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Abstract. Let H be the Hilbert class field of an imaginary quadratic field K. An
elliptic curve E over H with complex multiplication by K is called a Q-curve if E is
isogenous over H to all its Galois conjugates. We classify Q-curves over H, relating
them with the cohomology group H?(H/Q,+1). The structures of the abelian varieties
over Q obtained from Q-curves by restriction of scalars are investigated.

1. Introduction.

Let K be an imaginary quadratic field and H the Hilbert class field of K. Let E be
an elliptic curve over H with complex multiplication by K. We say that E is a Q-curve
if E and E? are isogenous over H for all o € Gal(H/Q). Denote by y, the Hecke
character of H associated with E. Then E is a Q-curve if and only if y; =y for all
geGal(H/Q).

As in the case without complex multiplication (see [Q]), we attach to a Q-curve E a
two-cocycle class ¢(E) € H*(H/Q,K*). For Q-curves E, E', we see that ¢(E) = ¢(E’) if
and only if Yz = Y - y o Ng/o with a quadratic Dirichlet character y. Let I" be the
subset of H?(H/Q,K*) consisting of ¢(E) for all Q-curves E over H. We show that
there exists a bijection between I” and a subspace Y of H?>(H/Q,+1) over F,. Relating
Y to an embedding problem associated with the exact sequence

l—-+1—-G— Gal(H/Q) — 1,

we characterize the structure of Y and, as a consequence, we obtain that dimp, ¥ =
t(t —1)/2, where t is the number of distinct prime factors of the discriminant of K. In
some case where K is called exceptional, there are no Q-curves with complex multi-
plication over H. Replacing H by the ring class field of conductor 2, we obtain a
similar classification of Q-curves (Theorem 2)).

The abelian variety B = Ry g E obtained by restriction of scalars from a Q-curve E
can be defined over Q. The structures of the endomorphism algebras R = Endg B® Q
are studied according to this classification (Section 5). Some examples are discussed in
the last section.

NotaTIiON. Throughout the paper we fix the following notation.
K: an imaginary quadratic field of discriminant D # —3, —4.
t: the number of distinct primes dividing D.
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H: the Hilbert class field of K.

Clk: the ideal class group of K.

g: Gal(H/K).

p. the complex conjugation.

je: the j-invariant of an elliptic curve E.
All Q-curves treated in this paper are assumed to have complex multiplication. The
symbol “dim” always refers to the dimension over F,. Galois cohomology groups
H'(Gal(M /L), A) are denoted by H'(M/L,A). We call K exceptional if the discrim-
inant D of K is of the form

D=—dpi-pa (122)

where pi,...,p,.1 are primes satisfying p; =--- = p,_; =1 mod4.

2. Quadratic characters of local unit groups of K.

Let p be a rational prime and p a prime ideal of K dividing p. Denote by U,
the group of local units for p and put U, = Hp‘ » Up. Let X, be the set of characters
/U, —=+1. We regard X, as a vector space over F,. The complex conjugation p
acts on X, and put X,z? ={1€X,|A” =2}. We shall determine a basis of X,.

1) pis odd. Denote by k,: Z ; — +1 the unique non-trivial character and put
ﬂp =KpO©O N K/Q-

ProPoOSITION 1. (i) Suppose that p splits in K, i.e. (p)=ypp’. Let Ay: Uy =Z) —
+1 be the unique non-trivial character. Then JpA% =i, 0 Nk and X, = {ly, 2> and
X ]? = (p)-

(ii) If p is inert in K, then X, = X]? = {p).

(ii) If p is ramified in K, then there exists a unique non-trivial character 1, such
that n,(=1) = (=)™ and x, = X)) = <>

2) p=2. Let k4,xg be the characters of Z; satistying

ka(n) = (=) V2 () = (—1)(”2_1)/8 for odd integers n.

We put &4 = Ky ONK/Q, &8 = Kg ONK/Q.
If 2 is inert in K, we have

Uy /U2 =<{—1,14+2w,1+4w) =~ (Z/2Z)? with 0>+ w+1=0.
Define ve X; by Kerv=<{l+2w,1 +4w). We have w’ = ¢g.
If 2 is ramified in K, put D =4m. If m is odd, we have
Uy U2 = {/m,3 —2m, 5> = (Z)2Z)°.
We define v and #_, € X, by Kerv=<y/m,3—2/m) and Kery_, = (3 —2/m,5).
Then w’” =eg, n_4y=n",, n_4(=1)=1. If m is even, we have
U/ U2 =<1 +m,—1,5 = (Z)2Z)°.

Define 73 and #_g € X> by Kerng = {1 + /m,—1) and Keryn_g = <1 + /m,—5). Then
if D/8=1 mod4, we have 7§ =ng, n_gn’g=¢es and if D/8 = —1 mod4, we have
n”s =n_g, nsns = es. Notation being as above, we obtain
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PropoSITION 2. (i) Assume that 2 splits in K, ie. (2)=mm’. Let j:U, —
Unw = Z5 be the projection and put v=rkso j, u=xgo j. Then we have X, = {v,u,
ea =W eg =’y and X3 = {eq, e5).

