
J. Math. Soc. Japan
Vol. 54, No. 1, 2002

Partition properties on Pkl

By Shizuo Kamo

(Received Jul. 29, 1999)

(Revised Jul. 3, 2000)

Abstract. Menas [13] showed there exist 22
l<k

normal ultrafilters on Pkl with the

partition property if k is 2l
<k

-supercompact. We first show that l-supercompactness of

k implies the existence of a normal ultrafilter on Pkl with the partition property. We

also prove by a similar technic that part�ðk; lÞ holds if k is l-ine¤able with cfðlÞb k.

Note that Magidor [11] showed k is l-ine¤able if part�ðk; lÞ holds, and we proved the

converse under some additional assumption in [7 ].

1. Introduction.

There are several combinatorial properties related to supercompactness such

as partition property and ine¤ability. In fact, Menas [13, Theorem 3] proved

there exist 22
l<k

normal ultrafilters on Pkl with the partition property if k is

2l
<k

-supercompact, and Magidor [11] proved that k is l-ine¤able if part�ðk; lÞ,

and that k is supercompact if k is y-ine¤able for all yb k.

It is well known that every normal ultrafilter on k has the partition property

as well as part�ðk; kÞ holds whenever k is ine¤able. On the other hand Solovay

proved the existence of normal ultrafilters on Pkl without the partition property

for some k and l.

Thus it is natural to ask: (1) Does Pkl carry a normal ultrafilter with the

partition property if k is l-supercompact?

(2) Does part�ðk; lÞ hold whenever k is l-ine¤able?

In this paper we give a‰rmative answers to both questions. First we reduce

the assumption in Menas’ theorem to show:

Theorem 3.1. If k is l-supercompact, then there exists a normal ultrafilter

on Pkl with the partition property.

In [7], we gave a partial answer for the question (2) under an additional assump-

tion. By the same idea as used for proving the above theorem we eliminate the

assumption in [7] to prove:

2000 Mathematics Subject Classification. Primary 03E55; Secondary 04A20.

Key Words and Phrases. normal ultrafilter, supercompactness, partition property.

The author is partially supported by Grant-in-Aid for Scientific Research (No. 09640288), The

Ministry of Education, Culture, Sports, Science and Technology, Japan.



Theorem 5.1. If k is l-ine¤able and cofðlÞb k, then part�ðk; lÞ holds.

The paper consists of five sections. In the next section, we give some

notations and definitions. The above theorems are proved in sections 3 and

5. Section 4 is devoted to give some lemmas.

The author thanks the referee for many useful suggestions and helpful

comments.

2. Notations and definitions.

We use standard Pkl-combinatorial terminologies (e.g., see [8]). Through-

out this paper, k denotes a regular uncountable cardinal, lb k a cardinal, and

all ideals and filters are assumed to be k-complete. Let I be an ideal on a set

S. I
� denotes the dual filter and I

þ denotes the set PðSÞnI. For any subset

S 0
HS, I ZS 0 denotes fX HS 0 jX A Ig. For any function f : S ! T , f�ðIÞ

denotes the ideal fX HT j f �1X A Ig on T.

Let A be a set such that kHA. PkA denotes the set fxHA
�

�jxj < kg.

For each x A PkA, Qx denotes the set fsH x
�

�jsj < jxV kjg. For any x; y A PkA,

x � y means that x A Qy. Let Y be a subset of PkA. Y is said to be unbounded

if for any x A PkA there exists a y A Y such that xH y. Y is called a club if

Y is unbounded and closed under H-increasing chains with length < k. Y is said

to be stationary if X VC0 f for any club CHPkA. Let NSk;A denote the set

of all non-stationary subsets of PkA.

A function f : Y ! A is said to be regressive if f ðxÞ A x holds for all

x A Y . Let I be an ideal on PkA. I is said to be normal if it contains all

bounded subsets, and for any X A I
þ and regressive function f : X ! A there

exists an a A A such that f �1fag A I
þ. I is said to be strongly normal if for

any X A I
þ and function f : X ! PkA such that f ðxÞ � x for x A X there is a

Y A I
þ ZX such that f ZY is constant. It is known that NSk;A is the smallest

normal ideal on PkA. A filter on PkA is normal if the dual ideal of it is a

normal ideal. We say k is A-supercompact if there exists a normal ultrafilter on

PkA. For any ultrafilter U on PkA, MU denotes the ultrapower of the universe

by U.

