Partition properties on $\mathcal{P}_{\kappa}\lambda$

By Shizuo KAMO

(Received Jul. 29, 1999) (Revised Jul. 3, 2000)

Abstract. Menas [13] showed there exist $2^{2^{\lambda^{\leq \kappa}}}$ normal ultrafilters on $\mathscr{P}_{\kappa}\lambda$ with the partition property if κ is $2^{\lambda^{\leq \kappa}}$ -supercompact. We first show that λ -supercompactness of κ implies the existence of a normal ultrafilter on $\mathscr{P}_{\kappa}\lambda$ with the partition property. We also prove by a similar technic that part* (κ, λ) holds if κ is λ -ineffable with cf $(\lambda) \geq \kappa$. Note that Magidor [11] showed κ is λ -ineffable if part* (κ, λ) holds, and we proved the converse under some additional assumption in [7].

1. Introduction.

There are several combinatorial properties related to supercompactness such as partition property and ineffability. In fact, Menas [13, Theorem 3] proved there exist $2^{2^{\lambda^{<\kappa}}}$ normal ultrafilters on $\mathscr{P}_{\kappa}\lambda$ with the partition property if κ is $2^{\lambda^{<\kappa}}$ -supercompact, and Magidor [11] proved that κ is λ -ineffable if part^{*}(κ, λ), and that κ is supercompact if κ is θ -ineffable for all $\theta \geq \kappa$.

It is well known that every normal ultrafilter on κ has the partition property as well as part^{*}(κ, κ) holds whenever κ is ineffable. On the other hand Solovay proved the existence of normal ultrafilters on $\mathscr{P}_{\kappa}\lambda$ without the partition property for some κ and λ .

Thus it is natural to ask: (1) Does $\mathcal{P}_{\kappa}\lambda$ carry a normal ultrafilter with the partition property if κ is λ -supercompact?

(2) Does part^{*}(κ , λ) hold whenever κ is λ -ineffable?

In this paper we give affirmative answers to both questions. First we reduce the assumption in Menas' theorem to show:

THEOREM 3.1. If κ is λ -supercompact, then there exists a normal ultrafilter on $\mathcal{P}_{\kappa}\lambda$ with the partition property.

In [7], we gave a partial answer for the question (2) under an additional assumption. By the same idea as used for proving the above theorem we eliminate the assumption in [7] to prove:

²⁰⁰⁰ Mathematics Subject Classification. Primary 03E55; Secondary 04A20.

Key Words and Phrases. normal ultrafilter, supercompactness, partition property.

The author is partially supported by Grant-in-Aid for Scientific Research (No. 09640288), The Ministry of Education, Culture, Sports, Science and Technology, Japan.

THEOREM 5.1. If κ is λ -ineffable and $\operatorname{cof}(\lambda) \geq \kappa$, then $\operatorname{part}^*(\kappa, \lambda)$ holds.

The paper consists of five sections. In the next section, we give some notations and definitions. The above theorems are proved in sections 3 and 5. Section 4 is devoted to give some lemmas.

The author thanks the referee for many useful suggestions and helpful comments.

2. Notations and definitions.

We use standard $\mathscr{P}_{\kappa}\lambda$ -combinatorial terminologies (e.g., see [8]). Throughout this paper, κ denotes a regular uncountable cardinal, $\lambda \geq \kappa$ a cardinal, and all ideals and filters are assumed to be κ -complete. Let \mathscr{I} be an ideal on a set S. \mathscr{I}^* denotes the dual filter and \mathscr{I}^+ denotes the set $\mathscr{P}(S)\backslash\mathscr{I}$. For any subset $S' \subset S$, $\mathscr{I} \upharpoonright S'$ denotes $\{X \subset S' \mid X \in \mathscr{I}\}$. For any function $f: S \to T$, $f_*(\mathscr{I})$ denotes the ideal $\{X \subset T \mid f^{-1}X \in \mathscr{I}\}$ on T.

Let A be a set such that $\kappa \subset A$. $\mathscr{P}_{\kappa}A$ denotes the set $\{x \subset A | |x| < \kappa\}$. For each $x \in \mathscr{P}_{\kappa}A$, Q_x denotes the set $\{s \subset x | |s| < |x \cap \kappa|\}$. For any $x, y \in \mathscr{P}_{\kappa}A$, $x \prec y$ means that $x \in Q_y$. Let Y be a subset of $\mathscr{P}_{\kappa}A$. Y is said to be *unbounded* if for any $x \in \mathscr{P}_{\kappa}A$ there exists a $y \in Y$ such that $x \subset y$. Y is called a *club* if Y is unbounded and closed under \subset -increasing chains with length $< \kappa$. Y is said to be *stationary* if $X \cap C \neq \phi$ for any club $C \subset \mathscr{P}_{\kappa}A$. Let $NS_{\kappa,A}$ denote the set of all non-stationary subsets of $\mathscr{P}_{\kappa}A$.