(i) 1f 2 is inert in K, then we have Xy = {v,eq4 = W’ &8y and X3 = {e4,e5).

(i) Assume 2 is ramified in K. If D/4 (# —1) is odd, we have X, = {v,n_y4,
eg = w”> and X20 =_y,8y. If D/4 is even, we have

778(_1): 17 7778<_1):_17 X2:<7/8a’778784>7

XO _ {<’78784 = 77—87758>7 lf‘ D/8 =1 mod4
2 n_g,ea =mgnsy, if D/8=—1 mod4.

3. An embedding problem associated with the Hilbert class field.

An element y of the Galois cohomology group H?(H/Q,+1) corresponds to an
equivalence class of group extensions

(1) l—-+1—-G— Gal(H/Q) — 1.

If there exists a quadratic extension k of H such that k/Q is Galois and the natural
map Gal(k/Q) — Gal(H/Q) corresponds to the epimorphism in (1), we say that an
embedding problem (H/Q,+1,y) has a solution k.

Let Y be the set of y € H>(H/Q,+1) such that (H/Q,+1,y) has a solution. We
see that Y is a Fp-subspace of H*(H/Q,+1). Write g = Gal(H/K) = Clg and denote
by Ext(g,+1) the elements of H?(g,+1) corresponding to extensions of g by {+1} that
are abelian groups. The vector space over F, of bilinear alternating forms on g/g” is
denoted by Alt(g). Then we have an exact sequence

0 — Ext(g,+1) — H?(g,+1) — Alt(g) — 0.

By [M, §1], dim Ext(g,+1) = ¢ — 1, dim H?(g,+1) = #(t — 1)/2, since dimg/g> =¢—1 (¢
is the number of distinct primes dividing the discriminant of K).

Let res: H?(H/Q,+1) — H?*(g,+1) be the restriction map and put Yy = {ye Y|
res(y) € Ext(g,+1)}. Let k be a solution of (H/Q,+1,y) with y€ Yy. Then k is a
quadratic extension of H such that k/Q is Galois and k/K is abelian. We denote by

Us =[] Uy
p

the maximal compact subgroup of the idele group Ix of K and by K the archimedean
part of Ix. Let y = y;/y be the character of Iy corresponding to k/H. Since k/K is
abelian, there is a non-trivial character

0: UxK K} — +1

such that y = 0o Ny/x and O(K*K} ) = 1; hence 0 is determined by its restriction on
Uk. Since k/Q is Galois, we have y” = y and this means that §” = 0. Conversely for
any non-trivial character 6 : Uy — +1 such that

0’ =0 and 0(-1)=1,
x =00 Ny determines a solution k of (H/Q,+1,y) for some y e Yj.
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ProrosiTiON 3. If K is exceptional (see §1), we have dim Yy =t. Otherwise we
have dim Yy =t — 1.

Proor. Let W be the set of characters 6: Ux — +1 such that 6’ =60 and
0(—1) = 1. Denote by W, the set of 0 € W of the form 0 = x o Ng,o with a quadratic
Dirichlet character . Noting that the characters in W), exactly correspond to the trivial
class in H*>(H/Q,+1), we obtain Yy = W/W,. For a rational prime /, we denote by /*
the prime discriminant defined as follows;

o {(-1)““)/21, if 1 is odd
—4.8 or =8, if [ =2.

We have the unique decomposition of D into prime discriminants:
D=pi--pigi-q; (t=r+s)

where p{,...,p; are positive discriminants or —4 and g¢;,...,q; are negative discrim-
inants except —4. If /* appears in the above decomposition, we define

g, — {1 if /1s odd
Ty, if1=2,

where #; are defined in and 2. Composing with the projection Ux — Uj,
we also regard 60; as a character of Ux. From and 2 one deduces that
Ops...s0,, 0,,0,,...,0,0, generate W /W, and considering their conductors, they are
linearly independent. This completes the proof. ]

THEOREM 1. dim(Y/Yy) = (¢ —1)(¢ —2)/2.

Proor. If 7#<2, then Alt(g) = (0), so that ¥ =Y, and our statement holds.
Assume ¢t > 3. Composing the natural map

H?(g,£1) — H*(g,£1)/Ext(g, £1) = Alt(g)

with the restriction map Y < H?*(H/Q,+1) — H?*(g,+1), we obtain a linear map
g:Y — Alt(g). Since Kerg = Yy and dim Alt(g) = (1 — 1)(¢ — 2)/2, it suffices to show
that g is surjective. Let D = [[._,p; be the decomposition of D into prime discrim-
inants. We may suppose that p;,..., p,_; are odd primes. The genus field Hy of K is

K(\/pf,....+/p7|) and Gal(Hy/K) = g/g° = (Z)2Z)"™". Let s1,...,5_, be clements
of g/g” such that

s(V/p) = =Vpis s(\p)=\lp G #)).

