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Hierarchy of Bicklund transformation groups of the Painlevé systems

By Masaki Suzuki, Nobuhiko TAHARA and Kyoichi TAKANO

(Received Aug. 22, 2003)

Abstract. For each Painlevé system P; except the first one, we have a Bicklund
transformation group which is a lift of an affine Weyl group. In this paper, we show that
the Backlund transformation groups for J = V IV III Il are successively obtained from
that for J = VI by the well known degeneration or confluence processes.

1. Introduction.

The J-th Painlevé system Py (J = VI, V IV III,1I,I) which is equivalent to the J-
th Painlevé equation is the following Hamiltonian system

PJ: (5Jq - {Hf(q7p7 Z a)vq}v (5Jp - {HJ(quD Z OC),p},

where 0y = Z(Z— l)d/dl, Oy =0 = Zd/dl, Oy =0 =0; = d/dt, { , } is a Poisson
bracket defined by

and the Hamiltonian H; = H,;(q, p,t,o) is of the form

Hyi(q,p, t,9) = q(g = 1)(g = 6)p* — [(%0 — Dglg — 1) + oulg — 1)(g — 1)
+o3g(q — )| p + on(on +o2)(q — 1)
(g + o1 + 200 + o3 + 04 = 1),
Hy(q, p,t,0) = q(qg— 1)p(p+ 1) — (o1 + a3)gp + o p + aotq
(o + a1+ +a3 =1),
Hpy(q,p,t,0) = qp(2p — q — 2t) = 201 p — ooq
(oo + a1+ =1),
Hir(g, p,t,0) = ¢*p(p — 1) + ql(e0 + 02) p — 0] + 1p
(o + 200 + 00 = 1),
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] ¢
Hy(g,p,t,2) = 51?2 - (cf +§)p — g

(OCO + o = 1),

1 2
=p2—2¢°—14.
5P =24 —1q

Notice that the Hamiltonian for J = IV is slightly different from that in [4] but it is of
the same form as in and [9], because we use the well known degenerations in this
paper.

The Bicklund transformation group W = W, of Painlevé system P; (J # 1)
consists of birational symplectic transformations each of which preserves the form of the
Hamiltonian H; but changes the parameters o = (og,...) as an element of an affine
Weyl group. In other words, the elements of W, which is a lift of an affine Weyl group
are Poisson bracket preserving differential isomorphisms of a differential field of func-
tions of ¢, p,a equipped with a derivation defined by the system P; and d,0; =0,
i=0,1,.... Here differential isomorphism means algebraic isomorphism commuting
with the derivation. The group is generated by a finite set of generators sy, s, ... which
correspond to the simple roots of the affine Lie algebra ([5], [7]).

On the other hand, we know degenerations of Painlevé systems as the following

diagram ([1], [2], [8]. [9)):

HI(Q7P7 t)

Py
/ \
PVI—>PV P][—)P].

~N 7

Pur
For every P; — Pk in the diagram, there is a change of parameters and variables
=ua;(Ad,e) (i=0,1,...),
=1eT), q=q(4,6T,Q.P), p=p(4.eT,Q P),

between o = (o, a1,...),%,q,p and 4 = (Ao, A1,...),¢,T,Q,P. For example, in the
case of Py; — Py,

wp=¢', w=A3, om=Ady o3=Ao—Ay—¢e ', og=A,
t=14¢T, (@-1D)Q@-1)=1 (g-1p+(Q-1)P=—4,.
Since the change of variables is symplectic, namely

{PvQ}:lv {Q,Q}:{P,P}:O,

the system P; is also written in the new variables 7', Q, P and parameters A4,¢ as a
Hamiltonian system denoted by P;_x. The system P;_x tends to the system Pg as
& — 0 and then the process ¢ — 0 in the change of parameters and variables is called a
degeneration or confluence process from P; to Pg.
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In this paper, we observe how the degeneration process from P; to Px works on the
Bicklund transformation group W,. The change of parameters and variables lifts the
group W; to a group denoted again by W each element of which is a differential
isomorphism of a differential field of functions of 4 = (Ay, A1,...),&,T,Q,P. We see
that an element of the new W, does not converge as ¢ — 0, in general. However we
can verify the following theorem, which is the main assertion of this paper.