For each function t : PkA ! PkA, clðtÞ denotes the set fx A PkA j Et A

QxðtðtÞ A QxÞg. For each t : A� A ! PkA, clðtÞ denotes the set fx A PkA j

Ea; b A xðtða; bÞH xÞg. It is known [12] for any X HPkA, X contains a club

if and only if there exists a t : A� A ! PkA such that clðtÞHX . For any

BIA, the function p : PkB ! PkA which is defined by pðxÞ ¼ xVA is called the

projection from PkB to PkA.

Let Y HPkA. ½Y �2 denotes the set fðx; yÞ A Y � Y j xP yg. For any func-

tion f : ½Y �2 ! 2, a subset H of Y is said to be homogeneous for f if j f “½H�2j ¼
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1. An ultrafilter U on PkA has the partition property if for any X A U and any

f : ½X �2 ! 2 there exists H A U such that HHX and H is homogeneous for f .

We say that Y has the partition property if for any f : ½Y �2 ! 2 there exists a

stationary subset H of Y such that H is homogeneous for f . Y is said to be

ine¤able (almost ine¤able) if for any fsx H x j x A Yg there exists an SHA such

that fx A Y j sx ¼ S V xg is stationary (unbounded). Set

NPk;A ¼ fX HPkA jX does not have the partition propertyg;

NInk;A ¼ fX HPkA jX is not ine¤ableg; and

NAInk;A ¼ fX HPkA jX is not almost ine¤ableg:

Carr [3], [4] showed that NPk;A, NInk;A, and NAInk;A are normal, and that these

ideals are strongly normal if jAj<k ¼ jAj.

We say that part�ðk;AÞ holds if NPk;A is a proper ideal, that k is A-ine¤able

if NInk;A is a proper ideal, and that k is almost A-ine¤able if NAInk;A is a proper

ideal. It is known that for any BIA, NInk;A H p�ðNInk;BÞ, where p denotes

the projection from PkB to PkA.

3. Normal ultrafilters with the partition property.

Concerning normal ultrafilters on Pkl without the partition property,

Solovay proved:

Theorem 1 (Menas [13]). If k is l-supercompact and n is l-supercompact for

some k < na l, then there exists a normal ultrafilter on Pkl without the partition

property.

Kunen proved:

Theorem 2 (Kunen-Pelletier [9]). Assume that there exists a normal ultra-

filter on Pkl without the partition property. Then the least such l > k is weakly

P
2
1 -indescribable and inaccessible.

On the other hand, Menas proved that:

Theorem 3 (Menas [13]). If k is 2l
<k

supercompact, then there exist 22
l<k

normal ultrafilters on Pkl with the partition property.

In this section, we prove:

Theorem 3.1. If k is l-supercompact, then there exists a normal ultrafilter on

Pkl with the partition property.

The proof will be done by a slightly di¤erent argument from that in Menas
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[13]. We first reduce this theorem to a certain lemma (Lemma 3.4, below). The

following two lemmas are due to Menas [12], [13].

Lemma 3.2 (Menas [12]). If k is l-supercompact, then there exists a normal

ultrafilter U on Pkl such that

MU � ‘‘k is not l-supercompact’’:

Lemma 3.3 (Menas [13]). Let U be a normal ultrafilter on Pkl. Then, the

following (a) and (b) are equivalent.

(a) U has the partition property.

(b) There exists an X A U such that x � y for all ðx; yÞ A ½X �2.

By these results, Theorem 3.1 directly follows the next lemma.

Lemma 3.4. Suppose that

(1) MU � ‘‘k is not l-supercompact’’.

Then, there exists an X A U such that

(2) x � y for all ðx; yÞ A ½X �2.

