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Abstract. In [BG], it is proved that the Whitehead length of a space Z is less
than or equal to the nilpotency of 2Z. As for rational spaces, those two invariants are
equal. We show this for a 1-connected rational space Z by giving a way to calculate
those invariants from a minimal model for Z. This also gives a way to calculate the
nilpotency of an homotopy associative rational H-space.

1. Introduction.

We assume that all spaces in this paper are connected based spaces with the homo-
topy types of CW-complexes and all maps are based maps.

In [Ark], the generalized Whitehead product [f,g] : (X AY) — Z was defined,
where f: XX — Z,g: XY — Z. Moreover Arkowitz showed that for given space Z, the
following three conditions are equivalent.

(i) £2Z is homotopy commutative.

(ii) For any spaces X,Y, all the generalized Whitehead products vanish.

(iii) For any spaces X,Y and any maps f,g, there exists a map H which gives the
following homotopy commutative diagram:

2X \/EYfT)Z

YX x XY

As for rational spaces, suspension spaces decompose to wedges of spheres. Therefore
the third is equivalent to the condition that all (ordinary) Whitehead products of Z
vanish. In other words, for a rational space Z, WL(Z) = 0 if and only if nil(27) = 0.
Here WL(Z) and nil(£27) stand for the Whitehead length of Z and the nilpotency of
27, respectively (see Definitions 4.2 and 4.10).

In this paper, we prove that WL(Z) is equal to nil(£2Z) for a simply connected
rational space Z by comparing these invariants with another numerical one, which is
called the d;-depth of a space. We note that the fact WL(Z) is equal to nil(27) is
proved in [Sal] without assuming the 1-connectedness of Z.

In the rest of this paper, we assume that all spaces are nilpotent connected based
spaces with the homotopy types of rational CW-complexes whose homologies are of finite
type, and all maps are based maps. We also assume that all vector spaces and algebras
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are defined over the rational field Q.

An outline for the paper is as follows. We prove some facts on H-spaces in §2
using the correspondence between homotopy types of rational H-spaces and isomorphism
classes of the Sullivan models whose differentials vanish. In §3, we construct a minimal
KS-model for a path space fibration and investigate some properties of it for the following
sections. In §4, we investigate the nilpotency of the loop space £2X for a space X. To this
end, we define a rational homotopy invariant d;-depth(X) for a minimal model for X.
We prove that this invariant is equal to the Whitehead length of X and the nilpotency
of 2X. Note that di-depth(X) = WL(X) is also proved in [KY, Appendix]. The
nilpotency of homotopy associative H-spaces is given in §5.

2. Definitions and basic results.

DEFINITION 2.1. A Sullivan model (A V,d) is a differential graded algebra(DGA)
with the following properties [FHT].

e AV is the free graded commutative algebra on a graded vector space V = {Vi};>.
e VV admits a filtration V = U;’iOVi, where 0 = V_; C Vi € Vi C --- such that
d: Vi = A\Vio1.

A Sullivan model is called a minimal model if its differential maps into decomposables.
We say that an element @ € A V has the word length n if z € A" V, and that an element
x € AV has the degree i if z € (\V)’. We denote by |z| the degree of x.

DEFINITION 2.2.  Let (/\ V,d) be a Sullivan model with d = dy + d; + --- where
d; -V — /\H_1 V. We call dy the linear part of d, and dy the quadratic part of d. We say
that (A V,d) is coformal if d = d;.

DEFINITION 2.3. An H-space (X, ) is a based space X with a homotopy class of
map p: X x X — X which is homotopic to the identity when restricted to each factor.
We call p a multiplication.

Let X be a connected rational H-space. It is known that X has a minimal Sullivan
model whose differential vanishes. Since H*(X, Q) is free, its minimal model is isomor-
phic to H*(X,Q). Hence the Sullivan representative of a map f between connected
rational H-spaces is uniquely determined. We denote the Sullivan representative of f
by f*. Note that f* = H*(f). Let (A V,0) be a minimal model for X and x1,xo,...
be a basis of V such that 0 < |z1| < |z2| < ---. Homotopy classes of multiplications
correspond bijectively to maps of graded algebras p* : AV — AV ® AV of the form

) =z0l+lor+ 3 PieQy p(l)=11,

J

where P;;,Q;; are polynomials in zy(k < ¢) having positive degrees. For a Sullivan
model, a map in the above form is also called a multiplication. We call z; is primitive
when p*(z;)) =2; 1+ 1 ® ;.

We derive bijective correspondence between the homotopy category of connected
rational H-spaces and isomorphism classes of connected augmented graded commutative
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Hopf algebras with finite generators in each degree. In the rest of this section, we prove
some properties on inverses of H-spaces using this correspondence.

DEFINITION 2.4. A left inverse A : X — X and a right inverse p : X — X of an
H-space (X, p) are maps such that the compositions

X 25 xxx M, xxx " x

and

X -2, Xxx 2 xxx . x

are null homotopic, where A : X — X x X is the diagonal map.

THEOREM 2.5 ([Jam]). An H-space (X, p) has a left inverse A and a right inverse
p unique up to homotopy.

PROOF. A proof of general case is found in [Jam]. In rational case, we can calculate
a Sullivan representative of inverses from a Sullivan representative of the multiplication.
By the definition of the left inverse, we have

AN @ V(i) = A (@) + 2 + Y A (Py)Qij = 0.
j

Since Pj; is a polynomial in z,(k < 4), by induction on ¢ we have \*(z;) = —z; —
22 AN (Piy)Qiy and p*(z;) = —x; — 32,5 Pijp*(Quj)- O
COROLLARY 2.6.  Ap and pA are homotopic to the identity.

Proor. By induction on i, we have

p*A*(xz) =T + Z-Pijp*(sz Zp )‘* U Ql]) = Ty. O
J
COROLLARY 2.7.  The following three conditions are equivalent.
(i) A~1.
(ii) A =~p.
(iii) p% ~ 1.

PROOF. It is clear from the previous Corollary that A ~ p when A% ~ 1.
We show A? ~ 1 when )\ ~ p by induction on i.
Applying \* to both sides of the equality

)\ —X; — Z >\ 1] sz

we have
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This completes the proof. O

In [AOS], an H-space with the left inverse having finite order other than two is
given. Next Proposition states there is no such a rational H-space.

PROPOSITION 2.8.  For any positive integer n, \™ % 1 when A % p.

PrROOF. When n is odd, the term of A\*(z) having word length one is —z. Hence
A" £ 1
We assume n is even. Let i be the least number such that (A\*)%(z;) # z;. We write

(N)(zi) = 2 + P,
where P is a polynomial in zx(k < 7). Then we have
(W) (i) = @i + P+ (N)*(P) = 2; + 2P,
and

()27 (2) = i + gp. 0

DEFINITION 2.9. An H-space (X, ) is homotopy associative if p(ux1) = p(lxu) €
[X x X x X, X].

An Hopf algebra (A V, u*) is associative if (u* x 1)p* = (1 x p*)u*. We use the term
“associative” after the manner in [AOS] so that homotopy associativity of H-spaces
corresponds to associativity of Hopf algebras.

PRrROPOSITION 2.10. Homotopy associativity implies A ~ p.
PROOF. Since A*(A\* @ 1)p*(P;;) = 0 and A*(A\* @ 1)p*(z;) = 0, it follows that
ATAT B DO @10 )" @ D’ (20)
A eV ele ) e ) (w14 Y PyeQ;+10w)
=A(A RN @1Rp)(1o1e ;)
= p* (@)

On the other hand, we have
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A(AT S 1) @10 p) (18 )i (1) = N (2.

Since (1 ®@ p*)p* = (p* ® 1)p*, it follows that A\*(z;) = p*(z;). O

REMARK 2.11. The converse of Proposition 2.10 doesn’t hold. We give a finite
H-space that A ~ p while it is not homotopy associative.
We consider the following Hopf algebra which is not associative:

A@.y.2), ol =111yl = 3, 12| =5,

where the elements y and z are primitive and p*(z) =z ® 1+ 1® 2+ y @ yz. We see
(@) = p*(x) = —.

PROPOSITION 2.12. If H*(X) is finite dimensional, then the following two condi-
tions are equivalent.

(i) A~ p.

PROOF. From Corollary 2.7, we have A ~ p when \*(x;) = —a;.
Assume that A ~ p. Since H*(X) is finite dimensional, |x;| must be odd. Let i be
the least integer such that \*(z;) # —xz;. We write

pr ) =2 @1+ 102+ Q1 ® Q,
where @1, Q2 are polynomials in z;(j < ¢) having positive degrees. Then we have
)\*(Z‘Z) = —X; — P,

where we denote \*(Q1)Q2 by P. For dimensional reasons, P has degree greater than 3
and odd word length. Since P is a polynomial in z;(j < %), it follows that \*(P) = —P.
Therefore

(A)?(xi) = A*(~a; + P) = ; — 2P.

The statement follows from Corollary 2.7. (]

REMARK 2.13. Proposition 2.12 does not always hold if H*(X) is infinite dimen-
sional. Consider the Sullivan model (A(z,y),0), where |z| = 4 and |y| = 2. Define its
multiplication p* such that p*(z) =2 ®1+1Qx+y®yand p*(y) =yR1+1xy. We
see that \*(z) = p*(z) = —x + 2.

3. Model for the path space fibration.

Let X be a 1-connected space. In order to investigate the multiplication of 2X by
means of a minimal model for X, we first recall a KS-model for the path space fibration
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NX — PX — X (see [TO, Remark 5.5]).

Let (AV,d) be a minimal model for X. Then the following is a (not minimal)
Sullivan model for the free path space of X:

(/\(V OV @ V), d)7 dv' = 8, dsv’ = 0,

where V' = {v'|v € V}(Jv'| = |v| — 1) and 6V’ = {§v'|v € V'}. We define a derivation I
on the Sullivan model by I(v) = v’, I[(v') = 0 = I(6v'). Then the automorphism ef°d+d°!
of the model for X' is defined by

od)

Iod+doI 1+dOI+Z

n=1

We denote » (I':f)n ( ).
Let © = efed+doly and V = {6|v € V'} then there exists a DGA (A(V & V' & V), d)
such that

(AVevew)d)=(AvevaV),ad).

LEMMA 3.1. We define a DGA as follows:
(/\V@/\V/,D>, Dv=dv, Dv' =v—710(v),

where 7 : (NV @ V' @ V),d) — (A\V & AV',D) is a DGA map defined by 7(v) =
0,7(0) = v,7(v") =v'. Then this DGA has the following properties.

(i) D?>=0. (D is actually differential.)

(i) Im(D) c AZ' Ve AV

(iii) 702(v) = 7(X,, L (I o di)™v), where ‘=" means the components in V@ \V' are
equal.

PRrROOF.

(i) Wesee D?(v) = D?(v') =0 forve Vo' € V',

D?(v) = d*(v) =0

D*(v') = dv — DT82(v)
= 7d(0 — 2(v))
=7d(v+ &) =

(i) First we observe 2(v) € A(V<I"l @ V<"l g 5v/<P"'l) " By induction on |v], we
show 72(v) € A=' V @ A V', which is equivalent to 2(v) € A= (Ve V)@ AV
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Since 6v/ = & — v — 2(v), by induction, it is enough to show 2(v) € A= (V &
VY@ AV'. Since d : N"(V @ V)@ AV — AZ"T'(V @ éV') @ AV’ and
I:\N"(VasV)a AV = AZ" ' (V@ sV) @ AV, it follows that

n >n

(ITod)": A\ VeV e AV - A(Vesv)e AV

Therefore we get 2(v) € A= (V @& V)@ AV'.

(iii) We observe 71 (V @ AV’') C oV' @ AV’ C (A" (V@ dV’') @ AV',d). We extend
the derivation dy of (A V,d) to a derivation of A(V &V’ & §V’) by the canonical
way. Since Tod—Tody : \"(VEASV)OAV — A"V oAV AV, it
follows

1 >2
(Lo —(Tod)": A (Ve AoV )a AV = A (Ve Nav')a AV
Therefore, 2(v) =3, L (Iody)"v, where ‘=" means the components in V' ® A\ V’
are equal. This completes the proof. O
PRrROPOSITION 3.2.  The following is a minimal model for the path space fibration
X — PX « N2X:

(AV.d) —— (AV&AV'.D) —Z1s (AV',0),

where 1 is the inclusion and € is the augmentation.

PROOF. Minimality follows from previous Lemma. We have to show HZ}(AV ®
A V', D) = 0. We consider the spectral sequence associated to the word length filtration.
The E;-term has the form H*(A(V @ V'), Do), and the cochain complex (A(V @& V'), Do)
is obviously acyclic. O

4. Nilpotency of loop spaces.

DEFINITION 4.1. The commutator ¢ of an associative H-space (X, u1) is the com-
position of the following maps:

XxX 228, XuXxXxX 2L XXX xX 2V v X x X x X
”—X”> XxX L) X

)

where t : X x X — X x X is the map defined by ¢(z,y) = (y,z). Thus the Sullivan
representative ¢* is expressed as the composition

*

(AV,0) —— (AV,0) @ (AV,0) 225 (AV,0)%4  XEXEIBL £y g)es
1808 (AV0)® 222D (AV0) @ (AV,0),
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where t* : vy @ vy > (=1)1"111V2lyy @ vy
As for the definition of the n-fold commutator, po = 1,01 = ¢ and ¢, = po (1 x
(pnfl) (n > 2)~

DEFINITION 4.2.  The nilpotency of an associative H-space (X, u) is the least n
such that ¢, 41 is null homotopic. We denote it by nilX.

For an Hopf algebra A V with an associative multiplication p*, nil(A V, p*) is defined
by the least n such that ¢y is 0.

We investigate the nilpotency of the loop space £2X for a 1-connected space X. To
this end, we consider the path space fibration 2X — PX % X. The following is also a
fibration:

NX xNX — 5 PX xNX 2P, x

)

where py, is the projection onto the left factor.
We constructed in the previous section a minimal model for the path space fibration.

(Avd) = ((Ave Av).0) = (AV'0).

where Dv = dv, Dv' = v — 702(v). We regard (A V’,0) as an associative Hopf algebra
with the multiplication p* induced from the multiplication of 2X.
The action ¢ : PX x 2X — PX gives the following commutative diagram:

X 2 PX — (92,6

o] ] ]

X 2P PX x QX ——— X x N2X.

Then we can choose a Sullivan representative for ¢ which makes the following diagram
commutative:

(ANV,d) —2<L (ANVe AV',D) _eot | (AV’,0)

o ‘| |

(AV.d) —"L (AV @ AV, D)@ (AV',0) =225 (AV',0)@ (A V',0).
For 2’ € V', we write

u*(r’):x'®l+1®x’+2@®%

2

and

¢*(2)=10u @)+ AieB ®C,
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where @;,%; € A=' V', 4; € A°'V, B;,C; € AV'. Then we obtain
¢*Dr’ =x@1®1—¢"70(x)
and

(D®1)¢*2' =Da' @1+ Dd; @ W;

+ Z(DAZ ® B; ® C; + (—1)|Ai|Ai ANDB; ® C;).

From above commutative diagram, ¢*Dx’ = (D ® 1)¢*2’. This equation is the key to
the rest of this section.
Suppose that the graded vector space V has a filtration {V;} such that

V=V, wcwnc-, d:Vi- AV
This gives a filtration of the graded vector space V' by (V'),, = (V;,)’. Then we have the

following Lemma.

LEMMA 4.3.
pra) - @l-1es e A\Vio \Vi, o' eV,

ProOF. It follows from Lemma 3.1 that the components of ¢* Dz’ in V,, .1 @ AV'®
AV'isz®1®1. On the other hand, components of (D ® 1)¢*2' in V11 @ AV @ AV’
liesinz®1®1+ ), Do®; ®¥;. Hence ), Do®; ® ¥; doesn’t contain terms in V41 ®
AV’ ® AV’, that is, ®; does not contain an element of V,; , ; as its factor.

Considering the other path space fibration with converse start point and end point,
we get ¥; does not contain an element of V;,_ ; as its factor. (]

COROLLARY 4.4. If (AV,0) is a minimal model for an H-space (X, ), then all
elements of V' are primitive.

PrROOF. We can choose a filtration of V' so that Vj = V. O

REMARK 4.5. The converse of Corollary 4.4 is not true. Consider a minimal model
for CP?:

(/\(:U,y)7 dsz,dy:x?’), lz| = 2,|y| = 5.

For dimensional reasons, we see that the elements 2’ and y' are primitive in H*(2CP?).
We give an upper bound of nil2X.

LEMMA 4.6. For a minimal model (\V,0) for an associative H-space (X, ),
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>1 >1

Imy* G/\V@/\V.

PROOF. For v € V we write p*(v) = v®14+1®@v+ >, P ® Q;. Then the
components of p*(v) in AV®1is AN (v) @1 +v®@1+ >, A (F;)Q; ®1 = 0. Similarly
we have that the components of *(v) in 1 ® AV is zero. O

PROPOSITION 4.7.  If X has a minimal model (\'V,d) with a filtration {V;}i<n
of V. such that V.= .. Vi, 0 =V_y Cc Vo C Vi C - anddy : V; = AV_1, then
nilRx <n.

i<n

PrROOF. We show that ¢j 2" = 0 in A V., by induction on i. We only have to
show this for the generators. B

When i = 0, by Corollary 4.4 we have ¢* = 0. Suppose that ¢} 2’ =0if 2’ € V..
For 2’ € V/, by Lemma 4.6, we can write ¢*2’ = A ® B, where A, B € /\21 V'. By
Lemma 4.3, if ¢*2’ would contain generators in V>;, it must be 2/. However this is
impossible for the dimensional reasons. O

Next we investigate a lower bound of nilf2.X.
PROPOSITION 4.8. Ifdix =), u; ANv;, x,u;,v; €V, we have
Doa(@) @ n(@) = = 3 (D)l @) + (-1 @ ),
where 2 N=1 V! — V' is the quotient.

PROOF. We compare the components in V ® 1 ® V' of the equation ¢*(Dz') =
(D ®1)¢*(2'). From the proof of Lemma 3.1,

00y = 9 (= 5 D s el ) )

i

_% Z ((—1)Iui\ui A ¢* (v]) + (_1)(|ui|+1)\vi|vi A ¢*(u;))

1
3 Y ()Ml @ 1@ v+ (1), © 1@ W),

(—9

where ‘=’ means the components in V ® 1 ® V'’ are equal. On the other hand, since
DA;® B;® Ci,A; ADB; @ C; € N>V @ ANV’ @ A\ V', the component of (D ® 1)¢*(z')
nVeleVisd Dyr(d;) 1 n(¥).

Comparing these completes the proof. O

We calculate the first terms of the commutator of 2X from the quadratic part of
the differential of a minimal model for X.

PROPOSITION 4.9. Ifdixz =), u; Av; then we have
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0’ == 30 ()P @ 0] (~) D g ).

i
where ‘=" means the components in V' @ V' are equal.

ProoOF. Word length argument gives the component of ¢*z’ in V' ® V' is deter-
mined by the component of u* in V/ ® V’. Direct calculation using the result of previous
Proposition completes the proof. O

DEFINITION 4.10. The Whitehead length of X, written W L(X), is the least integer
n such that all (n 4 1)-fold Whitehead products vanish.

Now we consider a lower bound of the nilpotency.

LEMMA 4.11.  Let (AV,d) be a minimal model for X. The least number n such
that the component of v}, (') in V'€ 2 yanishes, equals WL(X).

ProOF. Let (AW;,d)(1 <i <n+2) be a minimal model for §™i(m; > 1). We
observe that the natural quasi-isomorphisms (A W;,d) — H*(S™) define the bijection

57 x - eex s, XJg 2 [( AVS0), (AWid) @@ (A Wasa,d)]
= [/\V’,H*(Sml)®~-~®H*(Sm"+2)]

fr=H(f).

Since Img?, , < A”" V!, we have @7, = 0 in V"2 if and only if H*(f) ® - ®
H*(foy2)ph 1 =0in [NV, H*(S™)®--- @ H*(S™+)] for any maps f; : S™ — 2X.
By the bijection above, this is equivalent to the Lemma. O

DEFINITION 4.12.  dy-depth of a minimal model (A V, d) is the least number n such
that V,, = