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Abstract. Cone-parameter Lévy processes and convolution semigroups on R? are
defined. Here, cone-parameter Lévy processes have stationary independent increments
along increasing sequences on the cone. This property ensures that subordination of a
cone-parameter Lévy process by an independent cone-valued cone-parameter Lévy process
yields a new cone-parameter Lévy process. It is shown that a cone-parameter Lévy
process induces a cone-parameter convolution semigroup. The converse statement, that
any convolution semigroup appears in this way, is however not true. In particular we
show that there is no Brownian motion with parameter in the set of nonnegative-definite
symmetric d x d matrices. The question when a given cone-parameter convolution semi-
group is generated by a Lévy process is studied. It is shown that this is the case if one of
the following three conditions is satisfied: d = 1; the convolution semigroup is purely
non-Gaussian; or K is isomorphic to Riv .

1. Introduction.

Recall that a Lévy process in law on R? starts at 0, has stationary independent
increments and is continuous in probability; a Lévy process appears by assuming in
addition that the paths are cadlag. The following properties are fundamental. (i) If
{X;:t>0} is a Lévy process in law then {g, :¢>0} defined by u, = Z(X,) is a
convolution semigroup; (ii) conversely, if {#, : >0} is a convolution semigroup then
there exists a Lévy process in law {X;:¢> 0} with u, = Z(X,) for all ¢ (iii) the law
of {X;:¢>0} in (ii) is uniquely determined by {x,:¢>0}. In fact, if 7 > 0 then g,
determines both {y, : 7> 0} and the law of {X,:7>0}; (iv) we have stability under
subordination, that is, if {7, :¢> 0} is a subordinator, independent of a Lévy process
{X;:t=0}, then {X7,:¢1>0} is a Lévy process.

Several papers discuss extensions of Lévy process to the case where the parameter
is multidimensional. Often the stationary independent increment property is replaced
by an assumption saying that a multiparameter Lévy process {X,:¢¢€ Rﬁ’ } on R? has
stationary independent increments over half-open intervals of Ri\' . (See e.g. Adler,
Monrad, Scissors and Wilson for a precise formulation of this.) Examples include
the Brownian sheet (Orey and Pruitt [13], Talagrand [16], Khosnevisan and Shi [9]) and
processes considered by Ehm [5], Vares and Lagaize [11]. In these papers the law
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of {X;:te RV} is uniquely determined by the law of X, where ) € RY has positive
coordinates. Moreover, whenever y, is an infinitely divisible distribution on R? there is
a multiparameter Lévy process {X,:7e R} } with Z(X,)) = u,. It is, however, readily
seen that subordination of multiparameter Lévy processes does not always result in a
new multiparameter Lévy process. That is, (i)—(iii) generalize to the multiparameter
case while (iv) does not. Let us also mention Lévy’s multiparameter Brownian
motion as an example of a process with parameter in RY, which has independent
increments only along straight lines in R”.

In this paper processes have parameter s in a cone K. Besides the case K = Riv
we also consider interesting examples where K is the set S of nonnegative-definite
symmetric d X d matrices. We consider another natural generalization of the stationary
independent increment property by assuming stationary independent increments along
K-increasing sequences. This leads to what we call K-parameter Lévy processes in law,
see [Definition 3.1. We have the convenient property that subordination of K-parameter
Lévy processes in law results in a new K-parameter Lévy process in law. Moreover, it
is readily seen that a K-parameter Lévy process in law induces a K-parameter con-
volution semigroup {u, : s € K} by u, = £(X;). Here a convolution semigroup satisfies
U = Mo * it and has a continuity property. A K-parameter convolution semigroup
{u,} is said to be generative if there is a K-parameter Lévy process in law satisfying
u, = Z(X;) for all s; otherwise {s,} is non-generative. We show that if K =S with
d>2 and p, = Ny(0,s) then {g, :se K} is non-generative. This can be rephrased as
the property that there is no Brownian motion with nonnegative-definite symmetric
matrix parameter. In particular we see that (ii) does not generalize to the K-parameter
case. A second purpose of the paper is to investigate the question when a given cone-
parameter convolution semigroup is generative. The main results are that {y} is gen-
erative if one of the following three conditions is satisfied: d = 1; the convolution
semigroup is purely non-Gaussian; or K is isomorphic to Riv .

Even for a generative K-parameter convolution semigroup {,} it is generally not
true that the law of an associated cone-parameter Lévy process in law is uniquely
determined. That is, neither (iii) generalizes. In the case where K is isomorphic to Rf
we give conditions on {x,} under which the law of an associated cone-parameter
convolution semigroup is in fact unique.

The paper is organized as follows. In Section 3 cone-parameter Lévy processes
and convolution semigroups are defined and some properties are derived. In particular
we show stability under subordination as mentioned above. In Section 4 we construct
non-generative S -parameter convolution semigroups and finally Section 5 contains an
analysis of generative convolution semigroups.

2. Preliminaries.

Throughout the paper let N, M and d be positive integers. Elements of R? are
column vectors. We denote the coordinates of x € RY by xj, and use either the nota-
tion x = (xj)lgjgd or x = (xl,...,xd)T. The inner produpt on R? is (x, y) and the
norm is |x|. When d,...,d, are positive integers and x/ € RY for j=1,...,n, then
(x!,...,x")" denotes the stacked vector
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(2.1)

which is an element of R%*+d,

Let ID(R?) be the class of infinitely divisible distributions on R? equipped with the
Borel g-algebra Z(R?). For ue ID(R?) and t > 0, denote ' = u™*. The characteristic
function of x is A(z) = [pe €* ¥ u(dx), ze R?. Let £(X) be the distribution (law) of
a random variable X. By X 4 Y we mean L(X)=2(Y). Thus, by {X;} 4 {Y} we
mean that the two stochastic processes {X;} and { Y} have an identical system of finite-
dimensional distributions. For probability measures g, (n=1,2,...) and ux on RY,
u, — 1 means weak convergence of u, to 4. Let J, denote a distribution concentrated
at a point ¢. Such a distribution is called trivial. For z,x € R let ¢(z, x) be the func-
tion g(z,x) = e — 1 —i{z,x)1 <1 (x). For pe ID(R?) and r € R, we define 4(z)",
ze R, as ji(z)" = e"'°2Al) | where log/i(z) is the distinguished logarithm of /i(z) in [15],
p- 33. In other words,

. 1 .
e = exp|r(—5 A + i 2>+ | otz ian)|.
R
where (4,v,y) is the triplet or the generating triplet of x in [15], p. 38. The matrix
A and the measure v are respectively the Gaussian covariance matrix and the Lévy
measure of x, and y e RY.

DEFINITION 2.1. A subset K of RY is a cone if it is a non-empty closed convex
set closed under multiplication by nonnegative reals (se€ K and a >0 imply as € K)
and containing no straight line through 0 (se K and —se K imply s=0) and if
K #{0}.