A function $f: Y \to A$ is said to be *regressive* if $f(x) \in x$ holds for all $x \in Y$. Let \mathscr{I} be an ideal on $\mathscr{P}_{\kappa}A$. \mathscr{I} is said to be *normal* if it contains all bounded subsets, and for any $X \in \mathscr{I}^+$ and regressive function $f: X \to A$ there exists an $a \in A$ such that $f^{-1}\{a\} \in \mathscr{I}^+$. \mathscr{I} is said to be *strongly normal* if for any $X \in \mathscr{I}^+$ and function $f: X \to \mathscr{P}_{\kappa}A$ such that $f(x) \prec x$ for $x \in X$ there is a $Y \in \mathscr{I}^+ \upharpoonright X$ such that $f \upharpoonright Y$ is constant. It is known that $NS_{\kappa,A}$ is the smallest normal ideal on $\mathscr{P}_{\kappa}A$. A filter on $\mathscr{P}_{\kappa}A$ is *normal* if the dual ideal of it is a normal ideal. We say κ is *A*-supercompact if there exists a normal ultrafilter on $\mathscr{P}_{\kappa}A$. For any ultrafilter U on $\mathscr{P}_{\kappa}A$, M_U denotes the ultrapower of the universe by U.

For each function $\tau : \mathscr{P}_{\kappa}A \to \mathscr{P}_{\kappa}A$, $\operatorname{cl}(\tau)$ denotes the set $\{x \in \mathscr{P}_{\kappa}A \mid \forall t \in Q_x(\tau(t) \in Q_x)\}$. For each $\tau : A \times A \to \mathscr{P}_{\kappa}A$, $\operatorname{cl}(\tau)$ denotes the set $\{x \in \mathscr{P}_{\kappa}A \mid \forall a, \beta \in x(\tau(\alpha, \beta) \subset x)\}$. It is known [12] for any $X \subset \mathscr{P}_{\kappa}A$, X contains a club if and only if there exists a $\tau : A \times A \to \mathscr{P}_{\kappa}A$ such that $\operatorname{cl}(\tau) \subset X$. For any $B \supset A$, the function $p : \mathscr{P}_{\kappa}B \to \mathscr{P}_{\kappa}A$ which is defined by $p(x) = x \cap A$ is called the *projection* from $\mathscr{P}_{\kappa}B$ to $\mathscr{P}_{\kappa}A$.

Let $Y \subset \mathscr{P}_{\kappa}A$. $[Y]^2$ denotes the set $\{(x, y) \in Y \times Y | x \subseteq y\}$. For any function $f: [Y]^2 \to 2$, a subset *H* of *Y* is said to be *homogeneous* for *f* if $|f^{(H)}|^2 = 1$

1. An ultrafilter U on $\mathscr{P}_{\kappa}A$ has the *partition property* if for any $X \in U$ and any $f: [X]^2 \to 2$ there exists $H \in U$ such that $H \subset X$ and H is homogeneous for f. We say that Y has the *partition property* if for any $f: [Y]^2 \to 2$ there exists a stationary subset H of Y such that H is homogeneous for f. Y is said to be *ineffable* (*almost ineffable*) if for any $\{s_x \subset x \mid x \in Y\}$ there exists an $S \subset A$ such that $\{x \in Y \mid s_x = S \cap x\}$ is stationary (unbounded). Set

 $NP_{\kappa,A} = \{ X \subset \mathscr{P}_{\kappa}A \mid X \text{ does not have the partition property} \},$ $NIn_{\kappa,A} = \{ X \subset \mathscr{P}_{\kappa}A \mid X \text{ is not ineffable} \}, \text{ and}$ $NAIn_{\kappa,A} = \{ X \subset \mathscr{P}_{\kappa}A \mid X \text{ is not almost ineffable} \}.$

Carr [3], [4] showed that NP_{κ,A}, NIn_{κ,A}, and NAIn_{κ,A} are normal, and that these ideals are strongly normal if $|A|^{<\kappa} = |A|$.

We say that part^{*}(κ , A) holds if NP_{κ , A} is a proper ideal, that κ is *A-ineffable* if NIn_{κ , A} is a proper ideal, and that κ is *almost A-ineffable* if NAIn_{κ , A} is a proper ideal. It is known that for any $B \supset A$, NIn_{κ , $A \subset p_*(NIn_{\kappa, B})$, where p denotes the projection from $\mathscr{P}_{\kappa}B$ to $\mathscr{P}_{\kappa}A$.}

3. Normal ultrafilters with the partition property.

Concerning normal ultrafilters on $\mathscr{P}_{\kappa}\lambda$ without the partition property, Solovay proved:

THEOREM 1 (Menas [13]). If κ is λ -supercompact and v is λ -supercompact for some $\kappa < v \leq \lambda$, then there exists a normal ultrafilter on $\mathcal{P}_{\kappa}\lambda$ without the partition property.

Kunen proved:

THEOREM 2 (Kunen-Pelletier [9]). Assume that there exists a normal ultrafilter on $\mathcal{P}_{\kappa}\lambda$ without the partition property. Then the least such $\lambda > \kappa$ is weakly Π_1^2 -indescribable and inaccessible.