Clearly {si,...,s1} is a basis of g/g>. Fori,j (1<i<j<it—1), let f;; denote an
element of Alt(g) satisfying

fii(sis) =1 and f; (s, s1) =0 if (i, ) # (k,I) and k < L.

Then {f; ;|1 <i< j<t—1} forms a basis of Alt(g). Therefore it suffices to show that
for each f;;, there exists a quadratic extension k/H such that k is a solution of the
embedding problem (H/Q,+1,y) with g(y) = fi;. For a number field M and given
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elements a,b € M*, we denote by (a,b) € Bry(M) = H*(Gal(M/M),+1) the class of the
quaternion algebra over M generated by two elements /,J with

I’=a, J*=b, JI=-1J.

We claim that there exists ye Y such that g(y) = fi». If one of (pj,p;),
(p1, pip;) or (p;, pip;) is trivial in Bry(Q), then there exists a Galois extension M,/Q
containing Q(+/p;j,/p;) such that Gal(M,/Q) is isomorphic to the dihedral group Dy
of degree 8 (cf. [J-Y, p. 177]). Put

L=K(K/p{.\/p;), M=MK, k=MyH.

Obviously k is Galois over Q and Gal(k/Q) defines an element y € Y. We have the
following commutative diagram with exact rows:

] — Gal(M/L) E— Gal(M/K) E— Gal(L/K) — 1

[
| — Gal(k/H) —— Gal(k/K) —— g  —— 1.

Let f =g(y) € Alt(g). Since Gal(M/K) =~ D4, we obtain f(s;,s2) =1. We see that
Kerp =~ Kerv and Kerv in g/g? is <s3,...,5-1y. Hence it follows that f(s;,s;) =0
for 3 <j<t—1. This means g(y) = fi2, as desired. If p; = p» = —1 mod4, then
(pi, pip;) or (p5, pip;) is trivial in Bra(Q). Therefore we may suppose that p;(= pj) =
1 mod4. If p, splits in Q(,/p1), then (pi, p;) is trivial in Bry(Q). Consequently, we
may suppose that p, is inert in Q(/pr). Since L; = K(,/p1)/K is unramified, we see
that the Hilbert symbol ((p1, p;)/1) is trivial for each place | of K. This implies that
(p1, p3) is trivial in Bry(K), so that there exist a,b € K* satisfying p; = a®> — b?p;. Let
p, be the prime ideal of K dividing p,. Then p, is inert in L; and let 3, be the prime
ideal of L; dividing p,. Put «=a+b\/preL;. Since NLI/K(oc‘l‘Bz) = pg, there is
an ideal 2 in L; such that o~ 'P, = A/A* where 7 is the generator of Gal(L;/K).
Choose an odd prime ideal £ of degree 1 in L; which belongs to the ideal class of
A. Then P,L7/L is a principal ideal (f) and Ny x(f) = Np,/k(«) = p;. Therefore
M = L(\/B,\/p;) is a Ds-extension of K containing K(/p1,/p3). Moreover, it is
now easy to check that Gal(MH/K) determines an element § € H?(g,+1) which corre-
sponds to f1,. We note that

(BB”) = Ni,jorym ($227/8) = (pal) /(£27)?,

where / is the rational prime contained in £. Since the class number of Q(,/p1) is odd,
28’ is principal, so that S’ = prla® with a € Q(y/pr). Admitting the following lemma,
our proof will be completed immediately.

LEMMA 1. There exists an abelian extension H(\/c) (c € H) over K such that
cc’ BB’ € H*?.

Put k = H(y/Bc). Notice that k is Galois over Q, since H(+/B) = MH is Galois
over K. Since Gal(H(/c)/K) corresponds to an element d, € Ext(g,+1), we see that
Gal(k/Q) corresponds to y € H*(H/Q,=+1) such that res(y) =6 +do; thus g(y) = fi.2,
as claimed. Applying the same arguements for any f;;, our proof of Theorem 1 is
completed. ]
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ProoF oF LEMMA 1. For a non-trivial character y : Ux — =+1 satisfying y(—1) =1,
there exists the unique quadratic extension H(y/c) over H such that yo Ny is the
character of Iy corresponding to H(\/c)/H and H(y/c)/K is abelian. We need to
choose ¢ € H* such that cc” € (—1)(1’2_1)/2le2. Thus it suffices to show that y can be
chosen such that yy” =x o Ng,o, where x is the quadratic Dirichlet character corre-

sponding to a quadratic field S = Q(1/(=1)”*"""?In) for some ne Z with \/ne H.
We consider cases.

1) If pp=7= -1 mod4, let [ be a prime of K dividing / and put y = A,,, where
J1,1,, are those defined in [Proposition 1. We have yx” = «jo Ngjo and S = Q(v/=I).

2) Assume p, =—1 mod4 and /=1 mod4. If D is odd, put y = Am,,v with v
defined in [Proposition 2. Then yy” = ks 0 Ng/g and S = Q(V—I). If D =4m with
an odd integer m, put y = 4. Then S = Q(vI). Since vV—1 e H, this satisfies our
requirement. If D =8m with m =1 mod4, put y = /u,n_g and if D=8m with
m = —1 mod4, put y = Amg. Then we have yy” = (xixs) o Ng/o.

