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Abstract. Menas showed there exist 22 normal ultrafilters on P/ with the
partition property if x is 2*" -supercompact. We first show that A-supercompactness of
i implies the existence of a normal ultrafilter on #.A with the partition property. We
also prove by a similar technic that part*(x,A) holds if x is A-ineffable with cf(1) > «.
Note that Magidor showed x is A-ineffable if part*(x, 1) holds, and we proved the
converse under some additional assumption in [7].

1. Introduction.

There are several combinatorial properties related to supercompactness such
as partition property and ineffability. In fact, Menas [13, Theorem 3] proved
there exist 22" normal ultrafilters on Z.4 with the partition property if x is
27“<K-supercompact, and Magidor proved that x is A-ineffable if part*(x, 1),
and that x 1s supercompact if x is O-ineffable for all 0 > x.

It is well known that every normal ultrafilter on x has the partition property
as well as part*(x,x) holds whenever « is ineffable. On the other hand Solovay
proved the existence of normal ultrafilters on #.4 without the partition property
for some x and A.

Thus it is natural to ask: (1) Does ./ carry a normal ultrafilter with the
partition property if x is A-supercompact?

(2) Does part*(x, /) hold whenever x is A-ineffable?

In this paper we give affirmative answers to both questions. First we reduce
the assumption in Menas’ theorem to show:

THEOREM 3.1. If K is A-supercompact, then there exists a normal ultrafilter
on P.J with the partition property.

In [7], we gave a partial answer for the question (2) under an additional assump-
tion. By the same idea as used for proving the above theorem we eliminate the
assumption in to prove:
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THEOREM 5.1. If K is A-ineffable and cof(A) > «, then part*(x, i) holds.

The paper consists of five sections. In the next section, we give some
notations and definitions. The above theorems are proved in sections 3 and
5. Section 4 is devoted to give some lemmas.

The author thanks the referee for many useful suggestions and helpful
comments.

2. Notations and definitions.

We use standard Z.A-combinatorial terminologies (e.g., see [8]). Through-
out this paper, x denotes a regular uncountable cardinal, 4 > x a cardinal, and
all ideals and filters are assumed to be x-complete. Let .# be an ideal on a set
S. #* denotes the dual filter and .#* denotes the set 2(S)\.#. For any subset
S'cS, 418" denotes {X =« S'|X e#}. For any function f:S — T, f.(5)
denotes the ideal {X <« T|f'Xe.#} on T.

Let A be a set such that x = A. Z.A denotes the set {x = A||x| < x}.
For each x € 7.4, Q. denotes the set {s = x||s| < [xN«|}. For any x,y € ZA,
x <y means that xe Q,. Let Y be a subset of Z.4. Y is said to be unbounded
if for any x € #.A there exists a ye Y such that x cy. Y is called a club if
Y is unbounded and closed under —-increasing chains with length < x. Y is said
to be stationary if X N C # ¢ for any club C = Z.A. Let NS, 4 denote the set
of all non-stationary subsets of Z.A4.

A function f:Y — A4 is said to be regressive if f(x)e x holds for all
xeY. Let .# be an i1deal on Z.A. .# 1is said to be normal if it contains all
bounded subsets, and for any X € .#" and regressive function f : X — A4 there
exists an a € A such that f~'{a} e #*. .7 is said to be strongly normal if for
any X € #1 and function f: X — Z.A such that f(x) < x for x € X there is a
Y € #7 [ X such that f Y is constant. It is known that NS, 4 is the smallest
normal ideal on #.4. A filter on #.4 i1s normal if the dual ideal of 1t 1s a
normal ideal. We say « 1s A-supercompact if there exists a normal ultrafilter on
#.A. For any ultrafilter U on #.4A, My denotes the ultrapower of the universe
by U.

For each function 7:%.4 — Z#.A, cl(r) denotes the set {xe ZA|Vte
QO:(7(t) € Ox)}. For each 7:4x A4 — #.A, cl(r) denotes the set {xe Z.A|
Vo, € x(t(o, f) = x)}. Tt is known for any X < #.4, X contains a club
if and only if there exists a 7: 4 x A — #.A such that cl(r) c X. For any
B o A, the function p : Z.B — #.A which is defined by p(x) = xN A4 is called the
projection from #.B to Z.A.