THEOREM. For every degeneration process Py — Pk except for J =1, K=1 in
Painlevé systems, we can choose a subgroup W_x of the Bdcklund transformation group
W, so that Wy_g converges to Wg as ¢ — O.

The subgroup Wj;_x of W; is taken as a group generated by reflections of
Ag, Ay, ..., since the new parameters Ay, 4;,... should be the simple roots of an affine
Weyl algebra for the system Pg.

Here we notice that the same process for P;; — P; can be followed, however we see
that each generator of Wj_; converges to the identity as ¢ — 0. The fact seems to
suggest that the first Painlevé system P; has no nontrivial Bicklund transformations.

Since each W; is a lift of an affine Weyl group corresponding to an affine Lie
algebra (see next section), it is convenient to express the above theorem by the following
diagram:

In Section 2, we review the Bicklund transformation groups of the Painlevé systems
P; (J #1). The following sections are devoted to the proof of the above theorem in all
cases of degenerations. In these sections, we also see how W,_x acts on the system
P J—K-

2. Review of Bicklund transformation groups.

In this section, we give explicit forms of the generators s; of the Bicklund trans-
formation group W of each Painlevé system. FEach list consists of the type of affine
Weyl group, Dynkin diagram, the fundamental relations of the generators of the group
W, and the explicit forms of the generators, where the forms of s;(¢) are omitted in the
case of s;(f) =1t for all i. The lists are the same as those in [4] except the case of
J=1V.

2.1. The case of J = V1.

%o o *2 o3
DE;I)Z oqz>0<§oc4 (otg + o1 + 2000 + 03 + 04 = 1)

W(Dgl)) = {50, 51, 52,583,854 : 51'2 = sg =1, (s,sj)2 =1, (sisz)3 =1, (i,j#2).
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%o o o *3 oy q p
S0 —alg o oy + o o3 Oy q p—oo/(g—1)
S1 oo —o o + o o3 o q p
Sy | oot ap o —0 o3+ st | g+on/p 4
53 %o % o + o3 —03 4 q p—a3/(g—1)
S4 oo oy o + oy o3 —0l4 q P —as/q

The last list should be read as
So(ao) = —ag,  so(on) = a1, So(on) =0 + g, So(az) = a3,  So(os) = g,
so(q) = ¢, so(p) =p—ao/(qg—1)

and so on.

2.2. The case of J=1V.

oo

(]) o1 O a3

2%)

W(Agl)) = <S07517527S3>: S~2 = 1, (Sisi+2>2 _ 17 (Sisi+1)3 1

oo o 02 o3 q p
S0 —0 o+ oo %) o3 + o q+oc0/(p+ t) p
st | oo+ —oyp oy o3 q p—oai/q
5 0y oo —on o3+ q+o/p p
s3 | oo+ o3 o o + o3 —0o3 q p—o3/(g—1)

2.3. The case of J =1V,

oo
(1) o o) o
A5 OAO (O(()+O(1+062:1)

W(Agl)) = {89, 81,52 Sg = sf = S% =1, (5031)3 = (5152)3 = (5250)3 =1.

| oo o1 V%) | q 14
) —0 o +oe o+og | g+200/2p—qg—2t) p+oo/(2p—q—21)
si | oo+or  —oq 4o q p—ai/q
S| oo o F+on —om qg+o/p D

2.4. The case of J = III.

1y, % A o2
C': o=o0<«<o (a+20+ow=1)

W(Cz(l)) = (50,51, 82): Sg =57 =57 =1, (s051)" = (s152)* = L.

| o o w | ? q P
S0 —o o + o ) t q+ao/p p
st | oo +20  —ap o420 | —t q p—=20/q+1t/q°

