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Socle deformations of selfinjective algebras of tubular type

By Jerzy BiaLkowskr and Andrzej SKOWRONSKI

(Received Jan. 22, 2003)

Abstract. We classify all selfinjective finite dimensional algebras over an algebrai-
cally closed field which are socle equivalent to the tame selfinjective algebras which admit
simply connected Galois coverings and whose Auslander-Reiten quiver consists only of
stable tubes.

1. Introduction.

Throughout the paper K will denote a fixed algebraically closed field. By an
algebra we mean a finite dimensional K-algebra with an identity, which we shall assume
(without loss of generality) to be basic and connected. For an algebra A, we denote by
mod A the category of finite dimensional right 4-modules and by D the standard duality
Homg(—, K) on mod 4. An algebra A is called selfinjective if A =~ D(A) in mod A, that
is, the projective A-modules are injective.

We are concerned with the problem of classification of all selfinjective algebras
whose stable Auslander-Reiten quiver consists only of stable tubes. A large class of
such algebras is provided by the selfinjective algebras of tubular type. By [3], a self-
injective algebra of tubular type is a tame selfinjective having a simply connected Galois
covering and the stable Auslander-Reiten quiver consisting only of stable tubes (see Section
2 for more details). We would like to mention that there are also wild selfinjective algebras
whose stable Auslander-Reiten quiver consists only of stable tubes (see [I], [9]).

If 4 is a selfinjective algebra, then the left and the right socle of A coincide, and
we denote them by socA. Two selfinjective algebras A4 and A are said to be socle
equivalent if the factor algebras A/socA and A/socA are isomorphic. Frequently,
selfinjective algebras are socle equivalent to (socle deformations of) selfinjective algebras
having simply connected Galois coverings, and then we may reduce the study of such
algebras and their representations to that for the corresponding algebras of finite global
dimension. This is the case for all selfinjective algebras of finite representation type (see
[6], [15], [16]). We also note that if a selfinjective algebra A is socle equivalent to a
selfinjective algebra A of tubular type then A is tame and the stable Auslander-Reiten
quiver of A consists only of stable tubes.

The main aim of this paper is to prove the following theorem.

THEOREM 1.1. Let A be a basic connected selfinjective K-algebra. Then A is socle
equivalent to a selfinjective algebra of tubular type if and only if exactly one of the
following cases holds:
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A is of tubular type,
K is of characteristic 3 and A is
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isomorphic to one of the bound quiver algebras
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K is of characteristic 2 and A is isomorphic to one of the bound quiver algebras

1O==0L I AQEIN
/ N L
=0, o y =0, oo’ =0
2—V0+°< M = ay 5ﬂ(5—ya (BOYB=0  o2=Py, o =08, Sf=0
ay =B, po=ou yofy =0, afye=0 6 =0, 6a=0, oac=0
A3(4) afy = aBofy Wy =0, BB=0, 8=y
L€ K\{O, 1} /14 A5
o 0 . .
RN 2
o | pre—— o . .
oyoo =0, Pyéy=0 p p
ofo =0, paf =0 op=oaf, cu=0, do=y5 fo=pad, oc=0 od=oay
Po = Byou afy =0, o =p5, ofy=0 ypu=0, o> =3 Pp5=0
off = yoyo pop =0, 6p6=0 pop =0, 56=0
' ANy
5“3’ P y . 0 ™ .
o e E & oo
=5 ‘\. T
wf+70+Ele=0 Pu=0, nu=0, aff=yo
oy=0, &= O oaffo. = ol =un, OJo=~,y+dodo
Paf =0, po= ﬂ/(Soc 0000 =0, y&yE=0
Ay Ao

The algebras A4, and 4, have been already discovered in [18], [19]. We refer to [3],

[4] and for a description of selfinjective algebras of tubular type.

A prominent role

in the proof of the above theorem is also played by results one socle deformations of
selfinjective algebras established in [22] and [23].
For basic background on the representation theory of algebras we refer to [2], [17],

and on selfinjective algebras to [8], [24].

2. Selfinjective algebras of tubular type.

An important class of selfinjective algebras is formed by the algebras of the form
B/G where B is the repetitive algebra (locally finite dimensional, without identity)
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meZ
of an algebra B, where B,, = B and Q,, = D(B) for all m € Z, the multiplication in B is
defined by
(amafm)m : (bmygm)m = (ambmaamgm + fmbmfl)m
for a,,, b, € By fin,gm € Om, and G is an admissible group of automorphisms of B.

Let B be an algebra and & = {e;|1 <i <m} a fixed set of primitive orthogonal
idempotents of B with 1z =¢; +---+¢,. Then we have the canonical set &= {ej k|
1 <j<nkeZ} of primitive orthogonal idempotents of B such that e, «B = (e;B), ®
(ejD(B)), for 1< j=n and ke Z. By an automorphism of B we mean a K-algebra
automorphlsm of B which fixes the chosen set & of primitive orthogonal idempotents of
B. 4 group G of automorphisms of B is said to be admissible if the induced action of
G on & is free and has finitely many orbits. Then the orbit algebra B/G is a self-
injective algebra and the G-orbits in & form a canonical set of primitive orthogonal
idempotents of B/G whose sum is the identity of B/G ([10]). Moreover, there are
a Galois covering F: B — B/G and the associated push-down functor F;:mod B —
mod B/G ([5]). We denote by v, the Nakayama automorphism of B such that
va(ejx) = ek for all 1 < j<n, keZ. Then the infinite cyclic group (vz) generated
by vz is admissible and B/(v;) is the trivial extension of B D(B) of B by D(B).
An automorphism ¢ of B is said to be positive (respectively, rigid) when, for each je
{1,...,n}, ke Z, we have ¢(ej ) = ey, for some me {1,...,n}, and r >k (respec-
tively, ¢(ejx) = emr for some me {1,...,n}). We refer to for some results on
the structure of automorphisms of repetitive algebras, and to for results on the
presentations of selfinjective algebras 4 in the form A = B/(¢v) with B an algebra and
¢ a positive automorphism of B.

Following by a tubular algebra we mean a tubular extension (equivalently,
tubular coextension) B of a tame concealed algebra C of tubular type (2,2,2,2),
(3,3,3), (2,4,4), or (2,3,6). Then the rank of the Grothendieck group K((B) of B is
equal to 6, 8, 9, or 10, respectively. By a selfinjective algebra of tubular type we mean
an algebra of the form B/ G, where B is a tubular algebra and G is an admissible group
of automorphisms of B. This is the class of all nondomestic polynomial growth
algebras having simply connected Galois coverings [19]. Moreover, it has been recently
shown [3] that a selfinjective algebra A is of tubular type if and only if A4 is tame, admits
a simply connected Galois covering, and the stable Auslander-Reiten quiver of A
consists only of tubes. We shall exhibit here basic facts on the repetitive algebras of
tubular algebras and selfinjective algebras of tubular type, established in and [19],
needed in our further considerations.

Let B be a tubular algebra of tubular type ng = (1;),p, (K) consisting of positive
integers n;, € P(K), and all but finitely many equal 1. We shall write instead of
(11) ) P(K) the finite sequence consisting of all n, which are larger than 1, and arranged
in nondecreasing order. Then np is one of the types (2,2,2,2), (3,3,3), (2,4,4), or
(2,3,6). It follows from [13, Section 3] that the Auslander-Reiten quiver I of B is of
the form

Iy=\ 7V,
peZ
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where, for each p € Z, .7, is a nonstable P;(K)-family of quasi-tubes (in the sense of [20,
(1.2)]) whose stable part 7" is a Pi(K)-family of stable tubes of tubular type ng,
Z, = \/yeQ[ﬁ’“ 7, @),y = QN (p,p+1), and, for each ye QF |, 7, is a Pi(K)-family of
stable tubes of tubular type ng. Further, there exists s > 3 such that v4(7,) = 7, and
v3(2p) = Zp+s for all pe Z.  In particular, the stable Auslander-Reiten quiver 7 of B
consists of the rational family of P;(K)-families of stable tubes, all of them are of
tubular type np. Let G be an admissible group of automorphisms of B and 4 = B’/ G
the associated selfinjective algebra (of tubular type np). Since G is, by [19, Proposition
2.2], infinite cyclic (hence torsion-free) the push-down functor F; : mod B — mod B/G =
mod 4 associated to the Galois covering F : B — E/ G = A preserves the indecompos-
able modules and Auslander-Reiten sequences [10, Section 3]. Moreover, B is locally
support-finite [13, Section 3], and hence invoking the main result of [7] we conclude that
F, :mod B — mod 4 is dense. As a consequence, the Auslander-Reiten quiver I; of A
is the orbit quiver /;/G, and so is obtained from I by identifying (via F;) 7, with .,
and %, with Z,,, for some r>1 and all pe Z. Thus Iy has the following ‘“clock
structure’:

F,(7;)
| o 1% F;(%-1) F;(%0)
*
F,{(%,l) F)(gvl
F)(%-2) F;(21)

3. Selfinjective algebras with standard stable tubes.

The following known fact gives a characterization of selfinjective algebras of tubular
type whose Auslander-Reiten quiver admits a (generalized) standard stable tube (in the

sense of [17], [21I]).