On the other hand, Menas proved that:

THEOREM 3 (Menas [13]). If κ is $2^{\lambda^{<\kappa}}$ supercompact, then there exist $2^{2^{\lambda^{<\kappa}}}$ normal ultrafilters on $\mathscr{P}_{\kappa}\lambda$ with the partition property.

In this section, we prove:

THEOREM 3.1. If κ is λ -supercompact, then there exists a normal ultrafilter on $\mathcal{P}_{\kappa}\lambda$ with the partition property.

The proof will be done by a slightly different argument from that in Menas

[13]. We first reduce this theorem to a certain lemma (Lemma 3.4, below). The following two lemmas are due to Menas [12], [13].

LEMMA 3.2 (Menas [12]). If κ is λ -supercompact, then there exists a normal ultrafilter U on $\mathcal{P}_{\kappa}\lambda$ such that

 $M_U \models ``\kappa is not \lambda$ -supercompact''.

LEMMA 3.3 (Menas [13]). Let U be a normal ultrafilter on $\mathcal{P}_{\kappa}\lambda$. Then, the following (a) and (b) are equivalent.

(a) U has the partition property.

(b) There exists an $X \in U$ such that $x \prec y$ for all $(x, y) \in [X]^2$.

By these results, Theorem 3.1 directly follows the next lemma.

LEMMA 3.4. Suppose that (1) $M_U \models ``\kappa \text{ is not } \lambda \text{-supercompact''}.$ Then, there exists an $X \in U$ such that (2) $x \prec y$ for all $(x, y) \in [X]^2.$

In order to prove this lemma, we need the notion of ω -Jonsson functions and some known results. Let S be an infinite set. We denote by ${}^{\omega}S$ the set of functions from ω to S. A function F from ${}^{\omega}S$ to S is called an ω -Jonsson function for S if $F^{**\omega}T = S$ for any $T \subset S$ with |T| = |S|. Concerning ω -Jonsson functions, Erdös-Hajnal (e.g., see [8, Theorem 23.13]) proved:

LEMMA 3.5 (Erdös-Hajnal). For any infinite set S, there exists an ω -Jonsson function for S.

Solovay proved:

LEMMA 3.6 (Solovay [12]). Let U be a normal ultrafilter on $\mathcal{P}_{\kappa}\lambda$ and $F: {}^{\omega}\lambda \to \lambda$ an ω -Jonsson function. Then

 $\{x \in \mathscr{P}_{\kappa} \lambda \mid F \upharpoonright^{\omega} x \text{ is } \omega\text{-Jonsson}\} \in U.$

The next lemma is due to Magidor.

LEMMA 3.7 (Magidor [10]). If κ is $<\lambda$ -supercompact and λ is θ -supercompact, then κ is θ -supercompact.

PROOF OF LEMMA 3.4. Suppose that U is a normal ultrafilter on $\mathscr{P}_{\kappa}\lambda$ which satisfies (1). Let δ be the largest strong limit cardinal $\leq \lambda$. Define δ_i (for $i < \omega$) by $\delta_0 = \delta$, and $\delta_{i+1} = 2^{\delta_i}$. Let $n < \omega$ be such that $\delta_n \leq \lambda < \delta_{n+1}$. Note that

 $M_U \models ``\kappa \text{ is } \alpha \text{-supercompact, for any } \alpha \in [\kappa, \delta).$

Take ω -Jonsson functions F and F_i for λ and δ_i (for $i \leq n$). Define $X_0 \subset \mathscr{P}_{\kappa} \lambda$ by:

 $x \in X_0$ if and only if $x \in \mathscr{P}_{\kappa}\lambda$ and the following hold.

- (3) $x \cap \kappa$ is inaccessible and $x \cap \kappa$ is not x-supercompact,
- (4) $x \cap \kappa$ is $x \cap \alpha$ -supercompact for all $\alpha \in x \cap [\kappa, \delta)$,
- (5) $\operatorname{ot}(x \cap \delta)$ is a strong limit cardinal and $\operatorname{ot}(x \cap \delta_i)$ is a cardinal for $i \leq n$,
- (6) $2^{|x \cap \delta_i|} = |x \cap \delta_{i+1}|$ for i < n and $|x| \le 2^{|x \cap \delta_n|}$,
- (7) For $i \le n$, $F_i \upharpoonright \omega(x \cap \delta_i)$ is an ω -Jonsson function for $x \cap \delta_i$,
- (8) $F \upharpoonright^{\omega} x$ is an ω -Jonsson function for x.

By Lemma 3.6 and the fact that $[\langle \operatorname{ot}(x \cap \alpha) | x \in \mathscr{P}_{\kappa} \lambda \rangle]_U$ represents α in M_U for any $\alpha \leq \lambda$, it holds that $X_0 \in U$.

CLAIM 1. If
$$(x, y) \in [X_0]^2$$
 and $x \cap \delta_n \neq y \cap \delta_n$ then $x \prec y$.

PROOF OF CLAIM 1. To get a contradiction, assume that

 $(x, y) \in [X_0]^2$ and $x \cap \delta_n \neq y \cap \delta_n$ and $x \prec y$ does not hold.

Since $y \cap \kappa$ is a strong limit cardinal, it holds that $y \cap \kappa \le |x \cap \delta_0|$. Since $x \cap \kappa$ is $x \cap \alpha$ -supercompact for all $\alpha \in x \cap [\kappa, \delta)$, we have that

 $x \cap \kappa$ is $y \cap \alpha$ -supercompact for all $\alpha \in [x \cap \kappa, y \cap \kappa)$.

By this, Lemma 3.7, and the fact that $y \cap \kappa$ is $y \cap \alpha$ -supercompact for all $\alpha \in y \cap [\kappa, \delta)$, we have that

$$x \cap \kappa$$
 is $y \cap \alpha$ -supercompact for all $\alpha \in [x \cap \kappa, \delta) \cap y$.

By this, since $x \cap \kappa$ is not x-supercompact, it holds that $|y \cap \delta| \le |x|$. Since $|y \cap \delta|$ is a strong limit cardinal, we have that $|y \cap \delta| \le |x \cap \delta|$. By this and (7), $x \cap \delta = y \cap \delta$. This implies that $x \cap \delta_n = y \cap \delta_n$. This contradicts the assumption. (Claim 1)

In case that $\lambda = \delta_n$, $X = X_0$ satisfies (2) by Claim 1. Let $\delta_n < \lambda$. Define $g: \kappa \to \kappa$ and $f_i: \kappa \to \kappa$ (for $i \le n+1$) by

$$g(\alpha) = \begin{cases} \text{the least } \beta \ge \alpha \text{ such that } \alpha \text{ is not} & \text{if such } \beta < \kappa \text{ exists,} \\ \beta \text{-supercompact,} \\ 0, & \text{otherwise,} \end{cases}$$

 $f_0(\alpha)$ = the largest strong limit cardinal $\leq g(\alpha)$,

$$f_{i+1}(\alpha) = 2^{f_i(\alpha)}, \text{ for } i \leq n.$$

Note that $f_0(x \cap \kappa) = \operatorname{ot}(x \cap \delta)$ for all $x \in X_0$. So it holds that

$$f_n(x \cap \kappa) = \operatorname{ot}(x \cap \delta_n)$$
 and $\operatorname{ot}(x) < f_{n+1}(x \cap \kappa)$ for all $x \in X_0$.

For each $\alpha < \kappa$, take an injection $\Gamma_{\alpha} : f_{n+1}(\alpha) \to \mathscr{P}(f_n(\alpha))$. For each $x \in X_0$, define π_x and a_x by

 $\pi_x : \operatorname{ot}(x \cap \delta_n) \to x \cap \delta_n$ is the order isomorphism,

$$a_x = \pi_x \, {}^{\boldsymbol{\kappa}} \Gamma_{\operatorname{ot}(x \cap \kappa)}(\operatorname{ot}(x)).$$

Since $a_x \subset x \cap \delta_n$ for all $x \in X_0$, there exists an $A \subset \delta_n$ such that

$$X = \{ x \in X_0 \, | \, a_x = A \cap x \} \in U.$$

We claim that X satisfies (2). To get a contradiction, assume that there exists $(x, y) \in [X]^2$ such that $x \prec y$ does not hold. By Claim 1, it holds that $x \cap \delta_n = y \cap \delta_n$. So we have that $\pi_x = \pi_y$. Set $\alpha = x \cap \kappa$ ($= y \cap \kappa$), $\xi = \operatorname{ot}(x)$, and $\eta = \operatorname{ot}(y)$. Since $\xi \neq \eta$, we have that $\Gamma_{\alpha}(\xi) \neq \Gamma_{\alpha}(\eta)$. So $a_x = \pi_x \Gamma_{\alpha}(\xi) = \pi_y \Gamma_{\alpha}(\xi) \neq \pi_y \Gamma_{\alpha}(\xi) = a_y$. This contradicts the fact $a_x = A \cap x = A \cap y = a_y$. (Lemma 3.4 and Theorem 3.1)

Define the Mitchell ordering \triangleleft on the set of normal ultrafilters on $\mathscr{P}_{\kappa}\lambda$ by:

$$F \triangleleft U$$
 if and only if $F \in M_U$.

Similar to normal ultrafilters on measurable cardinals (see Mitchell [14]), \triangleleft is well-founded ordering and it can be defined

 $o(U) = \sup\{o(F) + 1 | F \triangleleft U\},$ for all normal ultrafilters U on $\mathscr{P}_{\kappa}\lambda$.

Using this, Theorem 3.1 can be restated as:

If o(U) = 0, then U has the partition property.

So the following question is natural.

QUESTION. Can we find γ such that $\sup\{o(U) \mid U \text{ has the partition property}\} \le \gamma < \min\{o(U) \mid U \text{ does not have the partition property}\}$?

4. Several lemmas.

In this section we will state some lemmas which will be used in the next section.