In order to prove this lemma, we need the notion of o-Jonsson functions

and some known results. Let S be an infinite set. We denote by oS the set of

functions from o to S. A function F from oS to S is called an o-Jonsson

function for S if F ‘‘oT ¼ S for any T HS with jT j ¼ jSj. Concerning o-

Jonsson functions, Erdös-Hajnal (e.g., see [8, Theorem 23.13]) proved:

Lemma 3.5 (Erdös-Hajnal). For any infinite set S, there exists an o-Jonsson

function for S.

Solovay proved:

Lemma 3.6 (Solovay [12]). Let U be a normal ultrafilter on Pkl and

F :
ol ! l an o-Jonsson function. Then

fx A Pkl jF Z ox is o-Jonssong A U :

The next lemma is due to Magidor.

Lemma 3.7 (Magidor [10]). If k is <l-supercompact and l is y-supercompact,

then k is y-supercompact.

Proof of Lemma 3.4. Suppose that U is a normal ultrafilter on Pkl which

satisfies (1). Let d be the largest strong limit cardinala l. Define di (for i < o)

by d0 ¼ d, and diþ1 ¼ 2di . Let n < o be such that dna l < dnþ1. Note that

MU � ‘‘k is a-supercompact; for any a A ½k; dÞ:
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Take o-Jonsson functions F and Fi for l and di (for ia n). Define X0 HPkl by:

x A X0 if and only if x A Pkl and the following hold:

(3) xV k is inaccessible and xV k is not x-supercompact,

(4) xV k is xV a-supercompact for all a A xV ½k; dÞ,

(5) otðxV dÞ is a strong limit cardinal and otðxV diÞ is a cardinal for ia n,

(6) 2jxVdi j ¼ jxV diþ1j for i < n and jxja 2jxVdnj,

(7) For ia n, Fi Z
oðxV diÞ is an o-Jonsson function for xV di,

(8) F Z ox is an o-Jonsson function for x.

By Lemma 3.6 and the fact that ½hotðxV aÞ j x A Pkli�U represents a in MU

for any aa l, it holds that X0 A U .

Claim 1. If ðx; yÞ A ½X0�
2
and xV dn 0 yV dn then x � y.

Proof of Claim 1. To get a contradiction, assume that

ðx; yÞ A ½X0�
2 and xV dn 0 yV dn and x � y does not hold:

Since yV k is a strong limit cardinal, it holds that yV ka jxV d0j. Since xV k

is xV a-supercompact for all a A xV ½k; dÞ, we have that

xV k is yV a-supercompact for all a A ½xV k; yV kÞ:

By this, Lemma 3.7, and the fact that yV k is yV a-supercompact for all a A

yV ½k; dÞ, we have that

xV k is yV a-supercompact for all a A ½xV k; dÞV y:

By this, since xV k is not x-supercompact, it holds that jyV dja jxj. Since

jyV dj is a strong limit cardinal, we have that jyV dja jxV dj. By this and (7),

xV d ¼ yV d. This implies that xV dn ¼ yV dn. This contradicts the assumption.

(Claim 1)r

In case that l ¼ dn, X ¼ X0 satisfies (2) by Claim 1. Let dn < l. Define

g : k ! k and fi : k ! k (for ia nþ 1) by

gðaÞ ¼

the least bb a such that a is not if such b < k exists,

b-supercompact‚

0; otherwise,

8

<

:

f0ðaÞ ¼ the largest strong limit cardinala gðaÞ;

fiþ1ðaÞ ¼ 2 fiðaÞ; for ia n:

Note that f0ðxV kÞ ¼ otðxV dÞ for all x A X0. So it holds that

fnðxV kÞ ¼ otðxV dnÞ and otðxÞ < fnþ1ðxV kÞ for all x A X0:
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For each a < k, take an injection Ga : fnþ1ðaÞ ! Pð fnðaÞÞ. For each x A X0,

define px and ax by

px : otðxV dnÞ ! xV dn is the order isomorphism;

ax ¼ px‘‘GotðxVkÞðotðxÞÞ:

Since ax H xV dn for all x A X0, there exists an AH dn such that

X ¼ fx A X0 j ax ¼ AV xg A U :

We claim that X satisfies (2). To get a contradiction, assume that there exists

ðx; yÞ A ½X �2 such that x � y does not hold. By Claim 1, it holds that xV dn ¼

yV dn. So we have that px ¼ py. Set a¼ xV k ð¼ yV kÞ, x¼ otðxÞ, and h¼

otðyÞ. Since x0 h, we have that GaðxÞ0GaðhÞ. So ax ¼ px‘‘GaðxÞ ¼ py‘‘GaðxÞ0

py‘‘GaðhÞ ¼ ay. This contradicts the fact ax ¼ AV x ¼ AV y ¼ ay.