52 %0 oy + o —0l2 t g+o/(p—1) P



Hierarchy of Bdcklund transformation groups of the Painlevé systems 1225

2.5. The case of J =1I.

m, %
A0 o o (apto=1)

W(Ail)) = {50,851 ): s(z, =57 =1.

| oo o | q P
so| —oo o200 |q+ao/(p—2¢°—1) pt+daog/(p—2q>— 1)+ 203/ (p—2¢% — 1)’
sy log+ 20 —o q+oa/p 4

3. Degeneration from Wy; to W.

In this case, the degeneration process is given by
(3.1) g =¢', o =A;, m=Ay, o3=Ag—Ar—e', =4,
(3.2) (=146l (@-D(Q@-D=1 (¢-1p+(Q@-DP=—A.

Notice that Ag+ Ay + Ay + A3 = o9+ o + 200 + a3 + 24 =1 and the change of vari-
ables from (g, p) to (Q,P) is symplectic.

Each Bicklund transformation in Wy, given in 2.1 is an differential isomorphism of
the differential field K = C(a, ¢, ¢, p) of rational functions of o = (ag,01,...,04),%,¢, p
equipped with a derivation dy; defined by

oviqg ={Hy1,q}, Ovip ={Hvr, p},
(5V[l‘:l‘(l‘—l), oy, =0, i=0,1,...,4.

Since the change of parameters and variables (3.1), is birational, we can obtain
the action of Wy, on the differential field K’ := C(4,¢, T, Q, P) of rational functions of
A= (A07A17A27A3)787 Tv Q: P.

Let us see the actions of the generators s;, i =0,1,2,3,4 on the parameters 4;,
i=0,1,2,3 and ¢ where

1
Ay=ap+o+o3, A=, Ar=o0, A3=o, E=—.
0

For example, the action of sy is obtained as
so(Ao) = so(oo + oo + 03) = —otg + (02 + o09) + 03 = o2 + 43
= Ag—e ', so(A1) = so(o) = og = Ay,
s0(A2) = so(w) =y +og = Ay + &', so(A43) = so(ay) = oy = A3,
so(e) = so(1/og) = —1/ap = —e.
Similarly we have
s1(Ag) = Ao+ Az, s1(A1) = A1, s1(A2) = Ay + A3, s51(A3) = —A43, s1(e) = ¢,
$2(Ag) = Ao, $2(41) = A1 + Az, $2(A2) = —Az,  $2(A3) = Az + Ao,
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. &
_1+Az£7

52(¢)

53(do) = Ay + 67", s3(A) = A1, s3(Ax) =Ag—e", s3(43) = A3, s3(e) =,
s4(Ao) = Ao + A1, sa(Ar) = =41, s4(As) = Ay + A1, sa(A43) = A3, s3(e) = e

We remark that so(A4y), so(A2), s3(4p) and s3(A4,) diverge as ¢ — 0.
Observing these relations, we take a subgroup Wy, ., of Wy, generated by Sy, S|,
S>, 83 defined by

(33) S() = 50852538250 = 53528505253, S1 = 84, Sz =98, S3 =51.

We can easily check

(3.4) So(4o) = —Ao, So(A41) = A1 + Ao, So(A2) = 4>,
P
So(A43) = Az + Ao, So(e) = e
(3.5) Si(Ado) = Ao+ 41, Si(41) = —41, Si(42) = A2 + A4y,
SI(A3) = A3, Sl(é‘) = &,
P
So(A3) = Az + Ay, Sa(e) = 1T s’
(37) S3(A0) :A0+A3, S3(A1) :Al, S3(A2) :A2+A3,

S3(A3) = —A3, S3(8) = &,

and the generators satisfy the fundamental relations given in 2.2. In short, the group
Wyi—y = {8y, S1,5>,S3> can be considered to be an affine Weyl group of the affine Lie
algebra of type Agl) with simple roots Ay, A1, A>, As.