4.1. The λ -Shelah property.

The λ -Shelah property was introduced by Carr [2]. A subset $X \subset \mathscr{P}_{\kappa}\lambda$ has the *Shelah property* if for any $\{f_x : x \to x \mid x \in X\}$ there exists a function $f : \lambda \to \lambda$ such that

 $\forall x \in \mathscr{P}_{\kappa} \lambda \ \exists y \in X \quad (x \subset y \ \text{and} \ f_y \upharpoonright x = f \upharpoonright x).$

Set $NSh_{\kappa,\lambda} = \{X \subset \mathscr{P}_{\kappa}\lambda \mid X \text{ does not have the Shelah property}\}$. It is known

that $NSh_{\kappa,\lambda}$ is a normal ideal on $\mathscr{P}_{\kappa}\lambda$ and $NSh_{\kappa,\lambda} \subset NAIn_{\kappa,\lambda}$. We say that κ is λ -Shelah if $NSh_{\kappa,\lambda}$ is a proper ideal.

The following two lemmas are due to Carr [3], [4].

LEMMA 4.1 (Carr [4]). $\{x \in \mathscr{P}_{\kappa}\lambda \mid x \cap \kappa \text{ is an inaccessible cardinal}\} \in NSh_{\kappa,\lambda}^*$.

LEMMA 4.2 (Carr [3]). If κ is $2^{\lambda^{<\kappa}}$ -Shelah, then κ is λ -supercompact.

Furthermore we need

LEMMA 4.3 (Johnson [5]). Let $\delta \leq \lambda$ and F be an ω -Jonsson function for δ . Then,

 $\{x \in \mathscr{P}_{\kappa}\lambda \mid F \upharpoonright^{\omega}(x \cap \delta) \text{ is an } \omega\text{-Jonsson function for } x \cap \delta\} \in \mathrm{NSh}_{\kappa,\lambda}^*$

The following lemma is due to Abe [1].

LEMMA 4.4 (Abe [1, Corollary 3.4]). Let γ , δ be cardinals such that $2^{\gamma} = \delta \leq \lambda$. Then,

$$\{x \in \mathscr{P}_{\kappa}\lambda \,|\, 2^{|x \cap \gamma|} = |x \cap \delta|\} \in \mathrm{NSh}_{\kappa,\lambda}^*.$$

A similar argments give proofs of the following lemmas.

LEMMA 4.5. If δ is a cardinal $\leq \lambda$, then

 $\{x \in \mathscr{P}_{\kappa}\lambda \mid \operatorname{ot}(x \cap \delta) \text{ is a cardinal}\} \in \operatorname{NIn}_{\kappa,\lambda}^*$.

LEMMA 4.6. If γ is a strong limit cardinal $\leq \lambda$, then

 $\{x \in \mathscr{P}_{\kappa}\lambda | |x \cap \gamma| \text{ is a strong limit cardinal}\} \in \mathrm{NIn}_{\kappa,\lambda}^*.$

LEMMA 4.7. If $\gamma \leq \lambda \leq 2^{\gamma}$, then $\{x \in \mathscr{P}_{\kappa}\lambda | |x| \leq 2^{|x \cap \gamma|}\} \in \mathrm{NIn}_{\kappa,\lambda}^*$.

4.2. The correspondence between $\mathcal{P}_{\kappa}\lambda$ and $\mathcal{P}_{\kappa}\lambda^{<\kappa}$.

Let $\theta = \lambda^{<\kappa}$ and $p : \mathscr{P}_{\kappa}\theta \to \mathscr{P}_{\kappa}\lambda$ be the projection. Take a bijection $h : \mathscr{P}_{\kappa}\lambda \to \theta$ and define $q : \mathscr{P}_{\kappa}\theta \to \mathscr{P}_{\kappa}\lambda$ by

$$q(y) = \bigcup h^{-1}y \text{ for } y \in \mathscr{P}_{\kappa}\theta,$$

where $h^{-1}y$ denotes the set $\{x \in \mathscr{P}_{\kappa}\lambda \mid h(x) \in y\}$. Set

$$Y_0 = \{ y \in \mathscr{P}_{\kappa}\theta \mid p(y) = q(y) \text{ and } h^{\prime\prime}Q_{p(y)} = y \}.$$

The next lemma is due to Abe [1, Proposition 1.2].

LEMMA 4.8 (Abe [1, Proposition 1.2]). $Y_0 \in WNS^*_{\kappa,\theta}$, where $WNS_{\kappa,\theta}$ denotes the smallest strongly normal ideal on $\mathscr{P}_{\kappa}\theta$.

The next lemma appeared in [6].

LEMMA 4.9. $\{x \in \mathcal{P}_{\kappa}\lambda \mid x \cap \kappa \text{ is almost } x\text{-ineffable}\} \in p_*(\operatorname{NIn}_{\kappa,\theta})^*$.

The next lemma is essentially due to Carr [4, Proposition 4.1 (1)].