(Lemma 3.4 and Theorem 3.1)r

Define the Mitchell ordering k on the set of normal ultrafilters on Pkl by:

FkU if and only if F A MU :

Similar to normal ultrafilters on measurable cardinals (see Mitchell [14]), k is

well-founded ordering and it can be defined

oðUÞ ¼ supfoðF Þ þ 1 jFkUg; for all normal ultrafilters U on Pkl:

Using this, Theorem 3.1 can be restated as:

If oðUÞ ¼ 0; then U has the partition property:

So the following question is natural.

Question. Can we find g such that supfoðUÞ jU has the partition

propertyga g < minfoðUÞ jU does not have the partition propertyg?

4. Several lemmas.

In this section we will state some lemmas which will be used in the next

section.

4.1. The l-Shelah property.

The l-Shelah property was introduced by Carr [2]. A subset X HPkl

has the Shelah property if for any f fx : x ! x j x A Xg there exists a function

f : l ! l such that

Ex A Pkl by A X ðxH y and fy Z x ¼ f Z xÞ:

Set NShk;l ¼ fX HPkl jX does not have the Shelah propertyg. It is known
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that NShk;l is a normal ideal on Pkl and NShk;l HNAInk;l. We say that k is

l-Shelah if NShk;l is a proper ideal.

The following two lemmas are due to Carr [3], [4].

Lemma 4.1 (Carr [4]). fx A Pkl j xV k is an inaccessible cardinalg A NSh�
k;l.

Lemma 4.2 (Carr [3]). If k is 2l<k

-Shelah, then k is l-supercompact.

Furthermore we need

Lemma 4.3 (Johnson [5]). Let da l and F be an o-Jonsson function for

d. Then,

fx A Pkl jF Z oðxV dÞ is an o-Jonsson function for xV dg A NSh�
k;l:

The following lemma is due to Abe [1].

Lemma 4.4 (Abe [1, Corollary 3.4]). Let g; d be cardinals such that 2g ¼

da l. Then,

fx A Pkl j 2
jxVgj ¼ jxV djg A NSh�

k;l:

A similar argments give proofs of the following lemmas.

Lemma 4.5. If d is a cardinala l, then

fx A Pkl j otðxV dÞ is a cardinalg A NIn�
k;l:

Lemma 4.6. If g is a strong limit cardinala l, then

fx A Pkl
�

�jxV gj is a strong limit cardinalg A NIn�
k;l:

Lemma 4.7. If ga la 2g, then fx A Pkl
�

�jxja 2jxVgjg A NIn�
k;l.

4.2. The correspondence between Pkl and Pkl
<k.

Let y ¼ l<k and p : Pky ! Pkl be the projection. Take a bijection h :

Pkl ! y and define q : Pky ! Pkl by

qðyÞ ¼ 6 h�1y for y A Pky;

where h�1y denotes the set fx A Pkl j hðxÞ A yg. Set

Y0 ¼ fy A Pky j pðyÞ ¼ qðyÞ and h‘‘QpðyÞ ¼ yg:

The next lemma is due to Abe [1, Proposition 1.2].

Lemma 4.8 (Abe [1, Proposition 1.2]). Y0 A WNS�
k;y, where WNSk;y denotes

the smallest strongly normal ideal on Pky.

The next lemma appeared in [6].
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Lemma 4.9. fx A Pkl j xV k is almost x-ine¤ableg A p�ðNInk;yÞ
�.

The next lemma is essentially due to Carr [4, Proposition 4.1 (1)].

Lemma 4.10. Let X A p�ðNInk;yÞ
þ. Then, for any fax HQx j x A Xg there

exists an AHPkl such that

Et : Pkl ! Pkl bx A X V clðtÞ ðax ¼ AVQxÞ:

Proof. Set Y ¼ p�1X VY0. By Lemma 4.8, Y A NInþ
k;y

. For each y A Y ,

set by ¼ h‘‘apðyÞ. Since Y HY0, by H y for all y A Y . So there exists a BH y

such that

Y 0 ¼ fy A Y j by ¼ BV yg A NSþ
k;y

:

Set A ¼ h�1B. We claim that A is as required. To show this, let t : Pkl ! Pkl.

Let t 0 ¼ h � t � h�1
: y ! y. Since Y 0 A NSþ

k;y
, there exists a y A Y 0 V clðt 0Þ. It

is easy to check that pðyÞ A X V clðtÞ and apðyÞ ¼ AVQpð yÞ. r

Lemma 4.11. Suppose that part�ðk; lÞ fails. Then,

fx A Pkl j part
�ðxV k; xÞ failsg A p�ðNInk;yÞ

�
:

Proof. To get a contradiction, assume that

X ¼ fx A Pkl j part
�ðxV k; xÞ holdsg A p�ðNInk;yÞ

þ
:

Let X 0 ¼ fx A X j xV k is inaccessibleg. By Lemma 4.1, X 0 A p�ðNInk;yÞ
þ.

Since part�ðk; lÞ fails, there exists a function f : ½Pkl�
2 ! 2 such that

EH A NSþ
k;l

ðH is not homogeneous for f Þ:

For each x A X 0, take Hx A NSþ
kVx;x and ex < 2 such that f ‘‘½Hx�

2 ¼ fexg. By

Lemma 4.10, there exists an HHPkl and e < 2 such that

Et : Pkl ! Pkl bx A X 0 V clðtÞ ðHx ¼ H VQx and ex ¼ eÞ:ð?Þ

It is easy to check that H is homogeneous for f . We have to show that H

is stationary. Let C be a club of Pkl. Take a function t : Pkl ! C such that

xH tðxÞ for each x A Pkl. By ð?Þ, there exists an x A X 0 V clðtÞ such that Hx ¼

H VQx. Since x A clðtÞ, it holds that C VQx is a club in Qx. So it holds that

q0Hx VC VQx HH VC. r

5. Proof of Theorem 5.1.

In this section, we prove:

Theorem 5.1. If k is l-ine¤able and cofðlÞb k then part�ðk; lÞ holds.
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Proof. To get a contradiction, assume that k is l-ine¤able, cofðlÞb k, and

part�ðk; lÞ fails. Since k is l-Shelah, by a result of Johnson [5], it holds that

l
<k ¼ l. Let d be the largest strong limit cardinala l. Define di (for i < o) by

d0 ¼ d and diþ1 ¼ 2di . Let n < o be such that dna l < dnþ1. Take o-Jonsson

functions F for l and Fi for di for each ia n. Let X be the set of all x A Pkl

which satisfy:

(1) xV k is an inaccessible cardinal,

(2) otðxV dÞ is a strong limit cardinal,

(3) otðxV diþ1Þ ¼ 2otðxVdiÞ for all i < n and otðxÞa 2otðxVdnÞ,

(4) F Z ox and Fi Z
oðxV diÞ are o-Jonsson functions for x and xV di, for

ia n, respectively,

(5) xV k is almost x-ine¤able,

(6) part�ðxV k; xÞ fails.

By Lemmas 4.1, 4.6, 4.4, 4.7, 4.3, 4.9 and 4.11, it holds that X A

p�ðNInk;lakÞ
� ¼ NIn�

k;l
. Since k is l-ine¤able, we have that X A NInþ

k;l
. By

Lemma 4.2 and (5) above, every x A X satisfies:

(7) xV k is xV a-supercompact for all a A xV ½k; dÞ.

The next claim is crucial.

Claim 2. If ðx; yÞ A ½X �2 and xV dn 0 yV dn, then x � y.

Proof of Claim 2. To get a contradiction, assume that there exists ðx; yÞ A

½X �2 such that

xV dn 0 yV dn and x � y does not hold:

By (3) it holds that xV d0 yV d. Since F Z oðyV dÞ is o-Jonsson, it holds that

jxV dj < jyV dj. Since jyV kj and jyV dj are strong limit cardinals, we have that

(8) 2jxj < jyV dj and yV ka jxV dj.