Let ¥ = 2.A. [Y]* denotes the set {(x,y) € ¥ x Y |x < y}. For any func-
tion f : [Y]* — 2, a subset H of Y is said to be homogeneous for f if |f“[H]*| =
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1. An ultrafilter U on %.A has the partition property if for any X € U and any
f:[X]* — 2 there exists H € U such that H = X and H is homogeneous for f.
We say that Y has the partition property if for any f : [Y]2 — 2 there exists a
stationary subset H of Y such that H is homogeneous for f. Y is said to be
ineffable (almost ineffable) if for any {s, < x|x € Y} there exists an S < 4 such
that {x e Y |s, = SNx} is stationary (unbounded). Set

NP, 4 ={X c Z.A]| X does not have the partition property},
NIn, 4 = {X € #.4| X is not ineffable}, and
NAln, 4 ={X c Z.4| X is not almost ineffable}.

Carr [3], [4] showed that NP, 4, NIn, 4, and NAlIn, 4 are normal, and that these
ideals are strongly normal if [4]|~" = |A4|.

We say that part*(x, 4) holds if NP, 4 is a proper ideal, that « is A-ineffable
if NIn, 4 is a proper ideal, and that x is almost A-ineffable if NAlIn, 4 is a proper
ideal. It is known that for any B > 4, Nln, 4 < p.(NIn, p), where p denotes
the projection from Z.B to Z.A.

3. Normal ultrafilters with the partition property.

Concerning normal ultrafilters on %4 without the partition property,
Solovay proved:

THEOREM 1 (Menas [13]). If k is A-supercompact and v is A-supercompact for
some Kk < v < A, then there exists a normal ultrafilter on %.. without the partition

property.
Kunen proved:

THeOREM 2 (Kunen-Pelletier [9]). Assume that there exists a normal ultra-
filter on #.4 without the partition property. Then the least such A > k is weakly
T3-indescribable and inaccessible.

On the other hand, Menas proved that:

THEOREM 3 (Menas [13]). If xk is 2 supercompact, then there exist 22"
normal ultrafilters on P with the partition property.

In this section, we prove:

THEOREM 3.1.  If i is A-supercompact, then there exists a normal ultrafilter on
P with the partition property.

The proof will be done by a slightly different argument from that in Menas
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[13]. We first reduce this theorem to a certain lemma (Lemma 3.4, below). The
following two lemmas are due to Menas [12], [13].

LemMA 3.2 (Menas [12]). If k is A-supercompact, then there exists a normal
ultrafilter U on Z.A such that

My E “k is not A-supercompact’.

LemMa 3.3 (Menas [13]). Let U be a normal ultrafilter on #.i. Then, the
following (a) and (b) are equivalent.

(@) U has the partition property.

(b) There exists an X € U such that x <y for all (x,y)e[X]".

By these results, Mheorem 3.1 directly follows the next lemma.

Lemma 3.4. Suppose that

(1) My E “i is not A-supercompact”.
Then, there exists an X € U such that

Q) x=<y for dall (x,y)e[X]%

In order to prove this lemma, we need the notion of w-Jonsson functions
and some known results. Let S be an infinite set. We denote by “S the set of
functions from w to S. A function F from “S to S is called an w-Jonsson
function for S if F““T =S for any T < § with |T|=|S|. Concerning w-
Jonsson functions, Erdds-Hajnal (e.g., see [8, Theorem 23.13|) proved:

LemMma 3.5 (Erdos-Hajnal).  For any infinite set S, there exists an w-Jonsson
function for S.

Solovay proved:

LemMa 3.6 (Solovay [12]). Let U be a normal ultrafilter on % and
F:%L— 4 an w-Jonsson function. Then

{xe ZA|F|“x is w-Jonsson} € U.

The next lemma is due to Magidor.

LemMma 3.7 (Magidor [10]). If k is < A-supercompact and A is O-supercompact,
then x is O-supercompact.

PrOOF OF LEMMA 3.4. Suppose that U is a normal ultrafilter on #.4 which
satisfies (1). Let 0 be the largest strong limit cardinal < A. Define 6; (for i < w)
by 8o =6, and d;p; =2% Let n < w be such that §, <1 <J,,;. Note that

My | “x is o-supercompact, for any o € [x,0).
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Take w-Jonsson functions F and F; for /4 and 6; (for i < n). Define Xy < Z.4 by:

xe Xy 1if and only if x e Z./ and the following hold.