3) Assume p; =1 mod4. We claim that it is always possible to choose f such
that /=1 mod4. We put

Ko=KW-1), Ly=L(V-1)=K(/p1,V-1)

and let ¢ and t be generators of Gal(Ly/L;) and Gal(Ly/K)), respectively. Decompose
p> as on? in @(v/—1). There exists a prime ideal B in Ly such that Ny /x,(By) = ().
Since (p1,7) is trivial in Bry(Ko), there is an o € Lo such that Ny /g (a1) = n. This
implies that there exists a prime ideal £y in Ly of degree 1 such that By L;/L is
principal. Putting

Byo =Ny, (By), L= N (Lo),

we see that P5,27/% is a principal ideal (f) with Ny x(B) = Np,/x(1) = p2. By the
choice of &, the rational prime / in ¥ satisfies / =1 mod4, as claimed. Therefore
x = /p satisfies our requirement.

4. Elliptic Q-curves with complex multiplication.

Let L be a Galois extension over Q containing H. An elliptic curve E over L with
complex multiplication by K is called a Q-curve if E? and E are isogenous over L for all
geGal(L/Q). Let Y, be the Hecke character of the idele group I, of L associated
with E. Then E is a Q-curve if and only if Y =y for all o € Gal(L/Q) (cf. [G, §11]).
For a Q-curve E over L, choose isogenies ¢, : E” — E for o € Gal(L/Q). Then

c(0,7) = 9,0%(9,.) " € K*

defines a two-cocycle and the cohomology class of {c(s,7)} in H*(L/Q,K*) depends
only on the curve E, and not on the isogenies ¢, chosen. We will denote by c(E)
this cohomology class. Let us denote by I7 the subset of H?(L/Q,K*) consisting
of elements of the form c¢(E) for all Q-curves E over L. Furthermore, we denote by
Y; the subspace of H?(L/Q,+1) consisting of all y such that the embedding problems
(L/Q,+1,y) are solvable.
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PropoSITION 4. If I is not empty, then Y| operates on Iy simply transitively in
an obvious manner. For Q-curves E and E', we have c¢(E) = c(E") if and only if Y, =
Yg ko Ny, where i is a quadratic Dirichlet character.

Proor. For Q-curves E and E’ over L, there exists an isogeny A : E — E’ defined
over a finite extension of L. For each o € Gal(L/L), we have 1° = Av(c) with v(g) € K*.
Since A" = / for sufficiently large n, we have v(c)” = 1, so that v(¢) = +1. This means
that if £ and E’ are not isogenous over L, there exists the unique quadratic extension
k over L such that A is defined over k. We also see that E and E’ are isogenous over
k? for all o e Gal(L/Q), because E and E’ are Q-curves; hence k is Galois over Q.
Therefore the Galois group Gal(k/Q) determines a cohomology class y = {y(g,7)} €
H?*(L/Q,+1); thus y € Y. For each o € Gal(L/Q), choose an extension G € Gal(k/Q)
of 6. Then y(a,7) = 1°7 /2 for o,7 € Gal(L/Q). One can find isogenies

0, E°—E, ¢} E" —F
such that Agp, = qo(;/l&. Then by a short computation, we obtain
¢(E) = c(E")y.
Now we claim that the natural map
H*(L/Q.£1) — H*(L/Q.K”)
is injective. From the exact sequence
l -+l - K*—= K*? =1

it suffices to show that H'(L/Q,K*?) = (0). This follows easily from the restriction-
inflation sequence

0— H'(K/Q.K*?) — H'(L/Q.K*®) — H'(L/K,K*),

since H'(K/Q, K*?) = (0) and H'(L/K, K*?) = Hom(Gal(L/K), K*?) = (0). Ifc(E) =
¢(E') and E and E’ are not isogenous over L, let k be the quadratic extension of L
stated as above. Then the group extension

1 - +1 — Gal(k/Q) — Gal(L/Q) — 1

splits, which implies that the character associated with k/L is of the form x o N o with
a quadratic Dirichlet character x. Since E’ is isogenous to the twist of E with respect
to k/L, the last statement is clear. O

In a class of elliptic curves (more generally abelian varieties) with complex
multiplication whose Hecke characters satisfy a certain condition are studied. We recall
briefly what we need here.

For an integer f > 1, let H/) denote the ring class field of K of conductor f. Let

Uk y={ue Ux|u(Z+ fok) =Z + fox}.

Then P = Uk yK*K 1is the subgroup of Ix corresponding to H (/) by class field theory.
Let E be an elliptic curve over H/) with End E = Z + fog. Let us consider the fol-
lowing condition on the Hecke character y; of E (see [S, Theorem 4).
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(Sh) There exists a Hecke character ¢: Uk K*KY — C* such that Y=

$oNyink-
Here ¢ must satisfy the following conditions:
(3) $K)=1, ¢(y)=y" for every ye K,
(4) #(Uks) =41 and ¢(—1)=-1 for —1€ Uk .