ProposITION 3.1.  The Auslander-Reiten quiver of a selfinjective algebra A of tubular
type admits a (generalized) standard stable tube if and only if A =~ B/ (Yvy), for a tubular
algebra B and a positive automorphism  of B.

Proor. See [13], [17, Section 5], and [19, Section 3]. O
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The main aim of this section is to prove that this class of selfinjective algebras is
invariant with respect to socle equivalences.

PROPOSITION 3.2. Let A be a selfinjective algebra of the form B/ (Yvy), for a tubular
algebra B and a positive automorphism Y of B, and A be a selfinjective algebra socle
equivalent to A. Then A is isomorphic to an algebra of the form B/ (pvy) for a positive
automorphism ¢ of B. In particular, A is of tubular type.

Proor. It is known [2, (V.5.5)] that if P is an indecomposable projective 4-module
then we have in mod 4 an Auslander-Reiten sequence of the form

0 —rad P — P®rad P/soc P — P/soc P — 0.

Since by our assumption A/socA = A/socA we conclude that the Auslander-Reiten
quivers Iy and I are isomorphic. Further, since 4 = B/ (Yvg) with W a positive
automorphism of B, B is a factor algebra of A4 /soc A, and consequently there is an ideal
I in A such that A/I is isomorphic to B. Without loss of generality we may assume
that 4/ = B. We may choose a complete set {e;, 1 <i < s} of primitive orthogonal
idempotents of A such that 1 =¢; +---+¢; and {e;,1 <i < ¢}, for some # <, is the
subset of {e;,1 <i < s} consisting of all idempotents e; which are not in /. Then
e=e] +---+e is an idempotent of A such that e + [ is the identity of B = A/I, called
a residual identity of B. We note that such an idempotent e is uniquely determined by
I up to an inner automorphism of A, B =~ eAe/ele naturally and 1 —e e . Since I,
and Iy are isomorphic, it follows from the description of the Auslander-Reiten quivers
of selfinjective algebras of tubular type, presented in Section 2, that I; has the following
“clock structure”

where, for each pe{0,...,r—1}, 7,7 is a nonstable Pi(K)-family of quasi-tubes and

X, :vyegp 7, 5+1 =QN(p,p+1), and, for ye 5+1> 7, is a Pi(K)-family of

stable tubes. In fact, since A = B/(Yvz) with y a positive automorphism of B, we have
r > 3 (see [13]). Further, since I4 and I4 are isomorphic, it follows from [13, Section 3]

that there is m € {2,...,r — 1} such that the (indecomposable) projective modules in the

P (K)-families 7,",7",...,7,, are the indecomposable projective A-modules of the

form e;4 with ie {1,...,t}, and Z,, = \/y com 7" consists of all sincere stable tubes of
-+

the Auslander-Reiten quiver Iz of B (see [17, Section 5]). In fact, by [17, (5.2)(2)],
every Pj(K)-family 7, 1s a separating family of stable tubes of I (in the sense of [17,

(3.1)]), and consequently all tubes in 7" are faithful stable tubes of I';. Fix ye Q'

and put 7 = 7. Since B = A/I, then I is the annihilator ann,(7") of 7 in 4, that is,

the intersection of annihilators ann,(M) of all indecomposable modules M in 7.
Denote by J the trace ideal of .7 in A, that is, the two-sided ideal of 4 generated by
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the images of all 4-homomorphisms from modules in 7 to 4. We claim that J < [I.
Take A€ J and a A-homomorphism f: 4 — X with X in . We show that f(1) = 0.
Suppose that f(4) # 0. Since A€ J, there is a A-homomorphism g : N — A such that
N is a direct sum of a finite number of indecomposable modules from 7 and 1 = g(n)
for some ne N. Then fg: N — X is a nonzero morphism which factorizes through the
projective A-module 4,4, and consequently belongs to the infinite radical rad™ (mod A)
of mod 4, because .7 does not contain projective modules. But then fg is a nonzero
morphism from the infinite radical rad™ (mod B) of mod B (see [2, (V.7)]). This con-
tradicts the fact that 7 is a (generalized) standard family of stable tubes of Ip (see
[17, (5.2)]). Therefore, every 1eJ belongs to the intersection of kernels of all A-
homomorphisms f : 4 — M with M € 7, and so J = 1. Since I =ann.7 and J is the
trace ideal of .7 in A, we have also JI = 0, and hence J is a B-submodule of 4. We
shall prove now that J is isomorphic to the injective cogenerator D(B), of mod B. For
each i e {l,...,t}, we have a commutative diagram of monomorphisms

eiA/ei(rad A) = eiB/ei(rad B) — D(Bel)

[—

and hence A contains a B-submodule Q; which is isomorphic to the indecomposable
injective B-module D(Be;). On the other hand, 7 is a faithful family of tubes in
I'p, and hence there is an epimorphism N;” — Q; for some r; > 1 and a direct sum N;
of finitely many indecomposable modules from 7. Hence Q; =< J. Finally, observe
that the largest B-submodule of 4, is a minimal injective cogenerator in mod B.
Therefore, we have J = P, <ic; Qi = D(B)p. Our next aim is to prove the equality
Ie =J. Observe that J = Je < Ie because J is a B-module and J = /. Since socJ =
socD(B), and socle = (socl)e ~ Hom,(eA,socl) is a B-module, we have socle =
socJ. Therefore, it is enough to show that J/socJ = le/socle. Observe also that
I/socl =~ ann s 4(7), le/socle = (I/socl)e = Hom /s 4(e(A/socA),I/socl), and
e(A/socA) =ed/esocA. Take a nonzero homomorphism f :eA/esocA — I/socl in
mod A /soc A. Since A/socA = A/soc A, A= B/(yvy), Y is a positive automorphism
of B and there is a Galois covering of module categories F; : mod B — mod B/ (yvy),
it follows from the structure of mod B described in [13, Section 3] that f factorizes
through a direct sum of modules lying in .7, and consequently its image is contained
in J/socJ. Then le/socle = J/socJ, and so le/socle =J/socl. Hence J=1Ile. In
particular, we have lel = JI = 0. We also note that the ordinary quiver Qp of B has
no oriented cycles, because B is a tubular algebra. Summing up our considerations
above, we have proved that the following conditions are satisfied:

(1) The ordinary quiver Qp of B has no oriented cycles,

(2) Iel =0,

(3) e is an injective cogenerator in mod B.
We note that then 7 is a deforming ideal in the sense of [22, (2.1)]. Applying [23,
Mheorem 4.1] we obtain that A is isomorphic to B/(¢v;), for a positive automorphism ¢
of B. In particular, 4 is a selfinjective algebra of tubular type. ]
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4. Selfinjective algebras without standard stable tubes.

It follows from [Proposition 3.1 and [19, Section 3] that the Auslander-Reiten quiver
of a selfinjective algebra A4 of tubular type has no (generalized) standard stable tubes if
and only if 4 is of the form A = B/(o¢p*), where B is a tubular algebra, o is a rigid
automorphism of B, ¢ is an automorphism of B such that ¢/ = ovy for some / > 2 and
a rigid automorphism ¢ of B, and 1 <k < /. We call such a selfinjective algebra of
tubular type exceptional, and normal otherwise. Following a tubular algebra B is
said to be exceptional if there is an automorphism ¢ of B such that ¢ = ovy for some
d > 2 and a rigid automorphism o of B, and normal otherwise. Consider the following
family of bound quiver algebras (where a dotted line means that the sum of paths indi-
cated by this line is zero if it indicates exactly three parallel paths, the commutativity of
paths if it indicates exactly two parallel paths, and the zero path if it indicates only one

path):
WA NS
N l><
N d

ayp = fo¢ al =y, ol :?/w
= ipoy ol =pn, ol =Ifw
Bi(4) By(4)
J e K\{0,1} J e K\{0,1}
6 7 B 8. T
N NN,
= NS
\}/ \12/ \;
B; By
SN i Vs \
6 : 5 6 :
SN =X e
NN i hN
B6 B7
i 8 8’.
/%\6 ’ ) i .
<R 0
|
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10

\/\/
/\/\
\/\/

BIZ Bl3 Bl4

Then we have the following description of exceptional tubular algebras and their
repetitive algebras.