LEMMA 4.10. Let $X \in p_*(NIn_{\kappa,\theta})^+$. Then, for any $\{a_x \subset Q_x \mid x \in X\}$ there exists an $A \subset \mathcal{P}_{\kappa}\lambda$ such that

$$\forall \tau : \mathscr{P}_{\kappa} \lambda \to \mathscr{P}_{\kappa} \lambda \ \exists x \in X \cap \operatorname{cl}(\tau) \quad (a_x = A \cap Q_x).$$

PROOF. Set $Y = p^{-1}X \cap Y_0$. By Lemma 4.8, $Y \in \text{NIn}_{\kappa,\theta}^+$. For each $y \in Y$, set $b_y = h^{\mu}a_{p(y)}$. Since $Y \subset Y_0$, $b_y \subset y$ for all $y \in Y$. So there exists a $B \subset \theta$ such that

$$Y' = \{ y \in Y \mid b_y = B \cap y \} \in \mathrm{NS}^+_{\kappa,\theta}$$

Set $A = h^{-1}B$. We claim that A is as required. To show this, let $\tau : \mathscr{P}_{\kappa}\lambda \to \mathscr{P}_{\kappa}\lambda$. Let $\tau' = h \circ \tau \circ h^{-1} : \theta \to \theta$. Since $Y' \in NS^+_{\kappa,\theta}$, there exists a $y \in Y' \cap cl(\tau')$. It is easy to check that $p(y) \in X \cap cl(\tau)$ and $a_{p(y)} = A \cap Q_{p(y)}$.

LEMMA 4.11. Suppose that part^{*}(κ , λ) fails. Then,

$$\{x \in \mathscr{P}_{\kappa}\lambda \mid \text{part}^*(x \cap \kappa, x) \text{ fails}\} \in p_*(\text{NIn}_{\kappa,\theta})^*.$$

PROOF. To get a contradiction, assume that

$$X = \{x \in \mathscr{P}_{\kappa}\lambda \mid \text{part}^*(x \cap \kappa, x) \text{ holds}\} \in p_*(\text{NIn}_{\kappa,\theta})^+.$$

Let $X' = \{x \in X \mid x \cap \kappa \text{ is inaccessible}\}$. By Lemma 4.1, $X' \in p_*(NIn_{\kappa,\theta})^+$. Since part^{*}(κ, λ) fails, there exists a function $f : [\mathscr{P}_{\kappa}\lambda]^2 \to 2$ such that

 $\forall H \in \mathbf{NS}^+_{\kappa,\lambda}$ (*H* is not homogeneous for *f*).

For each $x \in X'$, take $H_x \in NS^+_{\kappa \cap x, x}$ and $e_x < 2$ such that $f''[H_x]^2 = \{e_x\}$. By Lemma 4.10, there exists an $H \subset \mathscr{P}_{\kappa}\lambda$ and e < 2 such that

$$(\star) \qquad \forall \tau : \mathscr{P}_{\kappa} \lambda \to \mathscr{P}_{\kappa} \lambda \ \exists x \in X' \cap \operatorname{cl}(\tau) \quad (H_x = H \cap Q_x \text{ and } e_x = e).$$

It is easy to check that H is homogeneous for f. We have to show that H is stationary. Let C be a club of $\mathscr{P}_{\kappa}\lambda$. Take a function $\tau : \mathscr{P}_{\kappa}\lambda \to C$ such that $x \subset \tau(x)$ for each $x \in \mathscr{P}_{\kappa}\lambda$. By (*), there exists an $x \in X' \cap cl(\tau)$ such that $H_x = H \cap Q_x$. Since $x \in cl(\tau)$, it holds that $C \cap Q_x$ is a club in Q_x . So it holds that $\emptyset \neq H_x \cap C \cap Q_x \subset H \cap C$.

5. Proof of Theorem 5.1.

In this section, we prove:

THEOREM 5.1. If κ is λ -ineffable and $\operatorname{cof}(\lambda) \geq \kappa$ then $\operatorname{part}^*(\kappa, \lambda)$ holds.

PROOF. To get a contradiction, assume that κ is λ -ineffable, $cof(\lambda) \ge \kappa$, and $part^*(\kappa, \lambda)$ fails. Since κ is λ -Shelah, by a result of Johnson [5], it holds that $\lambda^{<\kappa} = \lambda$. Let δ be the largest strong limit cardinal $\le \lambda$. Define δ_i (for $i < \omega$) by $\delta_0 = \delta$ and $\delta_{i+1} = 2^{\delta_i}$. Let $n < \omega$ be such that $\delta_n \le \lambda < \delta_{n+1}$. Take ω -Jonsson functions F for λ and F_i for δ_i for each $i \le n$. Let X be the set of all $x \in \mathscr{P}_{\kappa}\lambda$ which satisfy:

- (1) $x \cap \kappa$ is an inaccessible cardinal,
- (2) $ot(x \cap \delta)$ is a strong limit cardinal,
- (3) $\operatorname{ot}(x \cap \delta_{i+1}) = 2^{\operatorname{ot}(x \cap \delta_i)}$ for all i < n and $\operatorname{ot}(x) \le 2^{\operatorname{ot}(x \cap \delta_n)}$,
- (4) $F \upharpoonright^{\omega} x$ and $F_i \upharpoonright^{\omega} (x \cap \delta_i)$ are ω -Jonsson functions for x and $x \cap \delta_i$, for $i \le n$, respectively,
- (5) $x \cap \kappa$ is almost x-ineffable,
- (6) part^{*}($x \cap \kappa, x$) fails.