(3) xNx is inaccessible and xNx is not x-supercompact,

(4) xNx is xNoa-supercompact for all o e xNJx,d),

(5) ot(xNJ) is a strong limit cardinal and ot(xNd;) is a cardinal for i < n,
(6) 2MN91 = |xN 6| for i <n and |x| < 2XM%

(7)

For i <n, F;[“(xNd;) is an w-Jonsson function for xNJ;,

(8) F |®x is an w-Jonsson function for x.

By and the fact that [{ot(xNa)|x € #A)], represents o in My
for any o < 4, it holds that X, e U.

Cam 1. If (x,y) € [Xo)* and xNJ, # yN3, then x < y.
ProoF oF CLaM 1. To get a contradiction, assume that
(x,y) € [Xo]* and xN4, # yNd, and x < y does not hold.

Since y Nk is a strong limit cardinal, it holds that yNx < [xNdy|. Since xNx
is x No-supercompact for all o« € xNx,d), we have that

xNx is yNa-supercompact for all o€ [xNx,yNk).

By this, [Lemma 3.7, and the fact that yNx is yNa-supercompact for all a €
yNIk,d), we have that

xNi is yNa-supercompact for all o e [xNk,d)Ny.

By this, since xMNx is not x-supercompact, it holds that |yNd| < |x|. Since
|yNJ| is a strong limit cardinal, we have that |yNdJ| < |[xNJ|. By this and (7),
xNo =yNo. This implies that xNd, = yNo,. This contradicts the assumption.

(Claim 1)[]

In case that A =J,, X = X satisfies (2) by Claim 1. Let J, < A. Define
g:x—kand fi:x— kK (for i<n+1) by

the least f > o such that o is not if such f < K exists,
g(a) = ¢ p-supercompact,
0, otherwise,

fo(a) = the largest strong limit cardinal < g(a),
fir1(0) =24 for i <n.
Note that fo(xNx) =ot(xNJ) for all xe Xy. So it holds that
fo(xNK)=o0t(xNJ,) and ot(x) < frr1(xNx) for all x e Xp.
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For each o < x, take an injection I} : f,1(o) — 2(f,(«)). For each x € Xj,
define 7, and a, by
Ty : ot(xNd,) — xNJ, is the order isomorphism,
ay = T Ty (OL(X)).
Since a, = xNo, for all x e Xj, there exists an 4 =, such that
X={xeXp|la,=ANx}eU.

We claim that X satisfies (2). To get a contradiction, assume that there exists
(x,y) € [X]* such that x < y does not hold. By Claim 1, it holds that xNd, =
yNé,. So we have that n,=m,. Set a=xNx (=yNk), {=ot(x), and 5=
ot(y). Since ¢ # n, we have that I5(&) # I5(n). So a, =n“I,(¢) = n,“I,(&) #
n,“I,(n) = ay,. This contradicts the fact a, = ANx=ANy =a,.

(Cemma 3.4 and [Theorem 3.1)[]

Define the Mitchell ordering <I on the set of normal ultrafilters on Z.4 by:

F<U 1if and only if Fe My.

Similar to normal ultrafilters on measurable cardinals (see Mitchell [14]), < is
well-founded ordering and it can be defined

o(U) =sup{o(F)+ 1|F <1U}, for all normal ultrafilters U on ZA.
Using this, can be restated as:
If o(U)=0, then U has the partition property.
So the following question is natural.

QuestioN. Can we find p such that sup{o(U)|U has the partition
property} <y < min{o(U)| U does not have the partition property}?

4. Several lemmas.

In this section we will state some lemmas which will be used in the next
section.

4.1. The A-Shelah property.

The Z-Shelah property was introduced by Carr [2]. A subset X < Z./
has the Shelah property if for any {f.:x — x|xe€ X} there exists a function
f : A — A such that

Vxe#4 dyeX (xcyand f, [x=fTx).
Set NSh, ; = {X c ZA|X does not have the Shelah property}. It is known
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that NSh, ; 1s a normal ideal on #Z. and NSh, ; = NAln, ;. We say that x is
4-Shelah if NSh, ; 1s a proper ideal.
The following two lemmas are due to Carr [3], [4].

Lemma 4.1 (Carr [4]). {xe ZA|xNk is an inaccessible cardinal} € NShy ;.
LemMmA 4.2 (Carr [3]). If x is 2% -Shelah, then x is J-supercompact.
Furthermore we need

LemMa 4.3 (Johnson [5]). Let 0 </ and F be an w-Jonsson function for
0. Then,

{xe A F [ “(xNd) is an w-Jonsson function for xNd} e NSh_ ;.
The following lemma is due to Abe [1].