THEOREM 4.1. Let B be a tubular algebra. Then the following equivalences
hold: -

(i) B is exceptional of tubular type (2,2,2,2) if and only if B is isomorphic to By(A)
or Bz( ), for some Ae K\{0,1}.

(11) B is exceptlonal of tubular type (3,3,3) if and only if B is isomorphic to Bs, B,
B5, B6, B7, or Bg

(111) B is exceptzonal of tubular type (2,4,4) if and only if B is isomorphic to Bo,
By, B, B, or Bs. A

(iv) B is exceptional of tubular type (2,3,6) if and only if B is isomorphic to
Bi4.

Proor. For tubular types (2,2,2,2), (3,3,3) and (2,4,4) it is proved in [3,
(4.1),(5.1),(6.1)], and for tubular type (2,3,6) in [12, (5.3)]. O

In order to describe the exceptional selfinjective algebras of tubular type, consider
the following family of bound quiver algebras:

e OO

oy = foa 2 =yo
ayp = ifof B = oy
yoy = ypo oy =yp
ooy = Jofo po =ou
A1 (4) A>(2)
A€ K\{0,1} 2 e K\{0,1}

o _we~_& o _we~_& L
= e ZF =
of +yo+Ee=0 offi + 90+ Ce=0

pou=0, &=0 Ba=0, e =0 o =py

oy=20 0E=0 yoff =0

As A,y As
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wd = Pe, ey =af
Pooa=0, oye=0, yeya=0

Ao

o . %
/0 N
B
opo = ya

afy =0, BE)’ =0
A

a? = po

afy =0,
5B =0,

A

ayp = pap
ayo + foo =0
yoy = yfo
oay+offic =0
Ay
charK # 2

o
.<—.._.,__.._.
B

e

.
—_—

B
w=yn, of=y0, ol=pfn
fOC:CO', fV:Cﬂ7 no = wa
ol = Apow, ny=lof
Az (A)

Je K\{0,1}

oo =0,

GO

o 0 &
g T
oaff = yo
oy =Ce
&0 =0
Bré=0
A7

po = Epoe
ofo. = 0&yo
o =0, (76&)7y=0

o = By,
ya =0,

p =0,
oo =0,
=00

oo = yo p6 =0,

ay =B
a* =yo
oy =p’
oo+ fo=0

off +y0+Ee=0

on=0, pE=0
ey =0
Az

afé =0
Pod =0
yoff =0
ofio. =0
76=0
g0 =0

JX;

afo = &ao,

Pay = y<y
Efo = &yé
ofp=0, y0=0
(=0, (&)’ =a
An

ypo =0, a? =op

a0c =0, od=oay
Ais
o
T
B
wl=yn, of =yw, ol=pn
éO':COC7 fﬂ:C% Ho = o
ol+pw=0, nf+wy=0
A
char K # 2

/5)3/ ) V3
o

708 =0, Biy; = o142
for ie{1,2,3}, wm=oa, os=om

Ax

695
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ﬁ3HV3 5
A Ve [ l\y 7N p
063 >
LRl N w4 BN 7
B A drood = 0. yufnoo=0  sros =P @iz = o0
7iBi =0, By = wittiv1%io douPye =0, odoufy =0 %0iv1 =0, 7,=0, 041 =0
7:i0%%+1 =0, 010408 =0 yu=nou, 0d=upy oy =0, op; =0, for ie{l,2}
for ie{l,2,3}, au=o4, os=on ofy =0, dgo=0 o3 =0y, 03=0]
A23 A24 A25
1 01
BN ﬂH %2 l l'ﬂl H g
Y1 di|foa Y1 o1 |% Y2
\« / 4! ‘_ﬁz_ (] _wﬁ2_.
52 52
off = yoln, po = (nyd Sittiy1 = 3,04, 0if; =0, ;0 =0 0;410; = 07y;, f;0i =0, jo; =0
pou=0, ou=0, {na=0 w10 = B;0i, oif;y; =0, for %oyt = 0iff, 7B =0, for
nyou =0, pyol =0, alny =0 ie{l,2}, o3 = ie{l,2}, o3 =
Az Ay Apg
* U
73N, -

'u\f. 0ﬂ7 o 5 o n
pu=0, nau=0, do=_¢ pPo=0, nu=0, oy=~C%o
uff =yo, ol =un uf =yo, ol =uy
Ang A3o

THEOREM 4.2. A selfinjective algebra A of tubular type is exceptional if and only if
A is isomorphic to one of the algebras A\(2), A>(A), Ax(A), e K\{0,1}, 4;, 17 <i <19
(if char K #2), or A;, for ie{3,...,16,21,...,30}, listed above.

ProOF. It is a direct consequence of [3, (4.2),(5.2),(6.2)] and [12, (5.4)]. ]

5. Proof of the main result.

We know from [Proposition 3.2 that the class of normal selfinjective algebras of
tubular type is closed under socle equivalences. Hence, in order to prove [Theorem 1.1,
it is sufficient to show that the class of all selfinjective algebras which are socle equiv-
alent to the exceptional selfinjective algebras of tubular type (presented in Section 4)
but nonisomorphic to these algebras coincides with the class of algebras A, 4, A3(4),
Le K\{0,1}, A4, As, Ag, A7, Ag and Ao, for the corresponding characteristic of K.
The proof of this fact will be a combination of several facts established bellow. We
start with some general observations.

Let A be an exceptional selfinjective algebra of tubular type. Then A = KQ/I
where Q is a finite connected Gabriel quiver of 4 and 7 is an admissible ideal in the
path algebra KQ of Q, generated by a finite system of linear combinations (called
relations) u; = Ajui + Apun + -+ + Ay, 1 <1 < m=my, and, for each i € {1,...,m},
Aits Ay - - -, Aig, are elements of K\{0} and w1, up, ..., u; are paths in Q having common
source and common target. Moreover, for the systems of relations generating / chosen
in Section 4, the following facts hold:
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(a) The quiver Q does not contain a subquiver of one of the forms «—= or C-D

(b) If A # Ay1,A13,A25, and i is an element of {1,...,m} with ¢, >2, then
uj+ 1 ¢socA for any je{l,..., t}.

(c) If A= Aj,A13, or Aps, there are elements ie{l,...,m} such that
u;p = u; — up with uy +1 esocA and up + I € soc A.

Further, we have the following lemma.

LemMA 5.1.  Let A be an exceptional selfinjective algebra of tubular type. Then the
canonical epimorphism A — A/soc A induces an isomorphism Aut(A) — Aut(A4/soc A) of
automorphism groups.

Proor. For A different from A;;, A;3, and A4»s, it follows from the above property
(b). A direct checking shows that the algebras A, 4y;/soc A1, A3, and Aj3/soc Aj3
have only trivial automorphisms groups. Finally, the automorphisms groups Aut(4,s)
and Aut(A4ys/soc As) consist of the identity homomorphism and the canonical auto-
morphism of order 2 given by the automorphism of the quiver Q exchanging the arrows
o and op, f; and f,, y; and p,, 1 and J,, o1 and 0. ]

Let A’ be a selfinjective algebra which is socle equivalent to an exceptional self-
injective algebra 4 = KQ/I of tubular type. Observe that then Q is the Gabriel quiver
of A’, and consequently 4’ =~ KQ/I' for an admissible ideal I’ of KQ, generated by
a finite system u,u),...,u, of relations. Without loss of generality, we may assume
that 4’ = KQ/I'. Invoking and the property (a), we conclude that there
is an algebra isomorphism f : A/soc4 — A’/soc A’ induced by a K-linear map f*:
KQ — KQ such that f*(e;) = e; for all primitive idempotents ¢; associated to the vertices
i of Q and f*(a) = a,x+ w, for all arrows o of Q, with a, € K\{0} and w, a linear
combination of paths (with coefficients in K) of length >2 having the same source and
target as . We also note that if w is an element of KQ such that w + I € soc 4, then
wé and nyw e I’ for all arrows & and # of Q. In particular, it is the case for all relations
ui,...,u, generating the ideal I. Therefore, the relations u,u),...,u, generating the
ideal I’ can be obtained from the relations uy,us,...,u, generating the ideal I by:

(1) replacing some relations u; by relations of the form u; — O;v;, @; € K, for any
path v; in Q with 0 # v; + I € soc 4 having the same source and target as the paths u;
occuring in u;;

(2) replacing, for A equal Aj;,A4;3 or Aps, the relations u; = u;; —up with
uj1 + I, up + I € socl, by relations of the forms @;u;; — Opup, for ;1,0 € K,

(3) keeping all the remaining relations u; unchanged;

(4) adding the relations u;¢ and nu;, for all relations u; replaced in (1), and arrows
¢ (respectively, #) having the same target (respectively, source) as the paths u; occuring
in u;;

(5) adding, for 4 equal A1, A3, or A»s, the relations u;¢ and nuy;, for all paths u;
in Q, je{l,2}, occuring in the relations u; = u;; — up replaced in (2), and arrows &
(respectively, #) having the same target (respectively, source) as u;.