If y satisfies (Sh), then clearly ¥ = y7 for all ¢ € Gal(H')/K). Conversely from a
character ¢ : Ug r — +1 with ¢(—1) = —1, extending it on P = Ug (K*K* by (3), we
obtain = ¢ o Ny k, which is a Hecke character of an elliptic curve E over H (f),
Furthermore in this case E is a Q-curve if and only if ¢’ =¢ on Ug, (cf. [S,
Proposition 9]).

Assume first that K is not exceptional. If D has a prime divisor ¢ with ¢ =
—1 mod4, we put ¢ =5, : Ux — +1 where 75, is the local character defined in Prop-
osition 1. Here we view 7, as a character of Ux by composing with the projection

Uk — U,. Otherwise since D is of the form 8m with m = —1 mod4, we put ¢ =7_g,
where 7_g is defined in [Proposition 2 Then ¢ satisfies
(3) ¢p(=1)=—1, ¢’ =4

Therefore there exists a Q-curve over H.
Next assume that K is exceptional. Then there is no character ¢ : Uy — +1 sat-
isfying (5). This follows from the fact that if a local character ¢ : U, — +1 satisfies

0’ =0, we have 0(—1) =1 by and 2.

The following assertion is stated in [G, §11] without proof.
ProrosiTioON 5. If K is exceptional, there are no Q-curves over H.

Proor. Choose a rational prime ¢ such that ¢ splits in K and ¢ = —1 mod4. Let

Aq : Uy — £1 be as in [Proposition 1 where q|q. We put 4 = 1, o pr where pr: Uy — U,
is the projection. Then A determines an elliptic curve Ey over H with iy = Ao Ny k.
Clearly E; is not a Q-curve over H, since w,@il/wEl = Jqti o Nk = k40 Npjo. (It is
a Q-curve over H(,/—q).) Now assume that a Q-curve E over H exists. Put y; =
Yg /We. Then y is a quadratic character of /i and it determines a quadratic extension
k, of H which is Galois over K. Since g: Y — Alt(g) is surjective as shown in the
proof of [Theorem 1|, there exists a quadratic extension k& of H which is Galois over Q
such that Gal(k/K) and Gal(k;/K) correspond to the same element in Alt(g). This
means that denoting by y the character associated with k/H, yy, corresponds to a
quadratic extension of H which is abelian over K, i.e. yy; = 0 o Ny x with a character
0:Ug — +1. Put yy =y -y. We easily find that = (10) o Ny x and y” =, since
2 =1y and yx” = x; this implies that ¢ = 10 : Ux — +1 satisfies (5). As remarked

above, this 1s impossible if K is exceptional. OJ
Applying [Theorem 1, we obtain the following result concerning a classification of
Q-curves.

THEOREM 2. If K is not exceptional, the cohomology classes c(E) classify isogeny
classes of Q-curves over H into 2'0-V/2 classes. Among them there are 21 classes
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whose Hecke characters satisfy (Sh). If K is exceptional, take H\%)| the ring class field
of K of conductor 2, instead of H. Then exactly the same stalements hold for isogeny
classes of Q-curves over H?.

ProoF. Let the notation be as in [Proposition 3. The first statement is clear by
['heorem 1 and [Proposition 3. Let Ey be a Q-curve over H such that y satisfies (Sh).
Then c(Ep)y (y € Yy) correspond to those Q-curves whose Hecke characters satisfy (Sh).

Next assume that K is exceptional. Let m denote the prime ideal of the local
completion of K at 2 and put

=11 U - K.

p#2
Then P® is the subgroup of Ix corresponding to H® by class field theory. Let
0: 1+ m? — +1 denote the character such that Kerf = 1 + m? and put ¢ = 0 o j, where
Jille2 Up- (1 +m 2) — 1 +m? is the projection. Then ¢ o Nye g is a Hecke char-
acter of a Q curve over H?, since ¢” = ¢. Therefore a Q-curve over H® exists. Let
g’ = Gal(H?/K) and put Y] = {y € Yo |res(y) € Ext(g/,+1)}. It suffices to show that
dim Yj =¢—1 and dim Y@ = (¢ — 1)/2. If a non-trivial local character 4 : 1 +m? —
+1 satisfies A(—1) = 1 and A” = 4, we see easily that 1 = xg o Ng/9. As in the proof of

IProposition 3|,

01717"'76%—1 (D/4: _pl"'ptfl)

form a basis of W /W); hence dim Y; =¢— 1. Note that v = (1 + /D/4)?/2 is prime
to 2 and v¢ 1 +m>?  Then we see that the class containing the ideal n with n? = (2)
has order 4 in Ix/P®. This shows that g'/g’> = g/g%; hence we obtain dim( Y0 /Y]) =
dim Alt(g’) = (¢ — 1)(t — 2)/2 by [Theorem 1. [