By Lemmas 4.1, 4.6, 4.4, 4.7, 4.3, 4.9 and 4.11, it holds that $X \in p_*(NIn_{\kappa,\lambda \leq \kappa})^* = NIn_{\kappa,\lambda}^*$. Since κ is λ -ineffable, we have that $X \in NIn_{\kappa,\lambda}^+$. By Lemma 4.2 and (5) above, every $x \in X$ satisfies:

(7) $x \cap \kappa$ is $x \cap \alpha$ -supercompact for all $\alpha \in x \cap [\kappa, \delta)$. The next claim is crucial.

CLAIM 2. If
$$(x, y) \in [X]^2$$
 and $x \cap \delta_n \neq y \cap \delta_n$, then $x \prec y$.

PROOF OF CLAIM 2. To get a contradiction, assume that there exists $(x, y) \in [X]^2$ such that

$$x \cap \delta_n \neq y \cap \delta_n$$
 and $x \prec y$ does not hold.

By (3) it holds that $x \cap \delta \neq y \cap \delta$. Since $F \upharpoonright^{\omega}(y \cap \delta)$ is ω -Jonsson, it holds that $|x \cap \delta| < |y \cap \delta|$. Since $|y \cap \kappa|$ and $|y \cap \delta|$ are strong limit cardinals, we have that (8) $2^{|x|} < |y \cap \delta|$ and $y \cap \kappa \leq |x \cap \delta|$.

By (7), (8), and Lemma 3.7, $x \cap \kappa$ is x-supercompact. This contradicts that part^{*}($x \cap \kappa, x$) fails. (Claim 2)

We complete the proof by showing that $X \in NP^+_{\kappa,\lambda}$. The proof is divided into two cases.

Case 1. $\lambda = \delta_n$.

By Claim 2 it holds that $\forall (x, y) \in [X]^2$ $(x \prec y)$. So $X \in NP^+_{\kappa,\lambda}$ follows from Carr's theorem [4, Theorem 4.2 (1)]. But for the reader's convenience we give a proof. Let $f : [X]^2 \to 2$. For $x \in X$ define $a_x \subset Q_x$ by

$$a_x = \{t \in Q_x \mid t \in X \text{ and } f(t, x) = 0\}$$

Then, by Lemma 4.10 there exists an $A \subset \mathscr{P}_{\kappa} \lambda$ such that

$$\forall \tau : \mathscr{P}_{\kappa} \lambda \to \mathscr{P}_{\kappa} \lambda \ \exists x \in X \cap \operatorname{cl}(\tau) \quad (a_x = A \cap Q_x).$$

132

Set
$$X' = \{x \in X \mid a_x = A \cap Q_x\}$$
. Note that $X' \in NS^+_{\kappa,\lambda}$. It is easy to check that $\forall (x, y) \in [X' \cap A]^2$ $(f(x, y) = 0)$ and $\forall (x, y) \in [X' \setminus A]^2$ $(f(x, y) = 1)$.

So $X' \cap A$ or $X' \setminus A$ is as required.

Case 2.
$$\delta_n < \lambda$$
.
Define $g, f_i : \kappa \to \kappa$ (for $i \le n+1$) by
(the smallest $\beta \ge \alpha$ such that α is not if such β exist

$$g(\alpha) = \begin{cases} \text{the smallest } \beta \ge \alpha \text{ such that } \alpha \text{ is not} & \text{if such } \beta \text{ exists,} \\ \beta \text{-supercompact,} & \\ 0, & \text{otherwise,} \end{cases}$$
$$f_0(\alpha) = \text{the largest strong limit cardinal} \le g(\alpha),$$
$$f_{i+1}(\alpha) = 2^{f_i(\alpha)}, \quad \text{for all } \alpha < \kappa \text{ and } i \le n. \end{cases}$$

For any $x \in X$, since $ot(x \cap \delta) \le g(x \cap \kappa) \le ot(x)$, it holds that

$$f_0(x \cap \kappa) = \operatorname{ot}(x \cap \delta)$$
 and $f_n(x \cap \kappa) = \operatorname{ot}(x \cap \delta_n) \le \operatorname{ot}(x) \le f_{n+1}(x \cap \kappa)$.