LemMa 4.4 (Abe [1, Corollary 3.4]). Let y, 6 be cardinals such that 27 =
0 < A. Then,

{xe 22| 2K = |xNJ|} e NSh, ;.
A similar argments give proofs of the following lemmas.
LeMMA 4.5. If 0 is a cardinal < A, then
{x e Zilot(xNJ) is a cardinal} € NIn,_ ;.
LemMMA 4.6. If y is a strong limit cardinal < A, then
{xe 2J||xNy| is a strong limit cardinal} e NIn, ;.
LemMa 4.7, If p <1 <27, then {x e ZJ||x| <27} e NIn;’ ,.

4.2. The correspondence between Z.A and Z.1°".
Let 0 =A%" and p: 2.0 — 2.4 be the projection. Take a bijection 4 :
P4 — 0 and define ¢ : Z.0 — 2. by

qy)=n'y for ye20,
where 47!y denotes the set {xe ZA|h(x)ey}. Set

Yo={ye20|p(y) =q(y) and h“Q,,) = y}.

The next lemma is due to Abe [1, Proposition 1.2].

LemmA 4.8 (Abe [1, Proposition 1.2]). Yy e WNS_ ), where WNS, y denotes
the smallest strongly normal ideal on 2.0.

The next lemma appeared in [6].
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LEmMA 4.9. {x € ZA|xNk is almost x-ineffable} € p.(NlIn, )"
The next lemma is essentially due to Carr [4, Proposition 4.1 (1)].

Lemma 4.10. Let X e p.(NIn,g)*. Then, for any {a, = Qy|xe X} there
exists an A < 2. such that

Vi: 24— 24 Ixe XNel(r) (ax=ANQ,).

Proor. Set ¥ =p~'XNY, Bylemma4§, YeNIn, Foreachye?,
set by, = h*a,,). Since Y < Yy, b, =y for all ye Y. So there exists a B < 0
such that

Y'={yeY|b,=BNy}eNS/,

Set 4 = h~'B. We claim that A4 is as required. To show this, let 7 : 2./ — ZA.
Let o/ =hotoh™' :0 — 0. Since Y'e NSZ@» there exists a ye Y'Ncl(z’). It
is easy to check that p(y) e X Ncl(r) and ay,y = AN Qpy. O

LemMa 4.11. Suppose that part*(ic, A) fails. Then,
{x € ZA|part*(x Nk, x) fails} € p.(NIn, g)".
PrOOF. To get a contradiction, assume that
X = {x e ZJ|part*(xNx,x) holds} € p.(NIn, )"

Let X' ={xeX|xNk is inaccessible}. By [Lemma 4.1, X'ep,(Nln,q)".
Since part*(x, A) fails, there exists a function f : [#./]* — 2 such that

VH eNSZ . (H is not homogeneous for f).
For each xe X', take H, e NS/, and e, <2 such that /“[H,]* = {e,}. By

KX, x

Cemma 4.10, there exists an H < Z.J. and e < 2 such that
(%) Vi: 24— 24 Ixe X'Ncl(z) (Hy=HNQ, and e, =e).

It is easy to check that H is homogeneous for f. We have to show that H
is stationary. Let C be a club of #.4. Take a function 7: #.4 — C such that
x < 7(x) for each x € Z.A. By (%), there exists an x € X' Ncl(r) such that H, =
HNQ,. Since xecl(z), it holds that CN Q, is a club in Q.. So it holds that
g+#HNCNQO, <« HNC. ]

5. Proof of Theorem 5.1.
In this section, we prove:

TueoreM 5.1. If k is A-ineffable and cof(l) > k then part*(x, A) holds.
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Proor. To get a contradiction, assume that x is A-ineffable, cof(4) > x, and
part*(x, A) fails. Since x is A-Shelah, by a result of Johnson [5], it holds that
2~ = ). Letd be the largest strong limit cardinal < 1. Define J; (for i < w) by
Jo =0 and 6;4; =2% Let n < w be such that 6, <A <d,.;. Take w-Jonsson
functions F for 4 and F; for J; for each i <n. Let X be the set of all xe Z.4
which satisfy:

(1) xNk is an inaccessible cardinal,

(2) ot(xNJ) is a strong limit cardinal,

(3) ot(xNd;y) = 2°1*19%) for all i < n and ot(x) < 2°Ux¥N%)

(4) F1“x and F; [“(xNJ;) are w-Jonsson functions for x and xNJ;, for

i < n, respectively,

(5) xNk is almost x-ineffable,

(6) part*(xNk,x) fails.