Throughout this paper, K is a cone in R* unless otherwise stated. Notice that K
is closed under addition. Therefore, if s',...,s" are in K, then f;s! + --- + #,5" € K for
any nonnegative reals ¢1,...,%,. Let L be the linear subspace generated by K, that is,
the smallest linear subspace of R that contains K. If dim L = N, then we say that K
is an N-dimensional cone. 1If dimL = M, then K is said to be nondegenerate.

If {e',...,e"} is a linearly independent system in K such that K = {sje' + ---
+syeN i s1,...,sxv >0} then {e!,...,e"N} is called a strong basis of K. If {e!,... eMN} is
a basis of L and e!,...,e" are in K then {e',...,e"} is called a weak basis of K. For
example, a cone in R is either [0,00) or (—o0,0], and has a strong basis. Any non-
degenerate cone in R” is a closed sector with angle < z and has a strong basis. A
nondegenerate cone in R® has a strong basis if and only if it is a triangular cone. For
any M, the nonnegative orthant Rf is a cone with a strong basis. Any cone has a
weak basis.

Write s' <gs? if s> —s'eK. A sequence {s"},_,, in R is K-increasing if
s" <g "t for each n; K-decreasing if s"t! < s" for each n. A mapping f from [0, o0)
into RY is K-increasing if f(t;) <k f(t2) for t; < t,; K-decreasing if f(t;) <k f(t;) for
Hh < b
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More generally, let K; and K> be cones in RM' and R, respectively. A mapping
f from K into R™ is (K, Ky)-increasing if s' <, s*> implies f(s') <, £(s?); (K1, K>)-
decreasing if s' <k, s* implies f(s?) <k, f(s!).

Let K/ = {ue RM : (u,sy >0 for all se K}. Then K’ is again a cone in RM. It
is called the dual cone of K. We have (K')' =K. If K =R}, then K = K'. For two
cones Ki,K, in RM, we have K| < K, if and only if K| 2 K.

REMARK 2.2. Let K be an N-dimensional cone in RY. Let L be the linear
subspace generated by K and let 7 be a linear transformation from L to R such that
dim(7L) = N. Denote by T~! the inverse of T defined on TL. Define K = TK, the
image of K by T. Then, K is an N-dimensional cone in RY. We have u' <gu? if
and only if T7'u! <x T7'u?. A system {u',...,u"} is a strong basis (resp. a weak
basis) of K if and only if {7'4',..., T-'u"} is a strong basis (resp. a weak basis) of K.
We say that K and K are isomorphic cones. Any N-dimensional cone K with a strong
basis is isomorphic to Riv . The isomorphism is given by a mapping between strong
bases. From this follows that a strong basis {e',...,e"} of K is unique up to permu-
tation and scaling, if it exists. Indeed, it is readily seen that up to scaling and permu-
tation the standard basis in R" is the only strong basis of Riv .

DEFINITION 2.3. Let f be a mapping from a cone K in R into R?.

(i) We say that f is K-right continuous at s° e K, if, for every K-decreasing
sequence {s"},_,, in K with |s" —s° — 0, we have [f(s") — f(s°)] — 0.

(i) We say that f has K-left limits at s° e K\{0}, if, for every K-increasing
sequence {s"},_;, in K\{s"} satisfying |s" — 5| — 0, lim,_, f(s") exists in R?.

(i) We say [ is K-cadlag if it is K-right continuous at each s° € K and has K-left
limits at each s° e K\{0}.

When f: K — R has K-left limits at s € K then lim, . f(s") may depend on
the choice of the K-increasing sequence {s”}. But, we now show that if K is an
N-dimensional cone with a strong basis, then any mapping with K-left limits has at most
2NV — 1 different left limits at each point. Let K be with a strong basis {e!,... e"}.
Let sc K and {s"},_,, be a sequence in K. Write s° and s" as s" =se' +---
+s%eV and 5" =sfe! + - +skeN. Note that s” <gs"*! if and only if s < s/*! for
all j=1,...,N. Thus, {s"},_,, is K-increasing with |s" —s°| — 0 if and only if
{s/},—1,. is an increasing sequence in R, which tends to sl‘.) for each j. Let a be
a nonempty subset of {I,...,N}. We use the notation s" T, s° if {s"},_,, is K-
increasing with |s” — s°) — 0 such that 5t < sjo for j€a and all n, and s} = s](.) for j¢a
and n sufficiently large. Let pyo = {j: s](.’ > 0}. We have the following easy result.

LemMMA 2.4. Let K have a strong basis {e',... e"N}.

(i) Let {s"},_,,. . be K-increasing in K\{s°} with |s" —s°| — 0. Then there is a
unique nonempty subset a of pe such that s" 1,s°. This particular a is given by a
={j:s] < sj(.) for all n}.

(i) Let f:K — R? have K-left limits at s° e K\{0}. Then there is a family
{f%s0) : a  pyw, a nonempty} in RY such that if a is a nonempty subset of po and
{8"} 21,2, is a sequence in K with s" T, s, then f(s") — f9(s°).
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3. Cone-parameter Lévy processes and convolution semigroups.

In this section we define cone-parameter Lévy processes and convolution semi-
groups. Some examples and properties will be discussed as well.

DEerFINITION 3.1, Let {X; : s € K} be a collection of random variables on R? defined
on a probability space (Q,%,P). Then, {X;:se K} is a K-parameter Lévy process on
RY if the following five conditions are satisfied.

(i) Ifn>=3and{s/},_, ,is K-increasing in K, then X;;u — Xj, j=1,...,n—1,
are independent.
) Ifs',....s*cK and s> —s' =s* — s> € K, then Xy — Xy < Xy — X,o.
) Xop =0 almost surely (a.s.).
(iv) Xs(w) is K-cadlag in s for almost all w e Q.
)
in probability.

If {X;:s5€eK} satisfies (i)—(iii) and (v), then {X;:se K} is called a K-parameter

Lévy process in law.

REMARK 3.2. (i) Note that with K = R, the definition of an R,-parameter Lévy
process reduces to the definition of a Lévy process in [15]. Similarly, an R, -parameter
Lévy process in law is a Lévy process in law, as defined in [15].

(i) Recall that {X;:se K} is called measurable if the mapping X;(w) from
(w,s) e 2 x K into RY is measurable with respect to (7 x #(K),#(R%)). A K-
parameter Lévy process is automatically measurable if condition (iv) of
holds for all w (not only for almost all w), or if the underlying probability space is
complete. More generally, any K-parameter Lévy process in law has a measurable
modification. This follows from the fact that any process which is continuous in
probability has a measurable modification; see [3], Theorem 2.

Let us provide some examples of K-parameter Lévy processes.