For each $\alpha < \kappa$, take an injection $\Gamma_{\alpha} : f_{n+1}(\alpha) + 1 \to \mathscr{P}(f_n(\alpha))$. For each $x \in X$, define π_x and s_x by

 $\pi_x : \operatorname{ot}(x \cap \delta_n) \to x \cap \delta_n$ is the order isomorphism, and

 $s_x = \pi_x `` \Gamma_{x \cap \kappa}(\operatorname{ot}(x)) \ (\subset x \cap \delta_n).$

To show that $X \in NP^+_{\kappa,\lambda}$, let $f : [X]^2 \to 2$. For $x \in X$ set

$$a_x = \{t \in Q_x \mid t \in X \text{ and } f(t, x) = 0\}.$$

Since $X \in p_*(NIn_{\kappa,\theta})^+$, there exist $S \subset \delta_n$ and $A \subset \mathscr{P}_{\kappa}\lambda$ such that

$$X' = \{x \in X \mid s_x = S \cap x \text{ and } a_x = A \cap Q_x\} \in \mathrm{NS}^+_{\kappa,\lambda}.$$

CLAIM 3. $\forall (x, y) \in [X']^2 \ (x \cap \delta_n \neq y \cap \delta_n).$

PROOF OF CLAIM 3. To get a contradiction, assume that

$$(x, y) \in [X']^2$$
 and $x \cap \delta_n = y \cap \delta_n$.

Note that $s_x = s_y$. Set $\alpha = x \cap \kappa$ $(= y \cap \kappa)$, $\xi = \operatorname{ot}(x)$, and $\eta = \operatorname{ot}(y)$. Since |x| < |y|, it holds that $\xi < \eta$. Since $x \cap \delta_n = y \cap \delta_n$, it holds that $\pi_x = \pi_y$. Since $\Gamma_{\alpha}(\xi) \neq \Gamma_{\alpha}(\eta)$, we have that

$$s_x = \pi_x `` \Gamma_\alpha(\xi) \neq \pi_y `` \Gamma_\alpha(\eta) = s_y.$$

This is a contradiction.

(Claim 3) \square

By Claims 2 and 3, it holds that

$$\forall (x, y) \in [X']^2 \quad (x \prec y).$$

So $X' \cap A$ or $X' \setminus A$ is a desired stationary homogeneous set for f. (Theorem 5.1)

COROLLARY 5.2. Let $\kappa \leq \lambda < \mu$. If part^{*}(κ, μ) holds, then part^{*}(κ, λ) holds.

PROOF. Let $\theta = \lambda^{<\kappa}$. Note that $\operatorname{cof}(\theta) \ge \kappa$. Using the correspondence between $\mathscr{P}_{\kappa}\lambda$ and $\mathscr{P}_{\kappa}\theta$, it is not difficult to check that $\operatorname{part}^*(\kappa,\theta)$ implies $\operatorname{part}^*(\kappa,\lambda)$. So, it suffices to show that $\operatorname{part}^*(\kappa,\theta)$ holds. By Magidor [11] it holds that κ is μ -ineffable. Then, by Johnson [5] it holds that $\theta \le \lambda^+ \le \mu$. So κ is θ -ineffable. Hence $\operatorname{part}^*(\kappa,\theta)$ holds.

References

- [1] Y. Abe, Combinatorial characterization of Π_1^1 -indescribability in $P_{\kappa}\lambda$, Arch. Math. Logic, **37** (1998), pp. 261–272.
- [2] D. M. Carr, $\mathscr{P}_{\kappa}\lambda$ generalizations of weak compactness, Z. Math. Logic Grundlag. Math., **31** (1985), pp. 393–401.
- [3] D. M. Carr, The structure of ineffability properties of $\mathscr{P}_{\kappa}\lambda$, Acta Math. Hungar., 47 (1986), pp. 325–332.
- [4] D. M. Carr, $\mathscr{P}_{\kappa}\lambda$ partition relations, Fund. Math., **128** (1987), pp. 181–195.
- [5] C. A. Johnson, Some partition relations for ideals on $\mathscr{P}_{\kappa}\lambda$, Acta Math. Hungar., 56 (1990), pp. 269–282.
- [6] S. Kamo, Remarks on $\mathcal{P}_{\kappa}\lambda$ -combinatorics, Fund. Math., 145 (1994), pp. 141–151.
- [7] S. Kamo, Ineffability and partition property on $\mathscr{P}_{\kappa}\lambda$, J. Math. Soc. Japan, **49** (1997), pp. 125–143.
- [8] A. Kanamori, The Higher Infinite, Springer-Verlag (1994).
- [9] K. Kunen and D. H. Pelletier, On a combinatorial property of Menas related to the partition property for measures on supercompact cardinals, J. Symbolic Logic, **48** (1983), pp. 475–481.
- [10] M. Magidor, On the role of supercompact and extendible cardinals in logic, Israel J. Math., 10 (1971), pp. 147–157.
- M. Magidor, Combinatorial characterization of supercompact cardinals, Proc. Amer. Math. Soc., 42 (1974), pp. 279–285.
- [12] T. K. Menas, On strong compactness and supercompactness, Annals of Math. Logic, 7 (1974), pp. 327–359.
- [13] T. K. Menas, A combinatorial property of $\mathscr{P}_{\kappa}\lambda$, J. Symbolic Logic, 41 (1976), pp. 225–234.
- [14] W. J. Mitchell, Sets constructible from sequences of ultrafilters, J. Symbolic Logic, 39 (1974), pp. 57–66.

Shizuo Kamo

University of Osaka Prefecture Sakai, Osaka, Japan E-mail: kamo@mi.cias.osakafu-u.ac.jp