By Lemmas 4.1, 4.6, 44, 47, 43, and (411, it holds that X e
p«(NIn, ;<,)" = NIn; ;. Since « is -ineffable, we have that X e NIn_,. By
and (5) above, every xe X satisfies:

(7) xNx is xNoa-supercompact for all o e xNJx,d).

The next claim 1s crucial.

Cramm 2. If (x,y)€ [X]2 and xNo, # yNo,, then x < y.

PrOOF OF CLamm 2. To get a contradiction, assume that there exists (x,y) €
[X]* such that

xNo, #yNd, and x <y does not hold.

By (3) it holds that xNd # yNd. Since F [ ?(yNJ) is w-Jonsson, it holds that
|xNo| < |yNd|. Since |yNx| and |y NJ| are strong limit cardinals, we have that
(8) 2M <|yNé| and yNx < |xNJ|.
By (7), (8), and [Lemma 3.7, x N« is x-supercompact. This contradicts that
part*(x Nk, x) fails. (Claim 2)[]

We complete the proof by showing that X eNPf; ;- The proof 1s divided
into two cases.

Case 1. 1 =90,.

By Claim 2 it holds that V(x,y) € [X]* (x <y). So X € NP, , follows from
Carr’s theorem [4, Theorem 4.2 (1)]. But for the reader’s convenience we give a
proof. Let f:[X]* —2. For xe X define a, = Oy by

ay={te Q.|te X and f(t,x) =0}.
Then, by there exists an 4 < #.J such that
Vi: P4 — P4 Ixe XNcl(r) (ay=A4NQy).
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Set X' ={xeX|a,=A4NQ,}. Note that X" e NS, It is easy to check that
V(x.y)e[X'NAP" (f(x,y)=0) and V(x,y)e[X\A]* (f(xy)=1).
So X'NA or X'\A4 is as required.

Case 2. 0, < 4.
Define ¢, fi: k — x (for i <n+1) by

f-supercompact,
0, otherwise,

the smallest f > o such that o is not if such f exists,
g(o) = {
fo(a) = the largest strong limit cardinal < g(«),
Sir1(a) = 27 for all o < x and i < n.
For any x e X, since ot(xNdJ) < g(xNk) < ot(x), it holds that
fo(xNk) =ot(xNJ) and f,(xNk)=ot(xNJ,) <ot(x) < fur1(xNk).

For each o < x, take an injection I} : fo11(x) + 1 — 2(f,(2)). For each x € X,
define 7, and s, by

Ty : ot(xNJ,) — xNJ, is the order isomorphism, and
sy = 7 Tine(ot(x)) (€ xNdy).
To show that X e NP}, let f:[X]* 2. For xeX set
a,={te Qy|te X and f(t,x) = 0}.
Since X € p.(NIn, )", there exist S =6, and 4 = %/ such that
X'={xeX|s,=SNx and a, = ANQ} e NS .
CLam 3. Y(x,y) € [X']* (xN, # yNd,).
Proor oF CLamM 3. To get a contradiction, assume that
(x,y) €[X']* and xNd, =yNJ,.

Note that sy =ws,. Set a«=xNx (=yNk), {=ot(x), and # =ot(y). Since
|x| < |y, it holds that & < #. Since xNJ, = yNJ,, it holds that =, = ,. Since
I,(&) # I,(n), we have that

sv = 15(&) # my L5 (n) = sy

This is a contradiction. (Claim 3)[]
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By Claims 2 and 3, it holds that
V(x,y) e (X (x =),
So X'NA or X'\ A4 is a desired stationary homogeneous set for f. (Theorem 5.1)[]
COROLLARY 5.2. Let k < A < u. If part*(x, 1) holds, then part* (i, ) holds.

ProOF. Let 0= ."". Note that cof(f) >x. Using the corespondence
between #.A and £.0, it is not difficult to check that part*(x, ) implies
part*(x, ). So, it suffices to show that part*(x,6) holds. By Magidor [11] it
holds that x is u-ineffable. Then, by Johnson [5] it holds that 0 < A" < u. So x
is O-ineffable. Hence part*(x,6) holds. O
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