ExaMPLE 3.3. Let K be a cone in RY and K’ be the dual cone of K. Let ue K'.
Let {V;:1>0} be a Lévy process on R?. Then, we get a K-parameter Lévy process
{X;:5€ K} on RY by letting X, = Viu,sy-

ExAMPLE 3.4. Let K have a strong basis {e!,...,eV}. Then, in each of the fol-
lowing three constructions of X, for s = sje! +--- + sye”¥ € K, we obtain a K-parameter
Lévy process {X;:se K} on R

(i) Let {V;:1>0} be a Lévy process on R?. Fix (¢))1<j<ny With ¢; =0 for
1 <j<N. Define Xy= Vgttcysy-

(i) Let {V/:t>0}, j=1,...,N, be independent Lévy processes on R?. Define
X, =V, +_|_Vé£/\’

(iii) For each j=1,...,N, let {U/:1>0} be a Lévy process on R%. Assume
that they are independent. Let d =d, +---+dy. Define X; = (Usll, cee UN)T.

SN

= =

The processes in the preceding example have been studied in the literature. Indeed,
Dynkin [4], Evans [6] and Fitzsimmons and Salisbury worked on processes which
generalize (iii), while Hirsch [8] and Khoshnevisan, Xiao and Zhong studied (ii).
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Related to Lévy processes is the notion of a convolution semigroup.

DEFINITION 3.5. A family {u, :se K} of probability measures on R? is a K-
parameter convolution semigroup if

(i) o *pe = pa, e for all s' s e K,

(1) p,, — 0o for se K as t | 0.

ExaMPLE 3.6. Let d >2 and S, be the set of symmetric nonnegative-definite
d x d matrices. Let s= (sjk)ﬁkzl € S). The lower triangle, (Sik)k<; With d(d +1)/2
entries, determines s. We identify S with a subset of R“*1/2 considering (sj); ;
as a column vector. Then S is a nondegenerate cone in RY“*1/2 and does not
have a strong basis. For se S, let u, be the Gaussian measure on R?, defined as
s = N;(0,s), the d-dimensional Gaussian distribution with mean zero and covariance
matrix s. Then, obviously, {u, :s€S;} is an S -parameter convolution semigroup
on RY. We call it the canonical S -parameter convolution semigroup.

We refer to Pedersen and Sato for a detailed analysis of cone-parameter con-
volution semigroups. Here we just recall the following important result.

REMARK 3.7. Let {u,:s€ K} be a K-parameter convolution semigroup on RY.
Then p; = ()" for all seK and n>1, which shows that u, € ID(RY). Let
{e',...,e"N} be a weak basis of K. For s=sje! +---+sye” € K we have

(31) las(z) = ﬂel(z)51 o 'laeN(Z)SNa zeR’.

In particular, if {s"} is a sequence in K with s” — s then u,, — u,. This follows from
Theorem 2.8 and Corollary 2.9 in [14].

Lemma 3.8. Let {X;:s€ K} be a family of random variables satisfying (1)—(ii) of
Definition 3.1 together with the following condition (v)':

(V) If se K and if {e,} is a sequence of real numbers strictly decreasing to 0, then
X.,s — 0 in probability.
Then {X;:se K} is a K-parameter Lévy process in law and {u,:se K} defined by
u, = L(X;) is a K-parameter convolution semigroup.

In particular, if {X;:se K} satisfies (1)—(iv) of [Definition 3.1 then it is a K-

parameter Lévy process.

Proor. It is readily seen that {u,:se K} is a convolution semigroup. Since
Uy =00 it follows that Xy =0 almost surely. We verify Definition 3.1 (v). Let
{s"}21.2.. € K and 5% € K with |s" —s°| — 0. Let {e!,...,e"} be a weak basis of K

s s s"=stel + ... £ sle SO =gl 4. 0N w

and decompose s” and s° as s" =sfe! + -+ shel and O =se! + .- +5%eV where
sf,s) € R for all j and n. Define u" by u" = ufe' 4 --- 4 uye”, where u = s/ v s) for
Jj=1...,N. Since u! —s/ >0 for all j we have u" —s" € K, that is s" <gu" and

u" e K. Similarly, s° <gu". Since Xgp — Xy = [Xn — Xy0] — [Xyn — Xin] it suffices to
prove that the two terms on the right-hand side converge to zero in probability. As
u" —s" u" —s° — 0, the result follows from (ii) and Remark 3.7.

The last statement follows from the fact that (iii)—(iv) readily imply
(v)" O
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The preceding lemma shows that a K-parameter Lévy process in law {X;:se K}
induces a K-parameter convolution semigroup by u, = £ (X;). The converse statement,
that any cone-parameter convolution semigroup appears in this way, is, however, not
true as we show in Section 4.

Let {u,:s€ K} be a K-parameter convolution semigroup. We say that a K-
parameter Lévy process in law {X; : s € K} is associated with {u,:se K} if u, = £(Xj)
for all se K. We say that {u, :s€e€ K} is generative if there is a K-parameter Lévy
process in law associated with it; otherwise {u, :se€ K} is non-generative.

If {u,:s5€ K} is generative and {X;:s€ K} is a K-parameter Lévy process in

law associated with it, then for any K-increasing sequence {s',...,s"} the distribution
of (X,i,...,Xx)" is uniquely determined by {u, :se K}. This fact is readily seen
from (i)—(iii) of [Definition 3.1. But, generally the distribution of the entire process

{X;:s5€ K} is not uniquely determined; see for example Remark 3.11. This was
essentially also recognized by Barndorff-Nielsen, Pedersen and Sato [2]. We say that
{u,: s € K} 1is unique-generative if it is generative and any two K-parameter Lévy
processes in law {X!:se K} and {X?:se K} associated with it satisfy {X!:se K}
4 {X?:seK}. If {u,:seK} is generative but not unique-generative we say that it is
multiple-generative.

Let (RY)X be the set of mappings w = (w(s)),.x from K into R? and let Z(R?)*
be the o-algebra generated by the coordinate mappings & (w) = w(s), se K. If
{X;:s5€ K} is a K-parameter Lévy process in law, then it induces a unique probability
measure Q on ((R)™,#(R)X) such that {X,:se K} is identical in law with
{& :5e€ K} under Q. We call Q the distribution (or law) of {X;:se K} and denote
0=%{X;:5€K}). For a K-parameter convolution semigroup {u,:se K} denote
the set of distributions of K-parameter Lévy processes in law associated with it by
L({y,:seK}). Then, {u,:se K} is generative (resp. multiple-generative, unique-
generative, non-generative) if and only if L({y, :se€ K}) is nonempty (resp. has more
than one element, is a singleton, is empty).

Let us give a method of constructing K-parameter Lévy processes in law.

PROPOSITION 3.9. Let {u, :se K} be a K-parameter convolution semigroup on R°.

(i) Let n>2. For each j=1,...,n let {X/:se K} be a K-parameter Lévy
process (resp. Lévy process in law) associated with {u,:se€ K}. Let U; be non-
negative random variables such that 1= U, + ---+ U, almost surely. Suppose that
{(X!:seK},....{X":seK} and (U,...,U,)" are independent. Define {X;:seK}
by X; = Xg,ls +-+ X for se K. Then {X;:seK} is a K-parameter Lévy process
(resp. Lévy process in law) associated with {u,:se K}.

(i) Let {u,:se€ K} be a multiple-generative. Then L({u,:se K}) is a convex set
of probability measures.

Proor. (i) First assume that Uj,..., U, are nonrandom. Then {X;} is a K-
parameter Lévy process in law. Moreover, for s € K we have

ZL(X;) = g(Xsl)Ul ook g(XYn>Un ZNSUI *"'*ﬂsU” .

That is, {X,} is associated with {u,}.
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If U,,...,U, are random we hence have that {X;} is a K-parameter Lévy process
in law associated with {x,} conditional on (Uj,..., U,). It is easily seen that the same
holds in the unconditional distribution.

If the paths of {X/} are K-cadlag almost surely, then the same holds for {X;}.
Thus, the property of being a K-parameter Lévy process is inherited from {X/} to {X;}.

(i) Let Q°, Q' e L({u,:s€K}) and pe[0,1]. Let {X?:se K} and {X!:5e K}
be K-parameter Lévy processes in law with Q/ = Z({X/:se K}) for j=0,1, and
U be a random variable such that {X?:s5e K}, {X!:s5e K} and U are independent
and p=P(U=1)=1-P(U =0). Define X, = X, +X(11—U)s for se K. Then from
(1) it follows that {X;:se K} is a K-parameter Lévy process in law associated with
{p,:seK}. Let Q= 2({X,:s€eK}). For n>1, s',....s"eK and B,...,B,
€ A(R?), we have

Q(fgl EBl,...,fsn EBn) :P(Xs,l EBl,...,A/;n GBn)

=pP(XYeBy,....,XSeB,)+(1-p)P(X}eB,..., X\ eB,),

s

that is, pQ°+ (1 — p)Q' = Qe L({u, : s€ K}), as desired. O

REMARK 3.10. It is an interesting problem to characterize the extremal points of
the convex set L({x, :s€ K}). At present we do not have any results in this direction.

REMARK 3.11. In general the finite-dimensional marginals of a K-parameter Lévy
process in law are not infinitely divisible. To illustrate, let {z, : seRi} be the con-
volution semigroup on R given by u, = N(0,s51 +s;) for s= (s1,5) € R?. For
j=1,2,3, let {V/ :t >0} be independent standard Wiener processes on R. Define
{(X":5eR3} by X0 = VI+ V2, and {X]:s5¢€ R} by X/ = Vo, It is readily seen
that {X?:seR3} and {X!:se R} are associated with {y :se R>}. Since these
two RZ-parameter Lévy processes are not identical in law {x, :se R7} is multiple-
generative. Let X, = X{ + X/|_,, where U, independent of ({X{:seR}} {X/:s
e R?}), is a random variable with 0 < p=P(U=1)=1- P(U =0) < 1. By Propo-
sition 3.9 (i) {X, : s € K} is an R -parameter Lévy process associated with {z, : s € R3}.
The distribution x of (X,1,X,.)" is not infinitely divisible, where e' = (1,0)" and
e2=(0,1)".

The proof is as follows. For any Be #(R*), u(B)= pN(0, diag(1,1))(B)
+ (1 —p)p(B), where p is a degenerate Gaussian concentrated on the line L,
= {(x1,x2)" € R*:x; = x»}. Suppose that x is infinitely divisible. Then the projection
o of u onto the line L, = {(xl,xz)T eR?: x| = —x;} has to be infinitely divisible by
Proposition 11.10 of [15]. But ¢ is a mixture of a Gaussian distribution and a point
mass at the origin, which is not infinitely divisible by Remark 26.3 of [15].

Another way of constructing cone-parameter Lévy processes is by subordination, as
we discuss in the following. Let K; be a cone in RM and K, be a cone in R,

If {Z,:se K} is a K;-parameter Lévy process (resp. Lévy process in law) on R
such that Z; € K, almost surely for each s € K;, then we call it a K>-valued K;-parameter
Lévy process (resp. Lévy process in law). If {Z;:se K} is a Kj-parameter Lévy
process on R™? then it is a K>-valued K;-parameter Lévy process if and only if, almost
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surely, Z; is (Kj, K>)-increasing as a function of s. There is no analogous charac-
terization of the sample paths of a Kj,-valued K-parameter Lévy process in law.

In order to define subordination we have to impose the regularity condition that the
processes involved (the subordinator and the subordinand) are measurable processes.
But this is essentially no restriction since any K-parameter Lévy process in law has a
measurable modification by Remark 3.2 (ii). Thus, we introduce subordination of a
measurable K,-parameter Lévy process in law by a measurable Kj-valued Ki-parameter
Lévy process in law. This is an extension of the multivariate subordination introduced

in [2].

THEOREM 3.12. Let {Z;:s€ K} be a measurable K)-valued K,-parameter Lévy
process in law and {X,:ue€ Ky} a measurable Kj-parameter Lévy process in law on
RY. Suppose that they are independent. Define Y, = Xz, where Z] = Z1,(Z;). Then
{Ys:s€ Ky} is a measurable K-parameter Lévy process in law on R,

If in addition {Z; : s € K} is a measurable Ky-valued K)-parameter Lévy process on
K> and {X, : ue Ky} a measurable Ky-parameter Lévy process on R?, then {Y;:se K}
is a measurable Ki-parameter Lévy process on RY.

The processes {X, :ue K>}, {Z;:s€ K} and {Y,:s€ K;} are subordinand, sub-
ordinator and subordinated, respectively.

PROOF OF THE THEOREM. Since {Y;:s€ K|} appears by composition of two mea-
surable mappings, it is itself measurable. The other properties defining a cone-
parameter Lévy process in law are essentially verified as in the first part of the proof of
Theorem 3.3 of [2].

Assume that {Z;:seK;} is a Kj-valued Kj-parameter Lévy process and
{X, :ue Ky} a Ky-parameter Lévy process on RY. Then, by (Ki, K>)-increasingness of
{Z;:5e Ky}, {Ys:s5€ K} is Kj-cadlag almost surely and is hence a measurable K;-
parameter Lévy process on RY. O]

Related to subordination of cone-parameter Lévy processes in law is the notion of
subordination of cone-parameter convolution semigroups. The latter is treated in [14].
More precisely, since cone-parameter Lévy processes in law are associated with cone-
parameter convolution semigroups, the distribution Z(Y;), s € K, of the subordinated
process {Y,} can be considered as a special case of subordination of cone-parameter
convolution semigroups. But, since there are non-generative convolution semigroups,
subordination of some convolution semigroups does not appear in this way.

4. Non-generativeness of the canonical S -parameter convolution semigroup.

We say that a K-parameter convolution semigroup {u,:se€ K} is trivial if g, is
trivial for all se€ K. Our main result in this section reads as follows.

TueoreM 4.1. Let K =S, with d >2. Let {u,:seK} be a nontrivial K-
parameter convolution semigroup on R such that j|x|2,us(dx) < o and the covariance
matrix vy of u, satisfies vy <gs for all se K. Then {u} is non-generative. In par-
ticular, the canonical S -parameter convolution semigroup is non-generative.
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For the proof of the main Theorem we need a result of independent interest.
Recall that a subset L of R? is an additive subgroup if x — y € L whenever x and y are
in L. For instance, a linear subspace is an additive subgroup. As another example
note that @ is an additive subgroup of R; in particular we see that additive subgroups
need not be closed. The following result shows that when K has a strong basis any
convolution semigroup is generative, and it gives a characterization of the unique-
generative convolution semigroups.

THEOREM 4.2. Let K have a strong basis {e',...,eN} and let {u,:se K} be a K-
parameter convolution semigroup on R Let Y, = Vsl1 + et V;fvv for s=sie! 4+ ---
+ sNe_N e K, where {V{/ :t >0}, j=1,...,N, are independent Lévy processes satisfying
LV))=pes for j=1,...,N.

(i) The semigroup {u} is generative. In particular, {Ys : s € K} is a K-parameter
Lévy process associated with {u,}.
(i) The following three statements (a)—(c) are equivalent:
(@) {u,} is unique-generative.
(b) Any K-parameter Lévy process in law {X;:se K} associated with
{U, : s € K} satisfies {X;:s€ K} 4 {Y;:5e K}.
(c) For any K-parameter Lévy process in law {X;:se K} associated with
{u,:se K} and any s=sie' + - +syeV e K we have Xy = X o + -
+ Xsyen almost surely.

(iif) For j=1,...,N let L; be an additive subgroup of RY such that Lie ,%‘(Rd).
Assume that for all i# j we have L;,NL;={0}. Let p,,(L;))=1 for t>0 and
j=1,....N. Then {u} is unique-generative.

REMARK 4.3. From (ii) it follows that if {u,:se K} is unique-

generative and {X|:se K} is a K-parameter Lévy process in law associated with {u,},
then the N processes {X,1 :1>0},...,{X,~:¢>0} are independent.

ProOF OF THEOREM 4.2. (i) It is easily verified that {Y;} is a K-parameter Lévy
process in law. To see that it is associated with {u}, note that for s=sie! +---
+ syve we have L(Y,) = L(V) s« L(VN) =l %+ % ¥ = py by Remark 3.7.

(i) It follows directly from (i) that (a) and (b) are equivalent. Assume that {x,}
is unique-generative. Let {X;} be a K-parameter Lévy process in law associated with

{u,} and let s =sje' +---+sye¥ e K. Then, from (b),
P(Xslel+---+sNeN = Xs1e1 +eoet XS‘N6’N> - P( Ysle'+-~-+sNeN = Ysle1 +- YS'N6N>

and since this probability is trivially 1, we get (c).

Conversely, assume that (c) holds. Let {X,} be a K-parameter Lévy process in law
associated with {x;}. Let n>1 and 0 =59 <s; <--- <5, Define random vectors
Zjjfori=1,...,N, j=0,...,n by

Zi,j = Xs,,el+~~+sne"’1+s,-e" .

Thus, Z;o=Z; 1, for i>2 and Z;o=0. It follows from (i) of Definition 3.1 that
Zij—Zjj1 with i=1,....N and j=1,...,n are independent. Since
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Zij= X+ + Xy it + Xgei almost surely

by (c), we see that Xy, — X . with i=1,...,N and j=1,...,n are independent.
Since this holds for arbitrary n>1 and 0<s <--- <s,, {X, :2>0},...,{Xpen:
t > 0} are independent Lévy processes in law with ¥ (X,,) = yu,; for all j. Choosing
their modifications which are Lévy processes we now see that (b) holds.

(i) We use induction in N. In the case N =1 the theorem is trivially true.
Assume that the theorem holds for N — 1 in place of N. Let {X;:s5€ K} be a K-
parameter Lévy process in law associated with {x,}. By (ii) it is enough to verify
condition (c). Consider the (N — 1)-dimensional cones K; and K, generated by
{e?,...,e"N} and by {e!,e’,... ,e"}, respectively. Then, by the induction hypothesis,
both {x, :s€ K} and {u, : s € K»} are unique-generative. The restrictions { X : s € K}
and {X,:seK,} are associated with {x, :s€e€ K} and {y, :s€ K>}, respectively. Let
s=sie! +---+sye’ e K and define s' =5 —sie! e K; and s> =5 — se? € K>. Using
condition (c) for the two restrictions, we decompose X; as

(41) Xy = Xvs1 + <X9 - Xsl) = stez + -+ XvNeN + (XV - Xs1>a

(4.2) Xi=Xp+ (X — Xp) & Xy + Xpoo + -+ Xypon + (X5 — Xg2).

By equating [4.1) and [4.2] it follows that (X; — X;1) — X; o1 = (Xs — Xg2) — X,,.». The
left-hand side is concentrated on L; and the right-hand side on L,. Hence they are zero
almost surely. Therefore, X; — X1 = X 1 almost surely. Inserting this in we get
the almost surely identity in (c¢) for {X;:se K}. ]

ExAMPLE 4.4. In the case N =2 the additive subgroups L; = Q“ and L, = (cQ)d
with ¢ € R\ Q satisfy the condition L; N L, = {0}. We can make examples of (iii) with

these L; and L,, using compound Poisson convolution semigroups with Lévy measures
restricted to Q7 or (cQ)“.

We can now prove the main Theorem.

PrROOF OF THEOREM 4.1. We may and do assume that g, has zero mean for all s.
The covariance matrix satisfies vy, = v + v and v, = toy.

Step 1. Proof in the case d = 2. Suppose there exists a K-parameter Lévy process
in law {X,:se K} on R? associated with {x}. Let

(a5 (G V) (G Y)

v2 2 ) v2 1) V2 2

Let Ko = {sie' + s¢? : 51,5 > 0} be the least cone containing {e',e?}. Since e! and e?
have rank one, there are 1, € [0, 1] such that v, = fie! and v, = e?. This is easily
seen using diagonalization by orthogonal matrices. It follows that for any ¢ >0, u,.
and . are concentrated on L; and L,, respectively, where L, = {(a,v2a) : a € R} and
Ly = {(v2a,a) :ae R}. Hence, by (iii), the restriction {u, :se Koy} is
unique-generative. Since {X;:se Ky} is a Ko-parameter Lévy process in law asso-
ciated with {y, : s € Ky}, it follows from Remark 4.3 that X, and X, are independent.
Let (Xs)j denote the jth coordinate of X;. Since v,s_,a <ge’ —e! = diag(1,0) and
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since  X,s — X, 4 X,;_ .1, we have (X,s—X,),=0 almost surely. Similarly,
(X5 — X,2); = 0 almost surely. Now, using X,s = X,; + (X5 — X,,) for j = 1,2, we get
(Xp3); = (X,2); and (X,3), = (X,1), almost surely. Hence (X,:), and (X,), are in-
dependent. It follows that v,s is diagonal, say, v,s = diag(a;,a;) with aj,a, > 0. We
have v,:_,1 = diag(¢,0) with >0 since v,_,1 <ge®—e!. Now, looking at non-
diagonal entries of v,1 =v,5 — v,5_,1 and v, = fje', we conclude that ¢#; =0. Thus
v, =0. Hence v,5 =v,5_,1 <ge> —e!, which shows that a =0. The same kind of
argument gives @; =0 and v, =v,s =0. It follows that u, = p,» = p,s =3dy. Since
the system {e!,e? e’} is linearly independent, it is a weak basis of K. Hence, by
Remark 3.7 u,=0Jy for all se K, contradicting the assumption of nontriviality.
Therefore, the associated Lévy process in law does not exist.

Step 2. Proof in the case d > 2. Suppose that we can find a K-parameter Lévy
process in law {X, : se K} on R associated with {yx, : s€ K}. Since {x,} is nontrivial,
there is s° € K such that vy # 0. Let p =rank(s’). Then p>1. Using diagonal-
ization, we can decompose s° as s® =s! + .- +s”, where, for each j>1, s/ € K and
rank(s/) = 1. Since vy = vy + -+ + vy, we have vy #0 for some j> 1. Thus we
may and do assume that rank(s°) =1 and vy # 0. There is a d x d orthogonal
matrix r such that rs°7’ = diag(a,0,...,0) with a >0, where r’ is the transpose of r.
Define

Koy={s= (sjk);ilk:] e K :sp =0 except for j ke {l,2}},

Ky = {r'sr:se Ky}
Then K; is a cone and s° € K.

Notice that cov(rX;) = rvg’ for s € K, since cov(X;) =v,. If s € K, then rog’ <g
rsr’ € Ky and hence rvgr’ € Ky. Therefore, if s € K;, then (rXS)j = 0 almost surely for
j#1,2

For u e S5 let Tou € K be the natural extension of u and let Tu = r'(Tou)r. Then
T is an isomorphism from S; to K. Define X° = ((rXrp,),, (rXp,),)" for ueS;.
Then {X7,:ueS,} is an S -parameter Lévy process in law on RY, and such is
{rXr, :ueSy}. Tt follows that {X°:u e S5} is an S5 -parameter Lévy process in law
on R*. Let u = 2(X°). Then {u’:ue8;} is an S, -parameter convolution semi-
group on R? and cov(x) equals the restriction of rvp,r’ to the first 2 x 2 block. Since
rorr’ <g r(Tu)r’ = Tou € Ko, we see that cov(u0) <s;u. We have cov(ugo) # 0, where
u® is chosen so that Tu’ =s°. But this is impossible in view of Step 1. Hence,
{X;:s€e K} does not exist. O

The main shows that there does not exist a Brownian motion with
parameter in §;. We can refine this by showing that there is no Brownian motion with
parameter in the set S, of positive-definite symmetric d x d matrices.

PROPOSITION 4.5. Let d > 2. There is no family {X;:se S, "} of random vari-
ables on R? satisfying the following two conditions (i)-(ii).
@) Ifs',....s"eSIT with n>2 and s/ —s/~"' e STT for j=2,....n, then Xy
— Xg,..., X — X1 are independent.
(i) 1f s*,s' e ST with s> —s' € S, then L(Xp — X)) = Ny(0,5> —sb).
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PrROOF. Assume that {X;:se S "} satisfies (i)—(ii). We show that there exists an
St -parameter Lévy process in law {X,:se S} associated with the canonical S -
parameter convolution semigroup, whereby we get a contradiction by [Theorem 4.1l.

Let {&};—, be a sequence of positive numbers strictly decreasing to 0 and I denote
the d x d identity matrix. Let seS;. By (i), L(Xsier — Xster) = Na(0, (ex — &)1)
for k < 1. Hence X, :=limy_ ., Xste1 €Xists In probability.

Let s',s*eS; with s' <g:s*. Then L(Xp. o — Xoig,1) — P(Xpo — X)) as
k — o0 by construction of X and Xy, and L(Xp,.; — Xoig, 1) = Na(0,5* — s
+ (Sk — Sk_H)I) — ]Va((O,S2 — Sl) by (ll) That iS, g(i}z — stl) = Nd(O,s2 — Sl). In
particular Z(X,) = Ny(0,s) and the family {X;:se S} satisfies (ii) and
Lemma 3.8 (v)'. Let {s/},_; , be S;-increasing. Since X1y, 1~ Xoiyor, J
=1,...,n—1, are independent by (i) it follows by letting k — oo that X — X/,
j=1,...,n—1, are independent. Thus {X,:se S} satisfies Definition 3.1 (i). By
[Cemma 3.8 it follows that {X;:se SJ} is an S -parameter Lévy process in law asso-
ciated with the canonical S -parameter convolution semigroup. ]

5. Generative convolution semigroups.

In this section the main results are concerned with the problem whether a given
cone-parameter is generative. We have already seen that if K has a strong basis then
any K-parameter Lévy process is generative. Next we consider the case where g, is
purely non-Gaussian.

LemMa 5.1. Let {e!,... e} be a weak basis of K and {u,:se K} be a convolu-
tion semigroup such that ug has triplet (0,v,0) for se K. Letv=v, +---+v,n. Then,
for each se K, vy is absolutely continuous with respect to v. Moreover, the family
{¢, : s € K} of densities ¢, of vy with respect to v can be chosen such that

(1) ¢e1(x>+"'+¢e]\’<x> <1 fOV XERd:

(il)  By(x) = s101(x) + - + sydn(x) for s=s1e' + - +sye e K and x e R?,

(iti) " — s implies . (x) — $,(x) for x € R,

(iv) ¢y(x) >0 for se K and x e R".

Proor. Let s =sje! +---+sye” and let Ky = {se K: s1,...,5y € Q}. Note that

el,...,eN eK,. Since vy =5V, +---+syv,x by Remark 3.7 it follows that v, is

absolutely continuous with respect to v. Fix a density ¢SO of vy with respect to v for
s € Ky. Then

(5.1) ga(x)+-+ () =1, $(x) = 5162 (x) +- +sngon(x),  ¢)(x) 20,

each holding for v-almost every x. Let B= {xe R“: (5.1) holds for all s € Ko}. Then
V(R\B) = 0. Define

¢,(x) = ¢(x) for se Ky and x € B,

$o(x) = 5142 (x) + -+ syp2v(x) for se K\Ky and x € B,

¢, (x)=0 for se K and xeRd\B.
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Then, ¢, is a desired density of v, with respect to v; (i) and (ii) are from the definition of
¢, (iii) is from (ii) since s” — s if and only if 57 — s for j=1,...,N; (iv) is from the
definition for s e Ky and by approximation using (iii) for s e K\Kp. ]

Consider the family {¢, :se K} of densities of [Lemma 3.1 and define, for s e K,
(5.2) Dy={(t,x)eR. xR?:0<t<¢/(x)}.