Clearly, all algebras A" = KQ/I' for I' obtained from I by applying the procedures
(1), (3), (4) are socle equivalent to 4. We note that the procedure (4) can be replaced
by:
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(4’) adding the relations v, and #v;, for all paths v; in Q with 0 # v; + I € soc 4
used in (1).

We may also use the procedure (4) for some relations u; which have been replaced in
(1), and the procedure (4’) for the remaining i for which the relations u; were replaced
in (1).

We will prove in Lemmas 5.6, 5.14, and B.13 that ©; and @ in (2) have to be
both nonzero. In those lemmas we also prove that any algebra obtained by the pro-
cedures (1)—(5) is isomorphic to some algebra obtained by the procedures (1), (3) and
(4). Finally, we note that many from the relations added in (4) (respectively, in (4'))
and (5) follow from the other relations and hence can be omitted. For example, it is
the case in the lemma below.

In order to simplify notation, we will identify below the elements from KQ with
their residue classes in KQ/I and KQ/I'.

LEMMA 5.2. Let A be a selfinjective algebra which is socle equivalent to As but
nonisomorphic to As. Then char K =3 and A is isomorphic to A.

Proor. It follows from the above remarks that A4 is isomorphic to an algebra A:
given by the quiver of 45 and bound by relations

Byaf =0, yufy=0, o> =0, ypaff=01y’p, o —py= 6"

for some parameters @;,@, € K. Note that we may omit the relations «*f =0 and
yat =0 of type (4'), because o’f = Byaf + 007 =0 and yo’ = yafy + Orya° = 0.

Assume that As and A are isomorphic, and let f : As — Af be an algebra iso-
morphism. Then f is given by

f(o) = ajo+ ara® + azo® + agot,

F(B) = b1+ brof + b3 B, f(y) = 1y + cape + capa?,

for some parameters a;,b;,c; € K\{0}, ;e K, 2 <i <4, bj,c;e K, 2<i<3. Denote

a=ailay, b=>b;'hy, c=cilc. We have the following equalities:

f(o? = By) = aje® + 2a1a20° + (2araz + a3)o*

— (b1C1ﬁV + (blcz + bzcl)oc3 + (b1€3 + brey + b3C1)O€4),
f(yap) = arbicryaf + (a1bics + arbrcr + asbicy)yo®p.

Hence, we obtain a = bjc|, 2a=b+c and 3a=a+b+c=—0,. Therefore, if K is
of characteristic 3, then we have ®; = 0. Thus, for &, # 0 and char K = 3, the alge-
bras As and A. are not isomorphic, but clearly 4s and A% are socle equivalent. We will
prove now that, if charK =3 and ©; # 0, then A{ is the unique (up to isomorphism)
selfinjective algebra socle equivalent to A4s but nonisomorphic to As.

Observe first that if char K # 3 then there is an algebra isomorphism [ : 4s — Az
given by

f@=a-202 () =p-op, f) =7~ Dyat O,
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whose inverse f~!: AL — As is given by

6 201 567
-1 L 2 1.3 4
f (oc)—oc-l——3oc+—9 oc+27oc

0, 207

2
1B =+ G+ 25, 1) =+ G (Ph - 02) e,

and, if char K = 3 and @; = 0, then there is an algebra isomorphism f : A5 — A: given
by

fl)y=a  f(B)=p [()=y+ 602,

whose inverse f~!: AL — As is given by

fHe)y=a B =H f0)=7— 0y,

Assume now that char K = 3. Let 45 be as above with ©; # 0 and 4{ be an algebra
given by the quiver of As and bound by relations

Byraf =0, yafiy=0, o> =0, ypaf=0ps’p, o —fy= Ot

for some parameters @], 05 e K with @] #0. Denote 9= 60;'@. Then we have an
algebra isomorphism g : A{ — A given by

g(a) =9, g(B) =P+ (0} — $02)B, g(7) = ¥,

and its inverse g~

g @) =9"a, g (B =B+ (0-970)*B, ¢ '(y) =
This ends the proof, because A, is equal to 4f for ©; =1, O, = 0. O

: A5 — A5 is given by

LemMA 5.3. Let A be a selfinjective algebra which is socle equivalent to Ag¢ but
nonisomorphic to Ags. Then char K =3 and A is isomorphic to A;.

Proor. The algebra A is isomorphic to an algebra A; given by the quiver of A
and relations

=0, yBy=0, yB=061yap,

vl =0, o?f=0, a>=0, o —py=06"
for some parameters @;,0, € K. We note that A, is equal to 4; with @, =1 and
0, =0.

Assume that the algebras 4¢ and A; are isomorphic, and let f : 4¢ — A; be an
algebra isomorphism. Then f is given by

f(a) =ajou+ aro® + azo + agot,

S(B)=b1f+bof, [f(y) =c1y+cya,
1

for some parameters a;,by,c; € K\{0}, b»,c2e€ K, a;e K, 2 <i<4. Denote a =aj a,
b =by'by, ¢ =cilcs. Then the following equalities hold:
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S (B) = brcryp + (bica + bacy)yop,
f(oc3 —pBy) = af’oc3 + 3a12a2a4 — (bye1fpy + (brca + bgcl)oc4).

Therefore, we obtain b + ¢ = -0y, a; = bjc; and O, +3a=b+c=—0,. Thus, if K is

of characteristic 3, then we have ®; + @, = 0. Hence, for @, + 0, # 0 and char K = 3,

the algebras A¢ and A; are not isomorphic, but clearly 4¢ and A{ are socle equivalent.

We will prove now that, if charK =3 and @, + @, # 0, then A; is the unique (up to

isomorphism) selfinjective algebra socle equivalent to 4 but nonisomorphic to Ae.
If char K # 3 then there is an algebra isomorphism f : A¢ — A{ given by

f@)=2-2F22 (g =p-onp 1) =7,

whose inverse f~!: A, — A¢ is given by

P 2 3
fl(oc):oc—i-@l—g@zocz—k (@1;@2) a3+5(@12—;@2) oc4,

B =F+6108, () =1

and, if char K =3 and @ 4+ @, = 0, then there is an algebra isomorphism f : 4¢ — A
given by

fla) =0, f(B)=B—0618, [f(y)=r,
whose inverse f~!: A, — A¢ is given by

fHoy=a B =p+06108 f0)=1

Assume now that charK =3. Let A; be as above with &)+ 60, # 0 and 4] be an
algebra given by the quiver of A¢ bound by relations

BrB=0, yBy=0, yf=01yap,
i =0, o*f=0 o’ =0, o —py=06}"

for some parameters @], @) € K with @) 4+ @ #0. Denote 9 = (0, + 0,) ' (0] + 05).
Then we have an algebra isomorphism ¢ : A; — A given by

g(o) = 90, g(B) =3B, g(y) =7+ (961 — @)y
(note that 90, — O] = @) — 90,), whose inverse g~ ' : 4] — A} is given by
g'(0)=9"0 g ' (B=9"p ¢'O)=y+ 'O -6
This ends the proof, because A, is equal to A; for ©®; =1 and 6, =0. O

LEMMA 5.4. Let A be a selfinjective algebra which is socle equivalent to A»(1) but
nonisomorphic to A,(A). Then charK =2 and A is isomorphic to As(A).

Proor. It follows from the above remarks that A is isomorphic to an algebra
A}(A) given by the quiver of A4,(4) and bound by relations
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wyo = o =you, ay=yh, MyB> =yoy =0y,

oy = B> =ayp, Po=ou, If’c=oyo=ou’,

o —yo =003, I — oy = 0B,
for some parameters @,,0, € K. Note that we have y8> =0, p?c =0, o* =0, and
p* =0, because Ayp> =yoy = oy = apf =%, B0 = oyo = 00® = foo. = f*o, and
1 #ieKk.