Now we investigate how the generators of Wy;_p act on 7,Q and P. We can
verify
Ao(1 = Q(Q = 1)Py)
P+T—-T(Q-1)Pe’

AOT8
So(P) = P(1 .
o(P) ( +P+T—T(A0—|—QP)8>/

(3.8) So(T) = T(1 — Aoe), So(Q) =0+

(3.9) S(T) =T, S(Q)=0. SitP)=P-75.
(3.10) S(T) = T(1+ 4x), $(0) =0+ 2. S(P) =P,
(.11) S(T) =T, S(Q)=0. Si(P)=P- 52

By comparing [3.4)3.11)] with the last list in 2.2, we see that our theorem holds for
WV] — WV.
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We notice that the system Py; is written in the new variables as

Pyi_y: 6yQ={Hy—y,Q}, OyP={Hy_y,P}

where 6 = 1T0/0T, Hyj—yv := Hy; /(1 +&T), Hyj—y — Hy as ¢ - 0. We can verify
that ;; commutes with any element Wy, ., and then for any we Wy;_p

oyw(Q) = {w(Hypr—yp),w(Q)}, Jyw(P)={w(Hyi—v),w(P)}.

4. Degeneration from W) to Wyy.

The degeneration in the case is given by
1, 1
(4.1) % = Ao +§8 yooop=A1, wm = A, 0 =—gE

eQ
1—-¢Q’

p=—¢ ' (1-20)[P —e(42+ QP)].

Notice that Ay + A; + A» = o9 + o1 + % + a3 = 1 and the transformation from (g, p) to
(Q, P) is symplectic, however the change of parameters is not one to one differently
from the case of Py; — Py.

Since the generators of Wy _; should be reflections of Ay = oo+ a3, A; = oy,
A> = oy, we choose them as

1
(4.2) tzie_z(l +2eT), gq=-—

(43) S() = 835053 = S05350, S] =51, Sz =N

and set Wy_pr = {So,S1,5>. Then we immediately have

(4.4) So(Ag) = —Ao, So(A41) = A1 + Ay, So(A2) = Az + Ay,
(4.5) S1(A()) = Ay + Ay, S](A]) = —A, S](Ag) = A> + Ay,
(46) Sz(Ao) = Ay + A4, Sz(Al) = A| + 4>, SQ(AQ) = —A>.

However, we see that S;(¢) have ambiguities of signature. For example, since

1 1 &’
Sa(e)” = 52(8%) = s2((—1/2) Joz) = Yt 1-24

we can choose any one of the two branches as S>(¢). Among such possibilities, we take
a choice as

(4.7) So(e) = e(1+2402) 7% S1(e) =, Sale) =e(1 — 24267712

where (1 + 2A0£2)1/2 =1 and (1 - 2A282)1/2 =1 at 4pe? =0 and A4,e? = 0 respectively,
or considering in the category of formal power series, we make a convention that
(1+2A082)1/2 and (1—2Aza22)1/2 are formal power series of Age® and A,g® with
constant terms 1 according to

et ()e

nx>1
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We notice that the generators acting on parameters Ay, A1, A>, ¢ satisfy the fundamental
relations in 2.3.
Now we observe the actions of S;, i =0, 1,2 on the variables 7, Q, P. By means of

(4.2}, and

So(t) = s3s083(2) = ¢, Si(t) =s1(t) =1, SH(t) = (1) =1,
we can easily check
(4.8) So(T) = (T — Age)(1 +240>)""*, S|(T) =T,

(4.9) So(T) = (T + Aze)(1 — 24,67/,

By (4.1), (4.2), (4.7) and the actions of s;,s, on ¢, p, we can easily verify

(4.10) S0 =0, Si(P)=P-.

(4.11) SQ(Q):QJF%, S»(P) = P.

The forms of the actions Sy = 535053 on Q and P are complicated, but we can see that

2A4p Ao

(4.12) $0(Q) = O+ 5p—5 7 S = Phop—h 7

as ¢ — 0 for arbitrarily fixed 4 = (4o, 41,4>),T,Q and P with some generic conditions
such as 2P — Q — 2T # 0. Here we have to note that, although Sy(Q), So(P) contain
formal power series of A4,e they are analytic if ¢ is sufficiently small for any fixed
A, T,Q,P.