THEOREM 5.2. Let K be an arbitrary cone with a weak basis {e',... eN}. Let
{u, : s€ K} be a K-parameter convolution semigroup on R? such that U, is purely non-
Gaussian for all s, that is, u; has triplet (0,vs,7,). Then {u} is generative.

To construct an associated K-parameter Lévy process in law, let {J(A): A
€ B(R. x R, defined on a probability space (2,7, P), be a Poisson random measure
with intensity measure A(d(t,x)) = dtv(dx), where v=v, +---+v,n. For se K define

(53) X= JD Xl <y (0) (I (d(2,x)) = Ad(2,x))) + JD X1y () (d(2, ) + 7

Then {X;:se K} is a K-parameter Lévy process in law associated with {u}.
If, in addition, [pi(1 A |x])vs(dx) < oo for all s € K, then {X; : s € K} is a K-parameter
Lévy process.

The first integral on the right-hand side of is a stochastic integral only deter-
mined up to null sets. Hence, we may change X;(w) on a null set of w’s while
remains true. Thus, the last statement says that it is possible to choose X;(w) for w € Q
and s € K such that all paths are K-cadlag.

PROOF OF THE THEOREM. We may and do assume y,=0 for all 5. Let D!
=D,N{(t,x):|x| <1}, D? =D,N{(t,x):|x| > 1}, fl(t,x)= x1pi(7,x) and f2(t,x)
= xlp2(t,x). Let Ul = [ X6, x)(J(d(t,x)) — A(d(t,x))) and U2 = [ f2(¢,x)J(d(t,x)).
That is, U/ is the jth term on the right-hand side of for j=1,2. Using
dvs = ¢, dv it follows that

MD2) = w(fx: x| > 1}) < o0,

[P = | i < o

x| <1

Hence, U? exists as Lebesgue-Stieltjes integral with respect to J(d(¢,x)) while U/ exists

S S

as stochastic integral with respect to the compensated measure J(d(z,x)) — A(d(t,x)).
Moreover, it is well-known that for s'.s2 € K and ze RY we have

<M>MW%W=WWWW%W”4—mm%ﬁmmmwM»
(5.5) Ee™Ua7Ui? —exp J(ei<27<fffﬁ><f=x>> — 1)Ad(1, x)).

Step 1. Let s',s> € K with s' <gs?. Then, Dy < D, and
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(56 (7= £0(00) =¥y 13) = { X0 () I ) 12009
52 Vgl otherwise.

Therefore, using ¢ — ¢ = ¢ and ve_a(dx) = @ (x)v(dx), we find that

J<ei<z’<ffzfé“<“>> — 1 =iz, (£} = AD(62)) A (1, x)

= JRd XI{|x|£1}(x>(ei<Z7x> —1-1(z, x>>vsz—sl (dx)

Inserting this in (5.4) we find that £ (U} — U)) has triplet (0, 1{y<1}(x)vs_g(dx),0).

N

Similar arguments show that £ (U3 — U3) has triplet (0, 11y (x)ve g (dx),0).

Step 2. Let n>2 and {s/},,; , be K-increasing. Then Df,(,l = Dsjk and
(fih = fo)(t,x) = x1p, o (t,x) for j=12 and k=2,...,n. Hence, since the

sk sh—1 ) .

sets DL\D!,...,DL\D., \,D:\D?,... D;\D?,_, are disjoint, U}, — U/ ,, j=1,2, k
= 2,...,n, are independent; consequently also X« — X1 = (U} — Ul)) + (U% — U3),
k=2,...,n, are independent. Moreover, by Step 1, L (Xu — Xg1) = fk_gi-1.

Step 3. Let s”,5 € K with 5" — 5. By (iii) we have ¢ (x) — ¢(x) for

all xe R?. Hence, 1p,(t,x) — 1p (t,x) for J-a.e. (t,x). Moreover, by [Lemma 5.1 (i),
(i), (iv) it follows that

(5.7) 0<¢(x)<|ri|+--+]|ry] for r=rie' + - - +rye" eK.
Decompose s" and s as s" =sfe! +---+shel and s=sie! +--- +sye”. Since
s —s; for all j=1,...,N, (5.7) shows that there exists a constant ¢ >0 such that

1p,(t,x), 1p,,(t,x) < 1y 4(t). Since

i{z — X . 1
|el<-)(f5£1 fHix)y 1 —1<Z,( S}q —fsl)(l‘,x)>| < §|<Z,( S}1 —fsl)(l‘,x)>|2

1 1
< 51210 = SO < S 12 g < (0 1o,.q (),

| ¥ =R 1] <2 1yjsry () 10, (1),
it follows from (5.4)—(5.5) that L(UJ, — U/) — &, for j=1,2.

STep 4. Note that by Step 2 {X;:se K} satisfies (i)—(ii) of Definition 3.1. It
is immediate that Xy =0 almost surely. Since X; = U} + U? it follows from Step 3
that {X; : s € K} is continuous in probability. Thus, we have shown that {X|:se K} is
a K-parameter Lévy process in law. Moreover, it is associated with {u, : s € K} since
we have Z(X;) = p, for se K by Step 2.

STEP 5. Now assume in addition that [ps(1A|x])vs(dx) < co for all 5. Let
(T1, Y1),(Ts, Y2),..., be a random sequence such that J(d(¢,x)) = >, r,. v, (d(t,x))
almost surely. Then, using we have that

(5.8) X, = Z Y, — J x¢ (x)v(dx) almost surely.
() ¥ <1

m:Ty, < ¢y
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where 37, 7 _, v,y | ¥Ym| < oo almost surely. We stress that X, is only determined
up to null sets by (5.8). Let us define X,(w) such that all paths are K-cadlag.
Let pe N and define u” = p(e! +---+e")e K. Choose a null set N € # such that
Do T () <dp (Yo(w)) Ym(®) 1is absolutely convergent for all pe N and we N°. Note
that if s € K then there is some p € N such that s <xu”. Hence, since ¢ (x) < ¢, (x)
by Lemma 5.1 (ii) and (iv), the series > ., 7 () <y (1, (w)) Ym(®) is absolutely convergent

m

for all se K and all w e N¢. For se K let

Xg(a)) _ {Zme(w)gqﬁ‘(Ym(w)) Ym(w) — j|x|§1 X¢S(x>v<dx) lf w € ]VC
0 if weN.

Note that s' <y s? implies ¢, < @». Using this it follows that all paths of {X; :se K}
are K-cadlag. In fact, the K-left limits can be calculated as follows. Let {s"} in K\{s}
be K-increasing with s” — s. Then

D T LM iy (x)v(dx)

m:Ty, <¢en(Y,,) for some n

pointwise on N¢. Thus, {X;:se K} is a K-parameter Lévy process. ]
In the next result we specialize to the case d = 1.

THEOREM 5.3. Let K be an arbitrary cone. Let {u, :se€ K} be a K-parameter
convolution semigroup on R. Then {u,} is generative.

