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Abstract. Without any assumption on the characteristic exponents, we give fun-
damental solutions of linear Fuchsian partial differential equations.

1. Introduction and Main result.

Let C be the set of complex numbers, t € C, x = (xy,...,x,) € C", N={0,1,...},
meN*"=N—{0} and o= (o,...,2,) e N". Let 4 be a polydisc centered at the
origin of C,x Cy and set 4y =A4N{t=0}. Let a;,(t,x) (j+|o| <m,j<m) be
holomorphic functions defined on A satisfying

1.1) a;4(0,x) =0 on 4y if | > 0.

We consider the Fuchsian partial differential operator

(1.2) P= (z%)er > aﬁa(t,X)(f%)j(%)a

JHlol<m
j<m

and the linear partial differential equation
(1.3) Pu=0.

The operator P in was introduced by M. S. Baouendi and C. Goulaouic and
they proved a Cauchy-Kowalevsky type theorem and a Holmgren type theorem. Also,
H. Tahara investigated the structure of singular solutions of Pu = 0.
We now introduce some notations. We let
i) R(C\{0}) be the universal covering space of C\{0},
i) S(e) = {1 € RC\{0});0 < |1] < &},
i) Dp={xeC"|xj|<L,i=1,...,n},
iv) @ be the set of functions u(¢,x) that are holomorphic on S(g) x D; for some
e>0and L >0,
v) 0O be the set of germs of holomorphic functions at x = 0, which is the same as
the ring C{x} of convergent power series in Xx,
vi) K[p| be the polynomial algebra in ¢ with coefficients in a ring K,
vii) (D) be the set of holomorphic functions on D.
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We set
C(A,x) = 2"+ a;0(0,x)1.
j<m

This polynomial in A is called the characteristic polynomial of P. The roots of the
equation

C(Ax)=0

will be denoted by 4;(x),...,4,(x) and will be referred to as the characteristic exponent
functions of P. Now, let us recall the result of H. Tahara [2].

THeoREM 1.1 ([H. Tahara (1979)]). If the condition
(1.4) 2i(0) — 2;(0) ¢ Z — {0} for 1 <i# j<m
is satisfied, there are holomorphic functions E;(t,x,y) (i=1,...,m) on
Q={(t,x,y)eS(e) x DL x D;|t| < M|x; — y|",i=1,...,n}

for some ¢ >0, L >0, and M >0 which satisfy the following properties:
(I) For any ¢;(x)e Oy (i=1,...,m), the function u(t,x) defined by

(1.5) ) =3 Pt ip3)
i=1

is an O-solution of Pu = 0.
(II)  Conversely, if u(t, x) is an O-solution of Pu = 0, then u(t,x) is expressed in the
form (1.5) for some ¢;(x)e Oy (i=1,...,m).

The meaning of the integration in is as follows:

%Ei(t’x’ y)(pl(y) dy = JI" o .JF Ei(t7x7 y)(”l(y) dyl e 'dym

where for i =1,...,n, I; denotes the circle

{yie Cilyi— xi| = si}

in the y;-plane with a counter-clockwise orientation. Let ¢;(x) be a holomorphic
function on Dy. Since E;(t,x,y) is holomorphic with respect to y; on
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H. Tahara called the functions E;(¢,x,y) (i=1,...,m) a fundamental system of solu-
tions (or fundamental solutions) of in ¢. It should be noted that if we denote by
S the set of all O-solutions of [1.3), then the map defined by

(1.6) @ (O))" —— S

w w

((pla te 7§0m) — i%Ei(L)ﬁ y)gol(y) dy
i=1

is an isomorphism. For the case when the condition (1.4) is not satisfied, the con-
struction of fundamental solutions of in 0 seemed to be very complicated and
it remained an unsolved problem. About two decades later, T. Mandai proved the
following theorem without any assumption on the characteristic exponents of P.

THeOREM 1.2 ([T. Mandai (2000)]). Without any assumption on the characteristic
exponents of P, we can construct an isomorphism
(1.7) Y (0)" —— S

w w

m

(P12 0m) —— > Kilp)).
i=1

T. Mandai called this map the solution map of in 0. The construction
of Ki[p,] is very elegant, but still the construction of fundamental solutions as in
has remained as unsolved problem. We will solve this problem in this paper. The
following is our main theorem.

THEOREM 1.3 (Main result). Without any assumption on the characteristic ex-
ponents, we can construct holomorphic functions E;(t,x,y) (i=1,...,m) on

Q={(t,x,y) € S(e) x DL x Dp; |t| < M|x; — yi|",i = 1,...,n}

for some ¢ >0, L >0, and M > 0 such that each K;[p,] (i =1,...,m) in Theorem 1.2 are
expressed in the form

Kilp;] = L - -JI_ Ei(t,x,y)p;(y)dy1 - --dy,

for any ¢,(x) € 0Oy.