By means of the above study, we define a differential field K’ on which Wy _; =
{8y, S1, S>> acts as the field of rational functions of 7', Q, P whose coefficients are formal
power series of Ay, Aj, A>,e. Then the action of any we Wy _, is defined as an iso-
morphism from K’ to itself.

The equations or property from to and the list in 2.3 show the theorem
for WV — W[V.

Since 0y = td/dt = (1 + 2¢T)(2e)"'d /dT = (1 + 2¢T)(2¢) "', and the transforma-
tion from (g, p) to (Q,P) is symplectic, the system Pj is expressed as

Py_w: owQ={Hy_w,0Q}, owP={Hy_w,P}

in the new variables, where Hy_; = 2¢(1 —|—28T)_1HV, and Hy_;y — Hpy as ¢ — 0.
However 6;, does not commutes with the elements of Wy _,;y and then we have to
notice that the transform of Pp_j; by we Wy_p is

@) = {25 (S ettt w(@)

2e 1 +2eT
51VM)(P) - {1 +28TM)< 28 )M)(HV—JV)?M}(P)}?

which is verified by the fact that J,, commutes with every we Wy _ p.
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5. Degeneration from Wy to Wyy.

The degeneration in this case is

(51) g = Ar, o = 8_1, o = Ay, o3z = 24, — 8_1,
0

5.2 t = —¢T =14+= =¢eTP.

(5.2) e, q=1+—5. p=e¢

We see that Ag+2A4; + 4> =ag+ oy + oy + o3 =1 and the change of variables from
(g, p) to (Q,P) is symplectic. As the case of Py; — Py, the transformation given by
(5.1) and is birational, and we can easily obtain the actions of s;,, i =0,1,2,3 on
the differential field K’ = C(A4y, 41, 42,6, T, Q, P).

Choose S;, i =0,1,2 as

(53) S() =S5, S1 = 853851 = 5153, Sg =50

which are reflections of Ay =, 4; = (o) +o3)/2, Ax = oy respectively.
It is easy to see that

(5.4)  So(do) = —Aog, So(d1) =A1+ Ay, So(dr) =A4r, Sole) = %Aoe
(55) S (A()) = Ayg+24;, S| (Al) = —A4, Sl(Az) = A, +24,, Si (8) = —&,
(5:6)  Sa(do) = Ao, S2() = A1+ 4z, Sy(d2) = —As. Sale) =+ +8A28
and

(5.7) S)(T) = T(1+ Age), Sy(Q) = Q+752. Sy(P) =P,

(58) ST = =T, SUQ)= 0 Si(P)=P= "5+ 55+ 0G)
(5.9) (1) = T(1+ Ax), $H(0) = Q+ 5. $:(P) = P

where O(¢) is a rational function of 4;, i =0,1,2, ¢, T, Q, P with a factor &. The proof
of the theorem for W, — Wj; has thus been completed.

We see that 0y = td/dt = Td/dT = oy; and the system Py is written in the new
variables by

Py 0mQ={Hy_m,Q}, 6mP={Hy_m,P}

where Hy_j; = Hy + QP, which converges to Hyy as ¢ — 0. Since d;7 commutes with
any element of Wy _jy, the transform of Py_;; by we Wy is

5111W(Q) = {M}(HV_J][), W(Q)}, 5111W<P) = {M}(HV_)][]), W(P)}

6. Degeneration from W to Wiy,

The degeneration is
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1 1
(6.1) ay=Ag—7& 0 =70 wr =4,
(6.2) t= —L8‘3(1 — ') q:L8_3(1 +2¢70) p:LSP-
V2 ’ V2 ’ V2

Then Ag+ Ay = a9+ o1 +o =1 and the change of variables from (¢, p) to (Q,P) is
symplectic. Since the change of parameters is not one to one, we consider the
degeneration process by introducing formal power series of the new parameters
A= (A(),A]),S.

We choose Sy and S; as

(63) S() = 85051850 = S15091, Sl =5

and put Wiy =<8y, S1>. Note that Sy, S; are reflections of Ay = o9 + a1, A = o
respectively.
Then we can obtain

(64) SO(AO) = —Ao, S()(Al) = A —|—2AO7 So(S) — 8(1 _ 4AO86)—1/67
(65) SI(AO) = AO + 2/117 Sl (Al) = _Ab S1(8> — 8(1 _|_4A186)71/6‘

Here, we make the same convention as in Section 4 that (1 —4A086)_1/ ¢ and
(1 —|—4A186)_1/ 6 respectively mean formal power series of Age® and A4,6® with 1 as
constant terms.

Let K’ be a field of rational functions of 7, Q, P whose coeflicients are formal
power series of A = (A4p,41),e. Then we can verify

(66) S()(T) — T, S()(Q) — Q—Q—#QOZ_T
4400 243
So(P) — P
olF) +P—2Q2—T+(P—2Q2—T)2’
(67) SUT) = T, 81(0) ~ 0+,
Si(P)— P

as ¢ — 0. Concerning the convergence, remind the note in Section 4. Thus we have
proved the theorem for W — Wjy.
Since 67 = (v/2/e)0yr, the system Pjp is written in the new variables as

Py onQ={Hpw-n, 0}, onP={Hw_nu,P}

where Hpy_ = (8/\/§)H1V and H;y_y — Hpy as ¢ — 0. Notice that J;; does not
commute with elements of Wy _y, and the transform of Pry_j;; by we Wiy is

onw(Q) = {ew(1/e)w(Hrv—m), w(Q)},
ouw(P) = {ew(1l/e)w(Hy—m), w(P)}.



Hierarchy of Bdcklund transformation groups of the Painlevé systems 1231

7. Degeneration from Wj; to Wy

In this case, the degeneration of parameters is given by
(71) ag = A1, o :Z&‘_ , Oy =Ay—=¢&

and that of variables is given by the composition of the following two transformations:

T X
(72) t:—‘[27 q:_;7 p:;(Al—ny),
1+ &T P
(73) T:T X:1+28Q, yzz_g

Note that 49 + A = ap + 204 + op = 1 and the transformations from (¢, p) to (x, y) and
from (x,y) to (Q,P) are symplectic.
Let us choose

(7.4) So = (S2S1)2 = (slsz)z, S =80

as generators of Wy ;. Then we see that

(7.5) So(Aog) = —Ao, So(A1) = A1 + 24y, So(e) = —¢,

(7.6) Si(Ao) = Ao+ 241, Si(Ar) =—41, Si(e) =&(1 +44,6%) 7',

In the last equation of [7.5), we have chosen —1 as a branch of (—1)1/ ’ in order that
S2(¢) =& As in Sections 4, 6, we make a convention that (14 44¢%)""/* is a formal
power series of A&’ with 1 as a constant term.

By careful calculation, we can verify

A
(7.7) So(T) =T, SO(Q)*Q*‘%»
4400 247
So(P) — P ,
0( ) +P_2Q2_T+(P_2Q2_T)2/
(7.8) SI(T) = T, Sl(Q)—>Q+%, SI(P) = P

as ¢ — 0 for arbitrarily fixed 4y, 4,,7T,Q,P. Thus we have proved the theorem for
Wir — Wi

We see that o, = (1 +82T)(282)_1511 and the system Pj; is written in the new
variables as

Pur—mr: 6nQ ={Hp—m, 0}, onP ={Hmy—u, P}

where HIIIHII = (282)(1 -+ 82T)_1H][[ and H[II—)II — H[[ as ¢ — 0. We notice that (5[[
does not commute with elements of Wy, and the transform of Py by we Wiy
1S
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2¢? 1+&T
1+82TW< 242 )W(HIH—JI)aW(Q)}«,

. 2¢e2 1+&2T
onw(P) = {1 n 82TM)< 202 )W(HHHU), W(P)}-

opw(Q) = {
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