Assume that A,(A) and A4)(4) are isomorphic. Then there exists an algebra iso-
morphism [ : A>(A) — A(1) given by

f(o) = aro+ ao® +asa’,  f(B) = bif + bof* + b3,
f(y) =1y + 20y, f(O') - le’ + dzO'OC,

for some parameters aj, by, c1,dy € K\{0}, a;,b;,¢;,d; € K, 2 <i<3. Denote a =aj'a,

b=b7'by, c=cilcs, d =d'd,. We obtain the following equalities:

f(oc2 —y0) = alzoc2 + 2a1ar0° — (crdvyo + (c1dy + cady)yo)

= alzfxz — c1dyyo — (c1dsy + cady — 2a1a2)oc3,

f(iﬁz —oy) = i(bfﬂz + 2b1b2ﬁ3) — (erdyoy + (c1dy + cady)ooy)
= b2IB* — crdyoy — (c1ds + cady — 2b1by) A7,

Hence, we get af = c1dy, ©1 = c+d —2a, b} = c1dy and @, = ¢ +d — 2b. Therefore,
if K is of characteristic 2, then we have @y = c+d = @,. Thus, for @; # @, and
char K =2, the algebras A,(4) and A4j(4) are not isomorphic, but clearly A>(A) and
A}(A) are socle equivalent. We will prove now that, if char K =2, then A45(1) is the
unique (up to isomorphism) selfinjective algebra socle equivalent to A,(4) but non-
isomorphic to A,(4).

Observe first that if char K # 2 then there is an algebra isomorphism f : A>(4) —
AL(A) given by

whose inverse f~!: 45(1) — Ay(A) is given by
2

_ 0, ] _ 0, 03
Sy =a+Zat + 50 TR =B

=0 1710 =9,
and, if char K = 2 and @; = O,, then there is an algebra isomorphism f : 4>(1) — A5(4)
given by
J@)=a, f(B)=F JO)=r+610, [(0) =0,

!/

whose inverse f~!: A5(2) — Ay(A) is given by
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f N ay=0o, YR =B [f'B)=y—06i, [ =0.

Finally, assume that char K = 2. Let 4}(1) be as above with @; # @, and let 4} (1) be
an algebra given by the quiver of 4, bound by relations

aya = o’ =you, ay=yf, MyB> =yoy=a’y,

oy =Iip> =ayp, Po=oa, Ip*c=oayc =00’
02 —yo =0, Ip*—ay= 0L,

for some parameters @), 05 € K, @] # 0. Denote $= (0 — 0,) (0 —0)). Then
we have an algebra isomorphism ¢ : A5(1) — AY(A) given by

g(e) = 3o, g(B) =438, g(») =9, g(o) =90+ (O] — 61)ox
(note that ©] — 90| = ©; — 90,), and its inverse g~ ! : AY(1) — A}(2) is given by
gl ) =90 g ' B =96 g'N=9"r
g Y o)=9"o+ 910, - 9'0))0u.
This ends the proof, because A3(4) is equal to 45(4) with @; =1 and @, =0. [

LEmMMA 5.5. Let A be a selfinjective algebra which is socle equivalent to Ay,(A) but
nonisomorphic to Ay(A). Then char K =2 and A is isomorphic to A4(4).

Proor. The algebra A is isomorphic to an algebra A, given by the quiver of A4,
and relations

afy = Oafofy, ofyr=0, yafy=0, Ipd =y, OB’ =0,

for some parameter O € K.
Assume that A4, and Aj, are isomorphic. Then there exists an algebra iso-
morphism [ : A — A{, given by

J(@) = ao+aafd,  f(B)=bif+ bfof + b3popop,
fO)=cay+cdy,  f(6)=dd+ droBd + dsopops,

for some parameters ai,by,ci,d; € K\{0}, ay,b3,b3,¢2,dr,d3 € K. Denote a = aj'a,
b=bi'by, c=ciler, d =d;'d,. We have the following equalities:

S (aBy) = arbicrafy + (aabicy + arbacr + arbica)offopy,
f(0p0 — ya) = bldlzéﬁé + (2bydvdr + bza’l2 —ajcy — axc1)ofofo — aycyya.

Hence, we obtain the relations a+b+c+ O =0, ajc; = b]dl2 and 2d +b=a+c.
Therefore, if K is of characteristic 2, we have ©® = —(a+b+c¢)=-2(b+d) =0.
Then, for ® # 0 and char K = 2, the algebras 4;, and A{, are nonisomorphic, so A4
is socle equivalent but nonisomorphic to 4;;. Now we prove that there is only one
algebra (up to isomorphism) with this property.
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Observe that A, = Aj, if ® =0. Moreover, if charK # 2 then there exists an
algebra isomorphism f : Aj, — A, given by

f@) =0 f(B)=B—OB, fG)=7 [©)=0+ 500

whose inverse f*1 : A}, — Aj» is given by
3
)y =a, [THB) =B+ 6P+ §@5ﬁ5ﬁ5,

G = 1) =5 2ops

Assume now that char K = 2. Let 4}, be as above with @ # 0 and A{, be an algebra
given by the quiver of A4, bound by the relations

ofy = O'afopy, afyr=0, yufy=0, pd=yx, PO)’ =0,

for some parameter @' € K\{0}. Denote $=6"'0’. Then we have an algebra iso-
morphism ¢ : A, — A{, given by

g(a) =3a, g(B) =96, g(») =7, ¢g0©)=0.
This ends the proof, because, for ©® =1, A{, is equal to Aj. O

LEMMA 5.6. Let A be a selfinjective algebra which is socle equivalent to A3 but
nonisomorphic to Ayj3. Then charK =2 and A is isomorphic to As.

Proor. Let 4 be a selfinjective algebra socle equivalent to 43 and let A}, be an
algebra isomorphic to A of the form described at the beginning of this section. We
claim that in 4, we have «®> = @ad # 0 for some nonzero parameter @ € K.

In fact, since o®,06 € soc 4], and the socle of any indecomposable projective A/;-
module is one-dimensional, we have either «® = 0, or 6 = 0, or &> = @ad(# 0) for some
O e K\{0}. If 60 =0, then J is left-maximal in A{;, but J € 4;3\soc 43, a contra-
diction. Suppose that o> = 0. Then o # 0, because o’ ¢ soc 4j3. Let a’w be a non-
zero element of socA4j;. We may assume that o = aw; + fyw; + ows. Since oo =
o =0, o®fy =P(yB)y =0 and o’c = a(ac) =0, we get a’w =0, a contradiction.

Therefore o® = @ad # 0 and the algebra A/, is given by the quiver of 4,3 bound by
relations

yﬂ:@lyaﬁv 5ﬂ:07 70'207 50(:O7
> =Py + 0.0, woc=0, 5660=0, a&dc=0,
o =005, ot=0, py=0, Byf=0,

for some parameters 01,0, € K, © € K\{0}. Note that, for @) =1 and @, =0, A{; is
equal to 4s.

Assume that A3 and A}, are isomorphic, and let f: 413 — A{; be an algebra
isomorphism. Then f is given by
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flo) = a0+ amo? +aza’,  f(B) = b1+ brof,
f(y) =1y + C2)a, f(é) = d57 f(O') = 80,

for some parameters aj,by,ci,d,se K\{0}, az,as,bs,c2 € K. Denote a=a;lay, b=

bylby, ¢ =cilcs. Then we obtain the following equalities:

S(B) = bicryB + (bica + bacr)yap,
fle® = By) = aja® — bieify — (bicr + bacy — 2a1az)a’,
f (@} —06) = aja’ — dsoo.

Hence, we have the relations a? =bjc;, b+c+ 0, =0, Oy =b+c—2a, a;O = ds.
Therefore @ + @, = —2a, and @ + @, = 0 if char K = 2. In particular, if @ + @, # 0
and char K = 2, then the algebras 4;3 and A{; are nonisomorphic. On the other hand,
if char K # 2, then there is an algebra isomorphism f : A;3 — A given by

r@)=2- 23222 g =p-o0p,

fw) =7 [f(0)=860, f[flo)=o,

whose inverse f~! 1 A}y — Ayz is given by

2
R e s A R BT

=y fle)=0"% fo)=0

and, if ®; + O, =0 and K is of characteristic 2, then there is an algebra isomorphism
f A3 — Aj; given by

f@)=a, f(B)=F—06wf, f(y)=y, [f(0)=69, [flo)=0.