2. Proof of Main Theorem.

We begin by introducing some notations and definitions that will be used
throughout this work. We define the indicial polynomial of P by

Clu) = 1"+ a;0(0,0)u’.

j<m
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A characteristic exponent of P is a root of the equation C(u) =0. Let y,...,u,; be
the distinct characteristic exponents of P, and let r; (j=1,...,d) be the multiplicity of
;- Then for j=1,...,d, we can take a domain S; in C enclosed by a simple closed
curve y; such that

and

d
C(A+v,0) #0 for every Ae (U S\ {w} ) and ve N.
Here S denotes the closure of S. Thus, for some sufficiently small L > 0, we have
d
C(A+v,x) #0 for every xe Dy, Ae | )y |, and veN.
j=1

For every x € Dy, above condition implies that the number of the roots of C(4,x) =0 in
S; is r;. Therefore there exist monic polynomials B;(4,x) such that

C(4,x) =

—

Bj(i X
j=1

where By (2,x) = (2~ i1(x)) -+ (2= 2, (x)), Ba(dyx) = (A= 21 (x)) - (A= Ay (), .,
By(4X) = (2= Ay 11 (X)) <+ (2= Aoy (¥)) and Bi(2,%) € O(DL)) (1< j <d).
For 0 < L <1 we set

Qr={(x,») e C"x C"|x;| < L,|yi| < Lyx; # yi,i=1,...,n}
and for (x,y) e C" x C" we define
Y (x,y) =min{L — |x;|, |x; — yi|,i = 1,...,n}.
Note that
0<yy(x,y) <1 for any (x,y) e Q.
Let us now review the result of T. Mandai [3].

THEOREM 2.1. For any ¢;,(x) € Oy (1 < j<d,1 <k <), there exists a unique
solution K; i (t,x,A) € O({t =0} x D x (U/il ¥;)) of the equation

C(x) - OB X) ()

PRt 2, 2)0%) = B )
J\T

Moreover, the function
1
K; lo; i) =—.J K; (1, x, )" da
/ 2ni ),

is an O-solution of Pu = 0.
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We then have the linear isomorphism

Y (0)" — S
w w

(P 1<j<a —— > > Kixlo ]
1<k< ;

This result will be useful later. For now, let us consider the following partial
differential equation:
o5 Bi(A,y) - C(4, x)t*
(270)"B;(Z, y)(¥1 = x1) -+ (Yn — Xn)

The above equation is the essence of our construction. Using the function F; (¢, x, y, )
above, we define

(2.1) P(F;(t,x, y, 1) =

1 .

(2.2) Eir(t,x,y) = —J Fj i(t,x, y, A)t" dA.
’ 2mi y

As for [2.1), we have the following result:

PROPOSITION 2.2. For 1 < j<d and 1 <k <vrj, equation (2.1) has a unique holo-
morphic solution Fj(t,x,y, ) defined in

d

Q' = (t,x,9,4);(x,y) e, A e and | =< M
{( Py, 4); (%, y) € 21 (Un) ) }
for some L >0 and M > 0.

The proof of this proposition will be given in the next section. Let us now prove

Mheorem 1.3 using this proposition.

PrOOF OF THEOREM 1.3. By |Proposition 2.2, we may take any ¢; ,(x) € O(Dr) and
multiply the left and right sides of by ¢, ,(y). If we integrate both sides with
respect to y, then an application of Cauchy’s integral formula shows that

P ($ttn 200 )

:i; 0f Bi(2, ) - Co X)py (1)1
(27i)"Bi(4, y)(y1 — X1) -+ (Y — Xn)
S Bi(4,x) - C(2, x)g; 4 (x)1*

o B](l, .X')

dy

By Mheorem 2.1, we must have

I(j,k(lv X, j“) = %E}}k(hxa Vs }")wj,k(y) dy
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Now applying we see that

K; « [¢j7k]

1
27

|
—J (%F}',k(l‘a X, Yy j“)(p],k(y) dy> ti di
7

' Ay
LKj,k(I,x,l)t di=

J

=5 cl0.% 000,40

Since, by [Proposition 2.2, the function F;j (¢, x, y, A) is holomorphic on Q’, we see that
E;j k(t,x,y) is holomorphic on ©. This proves the theorem. ]

3. Proof of Proposition 2.2.

We now prove |Proposition 2.2, To avoid confusion, we write f instead of j in
(1.2). By expanding ag ,(¢,x) into a Taylor series in ¢ and using (1.1), we can reduce
equation (2.1) into