By (7), (8), and Lemma 3.7, xV k is x-supercompact. This contradicts that

part�ðxV k; xÞ fails. (Claim 2)r

We complete the proof by showing that X A NPþ
k;l

. The proof is divided

into two cases.

Case 1. l ¼ dn.

By Claim 2 it holds that Eðx; yÞ A ½X �2 ðx � yÞ. So X A NPþ
k;l

follows from

Carr’s theorem [4, Theorem 4.2 (1)]. But for the reader’s convenience we give a

proof. Let f : ½X �2 ! 2. For x A X define ax HQx by

ax ¼ ft A Qx j t A X and f ðt; xÞ ¼ 0g:

Then, by Lemma 4.10 there exists an AHPkl such that

Et : Pkl ! Pkl bx A X V clðtÞ ðax ¼ AVQxÞ:
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Set X 0 ¼ fx A X j ax ¼ AVQxg. Note that X 0 A NSþk;l. It is easy to check that

Eðx; yÞ A ½X 0 VA�2 ð f ðx; yÞ ¼ 0Þ and Eðx; yÞ A ½X 0nA�2 ð f ðx; yÞ ¼ 1Þ:

So X 0 VA or X 0nA is as required.

Case 2. dn < l.

Define g, fi : k ! k (for ia nþ 1) by

gðaÞ ¼

the smallest bb a such that a is not if such b exists;

b-supercompact‚

0; otherwise,

8

<

:

f0ðaÞ ¼ the largest strong limit cardinala gðaÞ;

fiþ1ðaÞ ¼ 2 fiðaÞ; for all a < k and ia n:

For any x A X , since otðxV dÞa gðxV kÞa otðxÞ, it holds that

f0ðxV kÞ ¼ otðxV dÞ and fnðxV kÞ ¼ otðxV dnÞa otðxÞa fnþ1ðxV kÞ:

For each a < k, take an injection Ga : fnþ1ðaÞ þ 1 ! Pð fnðaÞÞ. For each x A X ,

define px and sx by

px : otðxV dnÞ ! xV dn is the order isomorphism; and

sx ¼ px‘‘GxVkðotðxÞÞ ðH xV dnÞ:

To show that X A NPþ
k;l, let f : ½X �2 ! 2. For x A X set

ax ¼ ft A Qx j t A X and f ðt; xÞ ¼ 0g:

Since X A p�ðNInk;yÞ
þ, there exist SH dn and AHPkl such that

X 0 ¼ fx A X j sx ¼ S V x and ax ¼ AVQxg A NSþk;l:

Claim 3. Eðx; yÞ A ½X 0�2 ðxV dn 0 yV dnÞ.

Proof of Claim 3. To get a contradiction, assume that

ðx; yÞ A ½X 0�2 and xV dn ¼ yV dn:

Note that sx ¼ sy. Set a ¼ xV k ð¼ yV kÞ, x ¼ otðxÞ, and h ¼ otðyÞ. Since

jxj < jyj, it holds that x < h. Since xV dn ¼ yV dn, it holds that px ¼ py. Since

GaðxÞ0GaðhÞ, we have that

sx ¼ px‘‘GaðxÞ0 py‘‘GaðhÞ ¼ sy:

This is a contradiction. (Claim 3)r
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By Claims 2 and 3, it holds that

Eðx; yÞ A ½X 0�2 ðx � yÞ:

So X 0VA or X 0nA is a desired stationary homogeneous set for f . (Theorem 5.1)r

Corollary 5.2. Let ka l < m. If part�ðk; mÞ holds, then part�ðk; lÞ holds.

Proof. Let y ¼ l<k. Note that cofðyÞb k. Using the corespondence

between Pkl and Pky, it is not di‰cult to check that part�ðk; yÞ implies

part�ðk; lÞ. So, it su‰ces to show that part�ðk; yÞ holds. By Magidor [11] it

holds that k is m-ine¤able. Then, by Johnson [5] it holds that ya lþa m. So k

is y-ine¤able. Hence part�ðk; yÞ holds. r
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