Assume now that char K =2. Let 4{; be as above with § = @; + 6, # 0, and A{,
be an algebra given by the quiver of A;;3 bound by relations

=0y, =0, yo=0, Jdou=0,
o =pBy+ 0, ac=0, d06=0, adc=0,
0’ =0'cs, a*=0, y=0, Pyp=0,

for some parameters 01,0, K, 0" € K\{0} with 0' = 6]+ 05 #0. We will show
that 4], and A/, are isomorphic. Denote 9 =0 '0’. Then there exists an algebra
isomorphism g : Aj{; — A{; given by

gla) = o,  g(B) = I+ I(3O] — O1)ap,
g() =9, g6)=05, g(o)=96"00,

and its inverse g~!: A5(A) — A};(4) is given by
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g o) =90, g (B =9"p-9"(5"'0:+0))up,
g i) =91 ¢'0) =6 glo)=970""60. o

LemMmA 5.7. Let A be a selfinjective algebra which is socle equivalent to A4 but
nonisomorphic to Ayjs. Then charK =2 and A is isomorphic to Ag.

Proor. The algebra A is isomorphic to an algebra A, given by the quiver of A4
and relations

Sy =0, PByoy=0, (y0)°y=0, 6(0)° =0,

B = 01Byda,  af = (70)’ + @2(p)’, afu=0, Pap=0,

for some parameters @, 0, € K.
Assume that A4;4 and A{, are isomorphic, and let f: A;4 — A{, be an algebra
isomorphism. Then f is given by

f(o) = ajo+ axyoa,  f(y) = c1y + 290y + ¢390y07,

S(B) =b1f+ baffyd,  [(6) = did + dr6yd + d30ydy9,
for some parameters ay,by,c1,d; € K\{0}, aa,b2,¢2,¢3,dr,d5 € K. Denote a = aj'a,

b=by'by, c=cilcs, d =d'dy. Then the following equalities hold:
f(pa) = arbi1fo+ (ai1by + axby)fyda,
f (@ —6poy) = arbyop — cidi(yo)?
+ (a1by 4 arb; — 2(c1e2d? + Adydy))(p5)°.

Therefore, we have the relations a1by; = c¢?d?, a+b+ 60, =0, O, =2(d +c¢) — (a+b).
Hence @, — @1 =2(c+d), and @) = O, if char K =2. In particular, if & # 6, and
char K =2, then the algebras 414 and A{, are nonisomorphic. Observe also that, if
char K # 2, then there is an algebra isomorphism f : 414 — A}, given by

f@)=a- 0 f(B) =P [O)=7+ 25", f0) =5,

whose inverse f*1 : A}, — A4 is given by
fﬁl(o():o(—k@lyéo(, fﬁl<ﬂ):ﬁ7

0, — 6, (0 — ©,)*
oy 1L P2
> T
and, if ®; =6, and K is of characteristic 2, then there is an algebra isomorphism
f A4 — Aj, given by
fla) =a—0yon, f(B)=p, f(r) =7 [f(©)=0

Assume now that char K =2. Let A{, be as above with 0 = @, — 0 # 0, and 4],
be an algebra given by the quiver of A4 bound by relations

) =r+ yopdy,  [71(6) =6,
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5y60=0, Pyoy=0, (30)°y=0, 8(36)° =0,

Bo= 01Byda, of = (9)’ + 02(y3)°, wfau=0, Pap=0,

for some parameters @1, 05 e K with ' = 0] — 0, #0. We will show that 4], and
A, are isomorphic. Denote §=0"'0". Then there exists an algebra isomorphism
g: Ay, — Af, given by

ga) = S+ (901 — O))yoe,  g(B) =98, g(y) =9, () =9,
and whose inverse g~!: A],(1) — Aj,(X) is given by
g ' (0) =3 lu+ 9718716 - 01)y0u,
g (B=9"8 g'=9"y g'0)=0.
This finishes the proof, because A¢ is equal to A}, for @; =1, @, =0. O

Lemma 5.8. Let A be a selfinjective algebra which is socle equivalent to As but
nonisomorphic to Ays. Then charK =2 and A is isomorphic to A.

ProOF. The algebra A is isomorphic to an algebra A given by the quiver of 4;s
and relations

op = O00f, oca=0, oa=ya, offy=020,
> =B+ 60, Spy=0, Pop=0, Spo=0, a*=0,

for some parameters 01,0, € K. Clearly, for &) =1 and @, =0, A}; is equal to A;.
Assume that A4;s and A{; are isomorphic, and let f : A;s — A{; be an algebra iso-
morphism. Then f is given by

f(OC) :CIIO(+020C2+613O(3, f(ﬂ) :blﬁ+b2aﬁ7
J)=cp, [0) =did+drun, f(o)=so,

for some parameters ai,by,c,d,s € K\{0}, a»,a3,b,,d, € K. Denote a=ay
bylby, d =d;'d,. Then we have the following equalities:

1612, b=

f (oo — ya) = ajd\do — csya,
f(éﬂ) = b1d15ﬁ + (bldz + bzdl)éocﬁ,

f(@? = po) = ala® — byd B0 — (b1dy + bydy — 2ayar)e’.

Hence we obtain the relations ajdy = cs, af = bidy, b+d+ 60, =0, O, =b+d — 2a.
Therefore @1 + ©, = —2a, and @1 + @, = 0 if char K = 2. In particular, if @ + &, # 0
and char K = 2, then the algebras 45 and A4 are nonisomorphic. On the other hand,
if char K # 2, then there is an algebra isomorphism f : A5 — A5 given by

flo) =2 =222 ()= p—Ora,
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whose inverse f~!: 4] — A5 is given by

2
f_l(oc) = oc—{—@l —12_@2&2—1— (0 202) o,

=y f0)=6, f o) =0,

and, if @, + 0, =0 and K is of characteristic 2, then there is an algebra isomorphism
f 415 — Ajs given by

f)=a, f(B)=F—06wp, f(y)=7, [f(0)=9, [flo)=0

Assume now that char K =2. Let A}; be as above with 0 = @) + @, # 0, and let
A{s be an algebra given by the quiver of A4;5s bound by relations

7Y (B) =B+ 108,

op = @100, ocou=0, Jdo=vya, offy=0,
¥ =p5+ 05 opy=0, Pof=0, 6f5=0, o*=0,

for some parameters Of,0; € K with ' = 0] + 0, #0. We will show that A]; and
A{s are isomorphic. Denote 4= 07'¢’. Then there exists an algebra isomorphism
g:Ajs — Afs given by

g(@) = 9o, g(B) = I + (961 — O1)ap,
g(y) =9, ¢(0) = 99, g¢(a) = Jo,
and whose inverse ¢! : A7s(1) — A}s(1) is given by
g (@) =90 g7 () =9 B+ 979701 — On)ap,
g () =8"y, ¢'0)=8"9, ¢ l@)=9"0 O

LEMMA 5.9. Let A be a selfinjective algebra which is socle equivalent to A but
nonisomorphic to Ajs. Then charK =2 and A is isomorphic to Ag.

Proor. This is a consequence of the above lemma, because Aj6 = A and
O
Ag = A7p. ]

LEmMMA 5.10. Let A be a selfinjective algebra which is socle equivalent to As but
nonisomorphic to Asz. Then char K =2 and A is isomorphic to Ay.

Proor. The algebra A is isomorphic to an algebra A} given by the quiver of A3
and relations

off + 70 + &&= Oroffyo, fo= Orfpda, 0y = O30cey, &l = Oueufic,
oafiyo =0, eoaffyo =0, ofyoa=0, affyoé =0,
poafp =0, 06y0 =0, ypiy=0, e&e=0, Ce=0,

for some parameters @,0,,03,04 € K. Assume that 43 and A} are isomorphic, and
let f: A3 — A} be an algebra isomorphism. Then f is given by
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f(o) = ayou + apyoo + aséea,  f(f) = b1+ bafiyd + bspie,
f(y) = a1y + cxéey + czaBy,  f(0) = did + dadle + dzdup,
f(&) = el +exapé+e3pil, f(e) = z1e+ zeaf + z36)9,

for some parameters aj,bi,cy,d, e, z1 € K\{0}, a;,b;,ci,di,e;,zie K with i€ {2,3}.
Denote a=a;'(aa—a3), b=bil(ba—b3), c=ci(c2—c3), d=d['(dh—d;), e=
e;(ex —e3), z=1z7!(z2 —z3). Then the following equalities hold:
S (Bo) = arbrfoc+ (a1 (ba — b3) + (a2 — az)br)Bydo,
f©0y) = cdidy + (c1(da — d3) + (c2 — ¢3)d1)oCey,
f(&€) = e1z16€ + (e1(z2 — z3) + (€2 — e3)z1)eaf3e,
S (B + 90+ Ce) = arbrof + crdiyd + e1z1ée
+ (a1(by — b3) — (az — a3)by + c1(dr — d3)
— (2 —c3)dy +e1(za — z3) — (€2 — e3)z1)affyd.