PrOOF. Let (4y,vs,7,) be the triplet of i, Here A is a nonnegative number. By
the previous theorem there exists a K-parameter Lévy process in law {X/!} associated
with the convolution semigroup {/,}, where f, is the distribution with triplet (0, vy, y,).
Let {V;: ¢ >0} be a standard Wiener process, independent of {X! : s K}. Ifs' <gs?,
then Ay < Ap. Hence, {X?:se K} defined by X2 =V, is a K-parameter Lévy pro-
cess in law such that #(X?) has triplet (4;,0,0). Hence, {X;} defined by X, = X! + X?
is a K-parameter Lévy process in law associated with {u,}. ]

The following fact on S -parameter convolution semigroups is a consequence of

Theorem 3.2 combined with Theorem 4.1.

PROPOSITION 5.4. Let K =S, with d>2. Let {u,:s€K} be a K-parameter
convolution semigroup on RY such that j|x|2,us(dx) < o0 and vy <g s for all s € K, where
vg is the covariance matrix of u,. Then pg is Gaussian, that is, the Lévy measure vs of
Is zero.

PrROOF. Let (45, vs,7,) be the triplet of x,. Decompose p, as p, = p) * p!', where p!
and x4 are infinitely divisible with triplets (0, vy, ) and (4,,0,0), respectively. Then ]
and x! have finite second moments and the covariance matrices v, and v! of ul,u!
satisfy vy = v, + v”. Hence, v/,v <gs. Since {u'} is a K-parameter convolution semi-
group there is a K-parameter Lévy process associated with it by [Theorem 5.2 But
says that this is impossible if {x/} is nontrivial. It follows that v, = 0.

That is, u, is Gaussian. (]
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REMARK 5.5. Let d > 1 and consider the problem of constructing a family of
probability measures {x, : s € S;} on R which is closed under convolution and satisfies
that s is the covariance matrix of x,. In the case d =1 let S = R,. Then the latter
condition is that s € R, is the variance of x,. In this case there are many such families.
In fact, any infinitely divisible distribution on R with unit variance corresponds to a
family with the desired properties.

Let d >2. It is remarkable that, up to a change of drift, the canonical S -
parameter convolution semigroup is the only family with the desired properties. Pre-
cisely, if {u, :s€ S} satisfies the conditions stated above, then u, = u¥ * J,,,, where m;
is the mean of y, and {u¥ :5€ S} is the canonical S -parameter convolution semi-
group. This follows since {u *J_,, :s€SJ} is a convolution semigroup on RY
satisfying the assumptions of the preceding proposition.

Let K have a strong basis. As stated in [Theorem 4.2, any convolution semigroup
is generative. We consider the following question: When is a K-parameter convolution
semigroup unique-generative?

THEOREM 5.6. Let N > 2 and K have a strong basis {e!,... eN}. Let {u,:se K}
be a K-parameter convolution semigroup on R® with triplet (As, Vs, 7,)-
(i) Assume that for some i and k with i #k we have either (a) or (b), where
(@) Au(RY) N A (RY) £ {0};
(b) vei and v, are not mutually singular.
Then {u,:se K} is multiple-generative.
(i) Assume that {u} is Gaussian, that is, vy =0 for all se K. Then {u} is
unique-generative if and only if A,i(RY)N A (RY) = {0} for all i # ;.
(i) If {u} is unique-generative, then any K-parameter Lévy process in law
{X;:s€ K} associated with {u} has a K-parameter Lévy process modification.

REMARK 5.7. We do not know whether every K-parameter Lévy process in law has
a K-parameter Lévy process modification.

PrOOF OF THEOREM 5.6. (i) Let us for simplicity assume that either (a) or (b) holds
with i =1 and k =2. Then there are three generating triplets (4/,v/,y/), j=0,1,2,
such that 4% or v° is non-zero and such that (4., v.,7,;) = (A% + A7, v0 + v/ 90 4 9/)
for j=1,2. Let {V,j :1>0}, j=0,...,N, be independent Lévy processes on R such
that #(V}/) has triplet (47,v/,y7) for j =0,1,2 and (V) has triplet (4., V., 7,,) for
j=3,...,N. Define {X;:s5eK} by X;=V2 +V!+---+V) for s=s1e! +-
+ sye¥ e K. Then {X,} is a K-parameter Lévy process and it is associated with {u,}.
Since {¥’} is a non-trivial Lévy process, {X,.:} and {X,.} are not independent. Thus,
by Mheorem 4.2 (ii) {u, : s€ K} is multiple-generative.

(ii) If for some i # j we have A,(R?) N A,;(R?) # {0} then by (i) {x,} is multiple-
generative. Conversely assume that A.(RY)NA4,;(R?) = {0} for all i# j. Let L
= Aej(Rd) for j=1,...,N. Let u? =pu;+J_,. Then ﬂfo,(Lj) =1 for every t>0
and j. By the convolution semigroup {u*} is unique-generative.

(i) Let {x} be unique-generative. Let {X;} be a K-parameter Lévy process
in law associated with {u}. Since {X,,:t>0} is a Lévy process in law it has a
Lévy process modification {U[] :t>0}. For simplicity let {U/ :t>0} be chosen
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such that all paths are cadlag. For s=se! +---+sye¥ e K define X/ as X/
= U} +---4+ UYN. Then {X] :se K} is a modification of {X; : s € K} by (c) of Theorem|
42. We claim that all paths of {X]:se K} are K-cadlag. Indeed, K-right con-
tinuity follows from right continuity of U[j . If 5" =stel +--- +s%e” is K-increasing,
s"e K\{s"} and s" — s =sVe! + ...+ s%e”, then, by Lemma 2.4, there exists a

unique nonempty subset a of {1,...,N} such that s" T,s°. Therefore, lim, .., X/,
=Y sa U;O + 3 ealim, o, Usfﬁ exists. [l

ExaMPLE 5.8. Let K =S85 and p, = N»(0,s5). Note that S; has a weak basis

{e!,e?,e*}, where
1 0 0 0 1 1
1 2 _ 3 _
e‘(o 0)’ e‘(o 1)’ e‘(l 1)‘

Let Ko = {sie' + s0e®> + 53¢ : 51,52,53 > 0} be the least cone containing {e',e?, e’}
Then, from it follows that {u, : s € Ko} is a unique-generative Kj-parameter
convolution semigroup. Note also that, by [Theorem 4.2 (ii), any Ko-parameter Lévy
process in law associated with {u, :se Ky} is identical in law with

{(I/SII’O>T + (0, VS22)T + (V3 V3)T s =s1e! +se? + 5307 € Ko},

8§37 7 83

where {V,! : 1 >0}, {V?:1>0} and {V? : 1 > 0} are independent standard Wiener pro-
cesses on R. In particular, it follows that any Kj-parameter Lévy process in law asso-
ciated with {x, :se Ky} has a continuous modification.
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