(3.1) C(t%,x) (Fy(t,x, y,A)1%)

== > Za/ia?p()()l‘p(t%>ﬁ<%)“};},k(t,x,y,i)[l

fHol<m p=1
p<m

N 05 B;(A,y) - C(2, x)t*
(278)"B;(Z, y)(y1 = x1) -+ (Y = Xn)

where ap , ,(x) € O(Dp) for some L > 0. Let us find a formal solution of [3.1) that is of
the form

o0
Fj,k(tv X, Y, l) = ZFj,k,v(X? 2 }")tv'
v=0

Substituting this into gives us the following recursive formula:

(3.2) C(A+v, X)) kv (x, y, 4)

= Y Y w40 (5] Bl

B+l <m p+qg=v
f<m  p=1

for v=1,2,..., with
0¥Bi(4,y)
(27i)"Bj(Z, y)(y1 — x1) -+ (¥ — Xn)

It follows from and that equation has a unique formal solution
F}',k(ta X, Y, j') = Z\?O:O F}J@v(-x? Y, j’)tl'

(3.3) Firo(x,y,A) =
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From now on, we will investigate the domain of convergence of Fj (¢, x, y,4). By

using we have

d

A
3 4) Foeolx, v,0)| < ————— on Q x .
(34] Bolv . A o . (Uy)

forl <j<d,1<k<r; for some 4 >0. The following lemma will play an important
role later.

LemMma 3.1.  Let F(x,y) be holomorphic in Q. If for some A >0 and { >0 we
have

A
|F(x, )| < ——— on Qy,
wL(xay)C
then for i=1,....n,
oF A(l 4+ e
F(x,y)'g(ig+1 n Q.
X lpL(xay)

Proor orF LEMMA 3.1. We have only to show the case when i =1. By Cauchy’s
integral formula, we have

oF 1 F(z,X2, .. Xn, V1yevvs Vn
(X, J (Zv 2, ) y21 y) -
0x1 27i |z—x1|=c (z— Xl)
Now take any (x,y) €, and fix it. Set
: Wi (x, »)
c= X, ).
1 C T\ X,V

Note that the following hold:

@) L-fzl=L-|xit+z=—x[=(L=|x])—lz-x| =dp(x,y) —c

:wL(x7y>_1—_’_C¢L(x7y):lf_éwL(xvy);
(b> L_lxi|2lpL(x7y)2 1+C¢L(x7y)7 i:2,...,l’l;
© l=nl=-—yn—- =2z =nl-lxa-z=dlxy) -c
:li_’_é:'wa(xvy%
¢

(d> |xi_yi|Z¢L(x7y)Z lpL(xay)a l:2,,7’l

1+¢

These imply that

¢
14+¢

lpL(xa y)'

U (Z,X0, 0oy Xy Vige v oy V) =
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Consequently, we have

1 J A

272:(:2 ‘Z_Xl|:CwL(va27"'7xn7y17'~'7yn)
1 A

< —-2nc-

27c? ((¢/(1+ )y (x, J’))g

_ AN+ (1Y A0+ De
) <1+ ) = Vo)

oF

a_xl(x’y)‘ <

7 ldz|

e

Applying this lemma to (3.4), we get

oY B
(35) ‘(_> F',k,O(x7 2 j‘)‘ < n+m
ox) i (o, )"

on Q) x (U/il y;) for any |a| <m, for some B>0. Now, we may assume the fol-
lowing: '

(€) lapup(x)| <bpap on Dy for any (8,0, p);

(f) szlbﬁ%l,ﬂ’ e C{t} for any (f,a);
(g) There is a positive constant ko such that

d
|C(A+v,x)| = ko(v+1)" on (Uy])xDL for v=0,1,2,....
=1

Let

J= max |/
(Ul )
For any fixed (x,y) € Q;, we consider the following linear equation with respect to

G=0G(tx,yp):

koB
lpL(xv y)
PR S > /XY (J + D" (e(n+m))"G
V(e )7 L =t (x, )"l

p<m

where B is the positive constant in [3.5]. It is obvious that the equation (3.6) has a
unique holomorphic solution

o0

G=) Gix,y)'eC{t}

=0

and that the coefficients Gj(x,y) (/=0,1,2,...) are calculated by the following
recursive formula:
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B
G()(X, y) = T ~n¥m>
wL(‘xu y) -
1 bﬂ o
Gi(x,¥) = ————m R
kOlpL(x y) Po|<m p+q=I lpL(xa y) (=0
p<m p=1
X (J+1)"(e(n+m))"G,
for /=1,2,.... Moreover, by induction on / we can show that for any / =0,1,2,...
we have
€
(3.7) Gi(x, y) = ’

lﬁL (x’ y) n+(I+1)m

for some ¢ > 0.
From now on, we will prove that (e(n+m))”G is a majorant series of
F; (t,x,y,4). To do so, we will need the following proposition:

ProPOSITION 3.2. For any |o|<m, 1 <j<d, and 1 <k <r;, the following in-
equality holds:

(3.8 () Bt ] < 0+ 1) el +.0) "6 )

on QLX(U, ) for v=0,1,2,....