Hence, we have the relations a+b+ 60>, =0, c+d+603=0, e+z+ 04 =0, a1b) =
cdy=ez;, —a+b—c+d—e+z+60;=0. Therefore, 2(b+d+z)+ 6O+ 6, + 63
+604=0, and O + O, + O3+ O4 =0 if char K = 2. In particular, if @ + @, + O3 +
©4 # 0 and char K = 2, then the algebras 43 and 45 are nonisomorphic. Observe also
that, if K is of characteristic 2 and @; + ©, + @3 + ©4 = 0, then there is an algebra
isomorphism f : A3 — A5 given by

J(@) =a—0you, f(B)=F, f(»)=7r—Ose,
f0) =06, f(&)=<C—040p¢, [f(e) =¢,

and, if charK # 2, then there is an algebra isomorphism f : A3 — A} given by

O+ 60,4+ 03— 0,

f(a) == Oxon, f(f)=p, [(&)=<+ 7 g,

01+ 60,+03+0,

f()=y—038e, f00)=9, f(e)=¢— 7 e,

Assume now that char K =2. Let A} be as above with 0 = @) + O, + O3 + O4 #
0, and A4 be an algebra given by the quiver of 43 bound by relations

afp +y0 + Ee = Orafyd, Po= O5fyda, Iy = Oi0¢ey, &&= Oueafe,
oafiyd =0, eoffyo =0, ofyoa=0, affyoé =0,
pofp =0, 0y0 =0, »iy=0, ee=0, <=0,

for some (different) parameters O], 0,,05,0, e K with 0' = 0] + 0+ 60+ 0, #0.
We will show that the algebras A4 and A are isomorphic. Denote 8 =0 '0’. Then
we have an algebra isomorphism g : 4; — A} given by
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g(@) = o+ (9602 — 03)yda,  g(B) = Ip,
g(y) = 7+ (903 — 03)&ey,  g(0) = 90,
g(&) = &4 (804 — O)ape,  g(e) = %,

and whose inverse g ! : A} — A} is given by

g (2) =0+ (97105 = @:)y0%, g7 (B) =98,
g0 =7+ (97105 @)y, ¢7'(0) =975,
g E) =+ (910, — Oy)aps, g'(e) =9 e
This ends the proof, because A9 is equal to 4} for @) =1, O, = O3 = O4 = 0. ]

Lemma 5.11. Let A be a selfinjective algebra which is socle equivalent to Ay but
nonisomorphic to Az9. Then char K =2 and A is isomorphic to Aj.

Proor. The algebra A is isomorphic to an algebra Aj, given by the quiver of A
and relations

pu = O1faou,  no= Oyca, off =0+ O3dao,
oo = &y + 40000, o = un + Oscdal,
Pun =0, afp=0, nuf =0, wuno=0,
00000 =0, agoooc =0, Jaocé =0, ydgoc =0,
yogou =0, ypogoc =0, Eypogo =0, nyoao=D0,
goalou =0, aoaly=0, paoaé =0, oJaocé =0,

for some parameters @, 0,,03,0,,0s5 € K. Clearly, Ay is equal to A5, with 04 =1,
01 =0, =03 =0s5=0. Assume that the algebras 4 and A4/, are isomorphic, and let
f Ay — Ajy be an algebra isomorphism. Then f is given by

fo) = o+ ayyéa,  f(B) =bif+bfioo, f(y) = c1y+ c2p&y,

f(0) = di6 + drdas,  f(n) =mn+nmyé, f(u) =mu+ maon,

f(&) =21+ 228¢,  f(o) = s10 + 2000,

for some parameters ay,b;,cy,di,my,ny,s1,z1 € K\{0}, az,by,c2,dr,mp,np, 8,22 € K.
Denote a = ajy'ay, b=0bi'by, c =ciler, d=di'dy, m=mi'my, n=n7'ny, s=s7ls2,
z=1z7'z. We have then the following equalities:

Sf(Br) = bymyfu+ (bymy + bamy)foou,

f(ne) = aymino + (ayny + axny )nyéa,
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f(ocﬁ — )/5) = alblocﬁ —c1dyyo + (Cl]bz +arby — c1dr — C2d1)y50'5,

f(&O' — f’y) = dys5100 — clzlfy + (d1S2 +dys) — c1zy — (3221)50'50',

f(O'f — ,wy) = s1z10& — mynun + (S122 + $2z1 — mny — mznl)oﬁo'f.
Hence, we obtain the relations dis; = c¢1z1, a1by = c1dy, s1z1 =mn, b+m+ 60, =0,
a+n+60,=0,a+b+03=c+d, c+z=d+s+6O4, m+n=s+z+ Os. Therefore,
@1+@2+@3+@4+@5:—2(a+b—c+s), and @1 +60,+0O;+60,+0;=0 if
char K =2. In particular, if @1+ 60, + O3+ 604+ Os #0 and char K =2, then the
algebras Ay and A}, are nonisomorphic. On the other hand, if char K # 2, then there
is an algebra isomorphism f : Ay — A3, given by

flo)=0o, f(B)=B, [f(y)=7r+0603y,

f©)=0, fn)=n—06my&, [f(u)=u—0Bioou,

0,+60,+603—-04+0 0,+60,—03+04+0
f(f):f_l 2 23 4 S &9, f(a):a—l 2 23 4 S o,

and, if charK =2 and @+ 0, + O3+ O4+ @5 =0, then there is an algebra iso-
morphism [ : Ay — A}, given by

floy=0a, f(B)=B, f(y)=r+0&, f(©)=0, f(o)=o0,
f)=n+060umyé,  f(u) =u+60raou, f(&)=<E+ (034 04)8%.

Assume now that char K = 2. Let A}, be as above with 0 = @1 + 0, + O3 + O4 +
Os # 0, and AJ, be an algebra given by the quiver of Ay bound by relations

Bu = O1Boon, nu=Oypéa, off = yd+ 037009,
dc = &y + O 9a05, ol = un + OLadal,
P =0, afu=0, nof=0, punoe=0,
ogogo =0, aogog =0, odoocé =0, yococ=>0,
yooou =0, vyécoc =0, Eyoco =0, nyogo =0,
ooala =0, aoaly =0, poocé=0, odaocé =0,

for some (different) parameters 07,05, 0%, 0;,0.c K with ' = 0] + 0, + 05 + O} +
05 #0. We will show that the algebras Aj, and A%, are isomorphic. Denote
9=07'0". Then we have an algebra isomorphism g : A}y — A7y given by

gla) =a, g(B) =398, g(y) =+ H80; + 03)y&y,
g(0) =0, gn) =%+ 8962+ 0y)nyé, g(p) = u+ (961 + 61)adp,
g(&) =+ (HO3 + 04) + (03 + 0,))EE,  g(a) = Yo,

and its inverse g ! : A} — Ajy is given by
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g i =0 g (B=9"8 g0 =9"y+3 N0+ 63)y,
g70) =06, g &)=+ (9O +0))+ (05 +04)&E, g o) =9"a,
g7\ =9+ 97190+ Oy, g7 () =+ (97'0] + 01)aou. O

LEMMA 5.12. Let A be one of the algebras Ay(1), Ax(2), +e K\{0,1}, A4;, for
ie{l17,19} (if charK #2), or A; for ie{8,22,23,24,26,27,28}. Then every self-
injective algebra socle equivalent to A is isomorphic to A.

Proor. It follows directly from the remarks at the beginning of this section,
because for all these algebras, in the chosen sets of generators of I/, we have no relations
which can be replaced by the procedures (1) or (2). ]

LemMmA 5.13.  Let K be of characteristic different from 2. There are no selfinjective
algebras which are socle equivalent to Aig but nonisomorphic to Aig.

ProOOF. Assume that A is a selfinjective algebra socle equivalent to 4;5. Then A
is isomorphic to an algebra Aj; given by the quiver of A4;3 bound by relations

0t =ya, oy=yB+0O10p, oyf*=0o*yp=0, oypfc=yPox=0,

oy =2, oo+ fo=0p00, [Poo=pPou’=0, Pouy=ocuyf =0,

for some parameters ©;,0, € K. Note that we have o> =0 and S°> =0, because
o} = ayo = yfo = —you = —a® and B> = oyf = oay = —foy = —f°>. Then there exists
an algebra isomorphism f : A3 — Ajg given by

f@) == [P =B+ OB f) = fl0) =0+ Ron,

and whose inverse f~!: Ajg — A5 is given by

Fr =t Ot B =p -2

6, (@) —0,)0,

fﬁl(y):yv fﬁl(a):U_TO'a‘i‘fO'OCz.