5. Restriction of scalars of Q-curves.

In this section we suppose that K is non-exceptional. Let E be a Q-curve over H.
Let us denote by B = Rp/k(E) the abelian variety obtained from E by restriction of
scalars from H to K. It is an abelian variety defined over K of dimension /g = [H : K].
Since E is defined over Q(jg) (cf. [G, Theorem 10.1.3]), we have

B = Rg(jy)/0(E) ® K,

so that B is defined over Q. Concerning the structure of the endomorphism algebra
Ry = Endg(B) ® Q we obtain

THEOREM 3. Let Ry = Endg(B) ® Q be as above and hyg the class number of K.
The center Zy of Ry is a field of degree hy over Q and Ry =~ Mn(Zy) or Ry = Mym-1(Dy),
where Dy is a division quaternion algebra over Zy and hx = 2*"hy. Ry is commutative if
and only if \p satisfies (Sh).

ProOF. We recall some facts on the structure of R = Endg(B) ® Q (cf. [G, §15]
and [N]). For o€ g=Gal(H/K), one can choose a prime ideal p of K, of degree 1,
prime to the conductor of ¥ such that o= ap , where o, is the Frobenius auto-
morphism of H/K at p. Let B be a prime of H lying over p and p the rational prime
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in p. Then there exists an isogeny (a p-multiplication in the sense of [S-T, §7))
u(p) : E° — E such that u(p) mod P is the p-th power Frobenius map (see [Si, II
Proposition 5.3]). Let #(p) be the corresponding K-endomorphism of B. If ¢ is of
order n, we have

(6) Ve(P) =1(p)" e K™, p" = (e (P)).

Take ¢, = u(p) and ¢, = ¢(p) for each o eg. Then R is the twisted group algebra
KB =3 . o Ki; over K subject to the relation

tot: = c(0,7)ty; for o,7€g

where ¢(E) = {c(g,7)} is the two-cocycle attached to {¢,} (see Section 4).

The complex conjugation p operates on R and Ry = {o € R|p(a) = a}. Changing
E by some E? if necessary, we may assume that p(E) = E. By transport of structure,
plu(p)): E? = Er" ' = E°' — E is a p’-multiplication whose reduction mod P’ is
the p-th power Frobenius map. This implies that p(#(p)) = #(p”). Moreover, since
pp? = (p) we have

(7) t(p)t(p”) =tp, RoNK(1(p)) = O(s(p)),

where s(p) = 1(p) + 1(p”).

Now we have 1,t, = f(0,7)t,1,, where f(o,7) = c(0,7)c(r,6) " is the alternating
form on g associated with ¢(E). Let go(> g°) be the kernel of f. If g # g,, then g/g,
is an orthogonal sum of hyperbolic planes T7,..., T,,; each T; is two dimensional and
f induces on 7T; a non-degenerate alternating form. Choose X;, y; € g such that they
induce a basis of 7;, and define b, = {x;, yi,9,>. Then Z = Zaego Kt, is the center of
R and the subalgebra D; = > __, Kt, of R is a quaternion algebra over Z. We have

geb;

R:D1®"'®2Dm

and hgx = 2*"hy with [Z : K] = hg (see [N, [Theorem 3]). Furthermore it easily follows:
Zy={ae Z|p(a) = a} is the center of Ry, D? = {o € D;|p(x) = o} are quaternion alge-
bras over Zy and Ry = D) ® --- ®z, D>. Observe that [Zy: Q] = [Z: K] =hy and R
is commutative if and only if Ry is commutative. Then our assertion can be proved

exactly in the same manner as in [N]. O
ProOPOSITION 6. Let E,E’' be Q-curves over H and put:
B = RH/K<E>7 B, = RH/K<E,>a R() = El’ldQ(B) ® Q, R6 = EndQ(B/) ® Q

Then if ¢(E) = c(E’"), we have Ry = R{,. Conversely if Ry is commutative and Ry = Ry,
we have ¢(E) = c(E").

ProOOF. If ¢(E) = ¢(E'), then Yy = Y, - 1c 0 Ny o with a quadratic Dirichlet char-
acter x by [Proposition 4. Let ko be the corresponding quadratic field to . We may
assume that kg is different from K and jg = jg. Then E and E’ are isomorphic over
ko(je) (see [G, Theorem 10.2.1]), so that B and B’ are isomorphic over k(. Since ko-
endomorphism algebra of B is Rj, we obtain Ry = R|.

Now assume that R, is commutative and Ry = R). By Vg and Y
satisfy (Sh), i.e.
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Yp=¢oNyik, Vg =¢oNyx

with characters ¢,¢’ of Ix. We see that B is of CM-type over K, ¢ is the Hecke
character of B over K and

Endx(B) ® Q = RoK = K({¢(a) | a € Clg}).

Here Hecke characters are also viewed as functions of ideals. Since RoK and R)K are
K-isomorphic, the maximal (2,...,2) subextension L over K contained in RoK coincide
with that in RjK. We have L= K({¢(a)|ae Clg[2]}), where Clg[2] = {ae Clg]|
a2 =1}. Observe that the map Clg[2] > a — ¢(a)’ € K*/K* is injective, since a? =
(¢(a)?) by (6). In particular we have v—1 ¢ L. We may assume that E and E’ are
not isogenous over H but isogenous over a quadratic extension k of H. Put &= ¢/¢’.
Then ¢ is a character of the idele class group Ckx of K and o Ny /i is the character
associated with k/H. Therefore k/H is abelian. Let N and N’ be the norm subgroups
in Cg corresponding to H and k, respectively.

CramM. Ck/N'(= Gal(k/K)) =4 x N/N' with a subgroup 4 of Cx/N' such that
A = Clg.

We have only to show the corresponding assertion for the 2-Sylow subgroup of
Cx/N’. Let a be any ideal in K of even order n in Clg, which is prime to the
conductor of ¢. We have ¢(a") = ¢'(a”)é(a”) € K. 1If E(a”) = —1, then by assumption
we have v—1 € RoK, which is a contradiction. Therefore ¢(a")=1. Letaj,...,a, be
a set of ideals of K such that they form a set of independent generators for the 2-Sylow
subgroup of Clg and denote by A’ the subgroup of Cx/N’ generated by ay,...,a,.
Since ¢ is non-trivial on N/N’, we have AN N/N’'=1. Thus our claim is proved.

Let ko be the quadratic extension of K which corresponds to 4 by class field theory
and denote by &, the character of Ix associated to ko/K. Then we may assume that
¢ = ¢'&y. Take any ideal a of K prime to the conductor of ¢ and ¢’. Then by (7)
we have RyNK(p(a)) = Q(s) with s = @(a) + ¢(a”): Q(s) is totally real (resp. of CM-
type) if and only if ¢(aa”) >0 (resp. ¢(aa”) < 0). Therefore Ry =~ R{ implies that
&o(aa?) =1, hence & =¢&). This shows that kg = k(; thus ky/Q is Galois. Since
ko > K, we see that ko/Q is of type (2,2). Hence we have ¢(E) = c(E'). ]

6. Examples.

First we consider non-exceptional case. For the sake of simplicity, we assume that
K is an imaginary quadratic field of discriminant D such that Clx ~ Z/2Z x Z/2Z;
hence in this case t =3 and the class number /g = 4.

Let ¢, be a character of Ux which satisfies the condition (5). Then as explained in
Section 4, we obtain a Hecke character Yy = ¢y o Ny x of Iy. Take any quadratic
extension k of H such that k/Q is Galois and denote by y the character of 7 associated
with it. We put y =, - . Now choose a prime ideal p of K such that p is of order 2
in Clg and prime to the conductor of ¢, and y. Let L be the decomposition field of p
in H and F be the subfield of L fixed by p. Then k/F is a Galois extension of degree
8. Let Eyp and E; be Q-curves such that Yz =y, and ¥y =y -y and put

By = Ryr(Ev), Bi = Ry/r(E1).
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Then they are abelian varieties of dimension 2 defined over F. Set:
S=Endr(B) ®Q, T =Endp(B)® 0.

PROPOSITION 7. Notation being as above, put s= ¢y(p) + do(p”?). Then S is a
quadratic field Q(s). Write S = Q(\/n) and set:

S'=0Q0(\/D/n), S=0Q(/=n), ' =Q(/-D/n).

(1) Assume that k/L is an extension of type (2,2). If k/F is abelian, we have
T =S and otherwise we have T = S’.

(2)  Assume that k/L is cyclic of order 4. 1If k/F is abelian, we have T = S and
otherwise we have T =§'.

PrROOF. Since k/L is abelian, we can write y = y' o Ny, for a character ' of I.
Then = ¢ o Ny with ¢ = (¢ o Npjk) - %', so that ¢ is a Hecke character of B; over
L. By Artin map we may regard y’' as a character of Gal(k/L). Let 8 be a prime
ideal of L lying above p and we denote by o the Frobenius automorphism in k/L
associated with . We have y'(*B) = y/(0),

B(P)* = do(p)’%'(B)* and  G(PB?) = go(pp” )1 (BP”).

Let 7 be the non-trivial automorphism of k over H. Note that 7= Q(¢(B) + ¢(V”))
and that T is totally real if and only if ¢(‘PB”) > 0.

In the case (1) we have y/(P)> =1, hence KT = KS. If k/F is abelian, y'(B) =
2 (B?”)=y'(pop). Thus T =S. If k/F is non-abelian, we have pop = a7. Since
x'(t) = =1, we obtain x'(‘PP”) = —1, which shows T =S’

In the case (2) we have y/(B)*=—1, hence KT =KS. If k/F is abelian,
2 (BB?) = 7' (P)? = —1 and hence T = S. If k/F is non-abelian, we have y'(PP’) =
x'(6?t) = 1, which shows T =§'. ]

Now let us determine the endomorphism algebras Ry = Endg(Rp/x(E)) ® Q for
some Q-curves E.

1) D=-4-3.7.
Let p and p’ be the prime ideals of K such that p>=(2++/—-21) and p”? =
(10 ++/=21). The decomposition field in H of p is K(/21) and that of p’ is K(+/3).
We see that Clg is generated by p and p’. Let q be the prime ideal of K with g% = (3).
Let ¢, be a character of Ix of conductor q such that

o

do((x)) = <a><x for every a e K*,

where (o/q) denotes the norm residue symbol. Then ¢, satisfies (5) and put ¥, =
$o o Nujk. Using local characters (see §2), we define:

w1 =1n3M70 Ngjg, @2 =1n_40 Np/k.

Since (21,-3) is trivial in Bry(Q), there exists a Dj-extension ko, over @ containing
Q(v/-3,v21). Let x be the character of I associated with koH/H. Then by The-
orem 2, the equivalence classes of Q-curves over H are exactly represented by the Hecke
characters = Yy, o € {wi,wy, x).
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(@) Y =1y, A simple calculation shows that

2
holp?) = =2 = V=21 = (ﬁ‘f ‘14) and  ¢y(pp”) = do((5)) = =5,

Therefore ¢,(p) + ¢o(p?) = +v/—14. Similarly we have ¢,(p’) + ¢,(p”) = +v/—2, since
$o(p?) = (VA2 +vV=2)/2)> and ¢o(p'p”) = —11. Hence Ry = Q(V—2,vV—T14).
(b) ¥ =yyw;. We have:

nn(p?) = =1, nn;((5) =1, mam;(p"?) = =1, nmy((11)) = —1.

This implies Ry = Q(v/—6,v/2).

() Y=y -x. We have:

koH/K(+/21) is of type (2,2) and koH/Q(+/21) is abelian;

koH /K (\/3) is cyclic of order 4 and koH/Q(+/3) is non-abelian.
Applying [Proposition 7, we obtain that R, is a division quaternion algebra (—42,—14)
over Q.

The remaining cases are similarly computed and we have:

1/ Ry (field) W Ry (quaternion alg.)
Vo o(V-2, \/——1‘1) Yox (—14,-42)
Yowr 0(V-6,v2) Yowix (—6,42)
Yow2 0(V-6,V-42) Yowax (=6,-2)
Yoo | Q(V—14,vV—-42) Yowiway (—14,2)

REMARK. The division quaternion algebras (—14,—42) and (—6,—2) over Q are
isomorphic because they ramify at the same primes 2 and co. The quaternion algebras
(—6,42) and (—14,2) are isomorphic to M,(Q).

2) D=-3-5-13.

Let p and p’ be the prime ideals of K such that p?> = ((1++/D)/2) and p”? =
(17 ++/D)/2). The decomposition field in H of p is K(1/65) and that of p’ is K(v/5)
We see that Clg is generated by p and p’. Let q be the prime ideal of K with g% = (3)
Let ¢, be a character of Ix of conductor q such that

Po((a)) = (g)oc for every e K*

and put Yy = @yo Ny/g. As in Case 1) we define:
w) =150 joNyxk, @y =1m;30joNpi.

Since (13,—3) is trivial in Bry(Q), there exists a D4 extension ko, over @ containing
Q(v/-3,V13). Let y be the character of Iy associated with koH/H. Then by
Mheorem 2|, the equivalence classes of Q-curves over H are represented by the Hecke
characters = Y o, ® € {w,ws,xy. By similar computations as in 1), we obtain:
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W Ry (field) 1/ Ry (quaternion alg.)
Yo Q(ma \/__5) Yox (—15,-39)
Yowr | O(V—13,V-5) Yowiyx (15,-39)
Yow2 O(V-13,V5) Yowax (15,39)
Yowiw; 0(V13,V5) Yowiway (—15,39)

ReEMARK. The division quaternion algebras (15,—39) and (—15,39) over Q are
isomorphic because they ramify at the same primes 3 and 13.

Next we give an example of exceptional case.

Let K = Q(v/—5). Then
hg=1=2 H=KK-1), H?»=H\/1+V5).

In this case there exist two classes of Q-curves over H® by Theorem 2. Let m be the
prime ideal of K with m? = (2). As in the proof of [Theorem 2, there exists a Q-curve
Ey over H® such that Yz = ¢ o Nyo x, where ¢, : Uk » — +1 has conductor m?.  Let

q be the prime ideal of K such that q?> = (2++/—5). The Frobenius automorphism
associated with q in Gal(H® /K) has order 4. We easily have

o(a®) = =2+ V=5)>,  ¢(aa”) = -3.
Therefore we obtain
o(a)* + ¢o(a”)* = £2V5,  ¢y(a) + do(a”) = £(V-5 F V-1).

Hence we have Ry = Endg(Ryw x(Eo)) ® Q = H. The other class of Q-curves over
H® is represented by a Hecke character (¢, -#s) o Ny k- Computing similarly we

find that Ro =~ Q(v/5) ® Q(V/5).
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