holder’s inequalities repeatedly, we
obtain constants C;, C, > 0 so that

)D+2

le®llpia2 < CrL+ 1@l p2api)” le®lls ey

||€Wa||1)+2.,2 <G(1+ ||T||D+2,4(D+2))D+2||ezqﬁa||L4(ﬂ;R)7
which completes the proof. O]
We proceed to the proof of the theorem.
PROOF OF THEOREM 1.1. Assume (A.1) and (A.2). For each ', define 0 €
C*(R?; R”) by

éi(x):J; 1((d0")(1x)[x]dr, xeRP, i=0,... N,

where we are thinking of the exterior derivative d'(y) at y € R? as an element
of R @ R?, and db'(y)[x] denotes its action on x. There are y' e C*(R”;R),
i=0,...,N, such that dyy' = 60'—0'. See [15, p. 135]. We then have

Pl (xo0,x1) = exp [ﬁ {z(w(xl O(x0)) + ZM (xo))}]

x jW explV=Tiq’ [0, V, a](w)]0, (wy (1) ),

where @ = (6°,...,0"). Thus, to have the estimation as described in the the-
orem, using #’’s instead of 0/’s if necessary, we may and will assume that
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(A.3) all components of 6" and v’, i = ., N, are polynomials on R?,

0,.
and degf’ <K, 0<i<N, ls SD
In the sequel, we set

K’:max{degﬁo’;,(degv") —1:i=0,...,Nya=1,...,D}.

Then K’ < K.
Applying Cameron-Martin’s formula to the shift given by /(¢) = #(x; — xo),
on account of [4.1)], we have

—[x1=x0[*/2
e
(4.4) Pfl(xo,xl) = WJW exp|V —Mq;'o,xl] du,
0
where
N

Qio,xl (W) = qu,xl;O(W) + z j’_(l_ai)quwl;i(W)a
i=1

1

1 . .
P - L (O (w1 (1)), 0wy (1)) +J 0 (0 (1) d,

0

i=0,1,...,N. We shall show the theorem by applying [Corollary 2.3 to

Ax,x1 = (on,xl;o, co 7qxo,X1;N) c DOO;OO—(W; RN-I—I)'
By Lemma 3.1, we see that

(4.5) VE g i =0, i=0,...,N.

Applying with n'=0', ¢'=v', i=0,...,N, we can find
40,0 > 0 such that

N
Ziaz(l_af) <1 and supJ exp[éHVoin,le;,w] du < oo.
i=1 L=k JW

Combined with [Lemma 4.1, the second estimation yields that

~2/3

sup | exp S Il 5 i <
A=l J W

Thus, if we set

A= {1,270 0man)y e RVFL 4> 20} < A(N),
then

~2/3
(4.6) sug JW expl ||V0qYO . || / 1 duy < oo, where qu Y Zz Gxo,x,:i-
zZe
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Denote by V* the adjoint operator of V on (W, H,u). Since Vi(do(w(l)) =
0, it is then easily seen that

JW VOF VoG o (w(1))u(dw) = JW(V*VOF )Go(w(1))u(dw)

for any F,GeD®“ (W;R). Hence, by [4.1], the adjoint V; of V; on W,
enjoys that
VO*V()F = V*V()F Hp-a.S.

~ =
Remember that, if F e D™ (W;H) and F(w)(¢) is adapted, then

1

—_—
V*F:J CFO0) (1), dw(n)),

0
and that V*(GF) = GV'F — VG, F)y, Ge D™ * (W;R). Then, by virtue of
and a direct computation, we obtain

V*Voq«\'mxl;i(w)

D .l

= — Z <{W“(Z)H£'(mexl(t)) + Z(Z — l)ﬁixo;(wxo’xl (Z))}, Odon,xl(Z)>

a=1+0

D ,1 Ui 2
+ 2 (Wa(t) ‘ (Wxg,x (1)) + 2(2 = l)a—%(on,xl(f))

oxt ()

- zHo?;(wa,xl(z))) dt

for p-a.e. we W, where dHU /0x* = (aHfﬁi/ax“)lsﬁsD. Hence, due to
3.2, there is a p > 0 such that

1/(1<'+1)]

JW exp[pLo|qxy, x5 1] dp < 0.

Since  Lo[qx, x,,1] > 1, this implies that Lo[gy, .1/ e D=~ (W;R).
Then, by Lemma 4.1, this also yields that

(4.7) J eXp ELO[%O,XH 1]1/([(/“) dpy < 0.
Wy

It follows from (4.5)-4.7) that all assumptions in [Corollary 2.3 are fulfilled
with ¢ = ¢y, x,, a=2/3 and b=1/(K'+1). Then, applying [Corollary 2.3 and
recalling that K’ < K, we obtain constants L;,L, > 0 such that
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sup
zeA

J explv —Mq)(c?,xl]dﬂo < Lyexp[—La|2|V® )] for every AeR.
W

By and the very definition of A, we see that

!
Nor

|Pf(xo,x1)| <L eXp[—inl/(K+5)] for every 4> .

|pf (x0,x1)| < for any A >0, and

We therefore arrive at (1.1). O
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