This finishes the proof. ]

LemMA 5.14. There are no selfinjective algebras which are socle equivalent to As
but nonisomorphic to Ajs.

Proor. Assume that there exists an algebra A which is socle equivalent to the
algebra A»s but nonisomorphic to As. Then A is isomorphic to an algebra A}s given
by the quiver of A,s and relations

a1 = By, %01 =0, =0, 9041 =0, oy =0, ;8 =0,
2
(ojois1)” =0,  poipiooir =0,  ooipof =0, 00410, =0, 0i110;0i41 =0,

for i e {1,2}, a3 = o, o3 = 0], exactly one of the relations
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arona = 010101, ooupe; =0, 0101 =0,
and exactly one of the relations
000 = 620202, 0oy =0, 0620, =0,

for some 0,0, € K\{0}. We claim that in both cases the first relations from the
above triples are satisfied. Since ojopay,010; € soc A5s and the socle of indecompos-
able projective module at each vertex is one-dimensional, we have either oo = 0, or
0101 =0, or ojopa; = 010101(# 0) for some O € K\{0}. If 0,0, =0, then J; is left-
maximal in A}, but J; € Azs\soc Ass, a contradiction. Assume that oo = 0. Then
aroy # 0, because ajon ¢ soc Ars.  Let oo be a nonzero element of soc A5.  We may
assume that o = oy + fry,02 + o1ws.  Then ooy =0, a10fyy, = Fr(1265)7, =0,
and ajop0; = o1(opo) = 0. Therefore ojonw = 0, a contradiction.  Similarly we prove
that g,0, =0 and opo0p = 0. Finally, A} is bound by relations

Oir10 = By, it = 00,04,
wioiy1 =0, y,8=0, 041 =0, 0J0p1 =0, 0;8,=0,

for ie {1,2}, a3 = oy, 03 = g1, and some 0,0, € K\{0}. Therefore, we have an alge-
bra isomorphism f : A»s — A} given by

flw) =i f(B) =P fOi)=vis [i) =0i, [flo1) = Ojai,
for i e {1,2}, and whose inverse f~!: A5 — Ays is given by
) =0 [T B)=Pn o) =9 [T6) =06, f o) =06;"a
for ie{1,2}. n

LemMma 5.15. There are no selfinjective algebras which are socle equivalent to Ay
but nonisomorphic to Ay,.

ProOF. Assume that A is a selfinjective algebra socle equivalent to the algebra 4.
Then A is isomorphic to an algebra A{, given by the quiver of 4;; bound by relations

oy =yEy, 0 =0, afou=0, off=0O109Zp,
Epa=EyE, (E=0, Paf=0, (&)° =629,

for some parameters @; € K, @, € K\{0}. Indeed, since the socle of the indecompos-
able projective module at each vertex is one-dimensional and ¢, (fy)2 e soc A}, then
exactly one of the following equalities holds:

=0, (&)*=0, (&)*=0,¢ for some O, K\{0}.

If 6 =0, then ¢ is right-maximal in A{,;, which contradicts 6 € 4j;\soc Aj;. Assume
that (fy)2 =0. Then &y¢ is right-maximal, because &y&y =0 and &yEéf = Efaff =0, a
contradiction. Hence (&7)? = ©,0( for some @, € K\{0}. Then there exists an algebra
isomorphism f': 4;; — Aj, given by
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fl)=a—010¢, f(B)=B, F()=7,
f0)=0x9, f(O)=( f(&)=¢
and whose inverse f~!: 4] — Ay is given by
[ =at+0mé TP =B =7
SOy =030, =0 SO =¢
This finishes the proof. O

LEMMA 5.16. Let A be one of the algebras A4, Ay, and A be a selfinjective algebra
socle equivalent to A. Then A is isomorphic to A.

Proor. Assume that A is a selfinjective algebra socle equivalent to A4. Then A is
isomorphic to an algebra A4 given by the quiver of 44 bound by relations

off + 0 + e = Oraffyd, fo = Orfyou, e =0, =0,
Pof =0, oaffyo =0, eafiyo =0, ofyoa=0, ofyoy=020,

for some parameters ©1,0, € K. Then we have an algebra isomorphism f : A4 — A4
given by

fla) =0 =00, f(B)=p, f(»)=1r
f(0) =0+ (01— 0)0p5, [f(&)=¢, [fle) =g,
and with the inverse f~': A} — A4 is given by
SN @) =a+0pda, TR =8 ST =7
SO =0+ (02-01)55, [ =¢ [l =e

Assume now that A is a selfinjective algebra socle equivalent to 4,;. Then, by the
facts mentioned at the beginning of this section, A is isomorphic to an algebra A4/, given
by the quiver of A4;; bound by relations

off + yo + e = Oufyo, oau=0, pE=0, & =0,
Papyo =0, eafyo =0, afyoy =0, afyol=0,

for some parameter @ € K. Then there exists an algebra isomorphism f : Ay — A3,
given by

fl)=a, f(B)=F+ O, [(7) =1
J0)=0, f(&)=¢& [fle) =g
and whose inverse f~!: A5 — Ay is given by
fHo)y=a, fTHB)=p—06Paf, f7'(0) =1,
[le)=6, f1O=¢ o=
This finishes the proof. ]



714 J. BiaLkowskl and A. SKOWRONSKI

Lemma 5.17.  There are no selfinjective algebras which are socle equivalent to A7 but
nonisomorphic to A.

Proor. Let A7 be a selfinjective algebra socle equivalent to the algebra 4;. By
previous considerations we may assume that 47 is isomorphic to an algebra given by the
quiver of 47 bound by relations

aff = y0 + O1y0y0, Oy = e+ Orlele, eou=0, Pyé=0,
yoyoy =0, 09yoyd =0, yoydoe=0, Pydyd=0,
CeCel =0, eele=0, yplefe=0, CEeled =0,

for some parameters @,@,. In this case, there exists an algebra isomorphism
f A7 — A} given by

f(o) =a—6wapa, f(B) =5 [f(2) =1
fO)=0, [f(&)=¢ [fle)=e+ 02,

and with the inverse f~!: A4} — A7 given by

SN =at+00fa, B =5 ST =0
[0 =6, O =¢ fT(e) =e—Orele
This finishes the proof. []

LeMMA 5.18.  There are no selfinjective algebras which are socle equivalent to A9 but
nonisomorphic to As.

Proor. Assume that A is a selfinjective algebra socle equivalent to the algebra Ay.
Therefore, A is isomorphic to an algebra A) given by the quiver of 49 bound by
relations

o0 = Pe, ey =af + Oacady, poo=0, dye=0,
veya =0, ypoody =0, ocadya =0,

for some parameter @ € K. Note that we have cudy = gfley = gffigff. Then there exists
an algebra isomorphism f : A9 — Ay given by

fla)=o, f(B)=8f») =
f©0)=0, [flo)=0+06dfa, [(e)=¢
and whose inverse f~!: A} — Ay is given by
SNy =a, B =B )=
[©0)=0, fo)=0—-060fs, [ (e)=e
This finishes the proof. O
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LeMMmA 5.19. There are no selfinjective algebras which are socle equivalent to A
but nonisomorphic to Ay.

Proor. Let A, be a selfinjective algebra socle equivalent to the algebra 4;9. We
may assume that A7, is isomorphic to an algebra given by the quiver of 4;yp bound by
relations

Bl = Epoé,  Sfa =08y, aff = Oulyop,
(p0E)*y =0, ofr=0, puf=0,

for some parameter © € K. Then we have an algebra isomorphism f : 4,9 — 4], given
by

flo)=o—0uys, [f(B)=B, [fr)=r, [f(6)=0d [f(&=¢
and its inverse f~!: A4{, — Ay is given by

[Ny =a+0uips, fB=B [f=r [O)=0, [(O)=¢& O

LemMMA 5.20. There are no selfinjective algebras which are socle equivalent to Asx
but nonisomorphic to As.

Proor. Assume that A is a selfinjective algebra socle equivalent to the algebra As.
Then A is isomorphic to an algebra A5, given by the quiver of A3 bound by relations

Pr=0, nu=0, of =y, o¢=uy,
0y = Ea + Ooyoy, oyoyE =0, agoyoy =0,
for some parameter ©® € K. We have an algebra isomorphism f : 43) — A}, given by
f)=ao, f(B)=p SO)=» [(0)=0d— 060,
fm=n flw=un [f&)=¢ flo)=o0

and whose inverse f~!: AL, — A3y is given by

o)y =o, TR =B [T =2 ['(6) =5+ 60,
fy=n fw=u f1©=¢ flo)=0
This finishes the proof. ]
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