PrROOF OF PrROPOSITION 3.2. We prove this proposition by induction on v. From
(3.5) and (3.7), we see that (3.8) is valid when v = 0. Next we suppose that (3.8) is true
for v=0,1,...,u— 1. Then, we may estimate as follows:

| Bk (X, 9, i)l

> g +9) g+ 1) e(n+m)"G,

ko(,u +1 /3+|o<\<m pra=u
p<m  p=1
! DD bpap(T+1)"(e(n 4 m))" 1 G
B.op . mlp—1 4
ko Bt|o|<m pHa=n Y (x, ) (=0
p<m p=1
— m _ m 8,u
- lpL(‘X7 y) Gﬂ(‘X? y) - lpL(x? y) wL(x, y)n+(lu+1)m
Eu

wL(xa y)n+um ‘
Applying Lemma 3.1 and the estimate:

(n+pm+ 1) (n+ pm + o) < (n+ um + o)

< {(e+ D0+ m)} = (u+ D+ m)™,

we see that
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o\ en+um+ e (n+ um+ |a|)e
‘(5_> Fieulx yMl)‘ . : n+(ﬂm+|oc =
X WL(xay)

_ et )+ )

o (x, )"
< (u+ 1) e(n +m))" Gy(x, y)

on Q x (Ujdzl y;) for any |af <m. Thus, the induction process is completed. O

This proposition implies that (e(n+m))”'G is a majorant series of Fj(,x, y,4) and
therefore the domain of convergence of Fj(t,x,y,A) follows from the domain of
convergence of G.

Now define H = H(n) as follows:

0
H(n) = Zsml.
=0

Using this and [3.7), we have

=% 81 o | H( : )
JZ(;%(X, y)"+m+mll W (e, )"\ (x, )"

We may now rewrite equation (3.6) into the following linear equation with respect
to H:

koH =koB+ Y Y bpop(+1)"n"(e(n+m)"H

PHlo|<m p=1
p<m

which implies H € C{n} from the assumption (f). Therefore, the domain of conver-
gence of G includes

Q/:{(z,x,y,/l) (x,y) e, )€ (U yj> and lh(|f| K <M}

for some L >0 and M > 0. Consequently, F; (7, x, y, ) is holomorphic on Q'. This
completes the proof of [Proposition 2.2,

4. Additional remarks.

Under the condition that 4;(0) — 4;(0) ¢ Z holds for 1 <i# j<m, H. Tahara
constructed in the fundamental solutions E;(t,x,y) = K;(t,x, y)t%?) (1 < j <m)
using the partial differential equations

C(4(p), )17

4.1 P(K;(1t,x, y)t" V) = —

& it 75 = Gy (= 3 - = )

for 1 < j<m. Here, we will investigate the relationship between and
to the fundamental solutions. To be precise, we wish to prove the

following proposition:
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PrOPOSITION 4.1. If the characteristic exponents of P do not differ by integer, then
the fundamental solutions E;(t,x,y) (1 < j < m) in Theorem 1.3 coincide with the ones in
Theorem 1.1.

Before proving this proposition we state the following result in [2].

LemMMA 4.2.  Under the same assumptions as in Proposition 4.1, equation (4.1) has a
unique holomorphic solution K;(t,x,y) defined in

{<t7x7y>ecx C" x Cn;‘l| <87‘xi| <L7‘yl’ <L7|[| <M|xi_yi’m7i: 17"'7”}
for some ¢ >0, L >0, and M > 0.

We now prove [Proposition 4.1 using this lemma.

ProOF OF ProrosiTiON 4.1. If the characteristic exponents do not differ by an
integer, then becomes

(4.2) P(F: (1, x, y, 2)1") = C,x)t”

(27i)"Bi(Z, ) (1 — x1) -+ - (Yu — Xn)

for 1 <j<m. 1If we set

1
Ej\(t,x,y) = 2—77.'1J F; (¢, x, y,/l)l)“ dA,
y

then we have
C(4(y),x)t")
2mi)"(yr —x1) -+ (Vn — Xu)

Therefore, by the uniqueness of the solution stated in [Lemma 4.2], it follows that our
fundamental solutions and the ones in are the same. ]

P(Ej (1, %, ) =
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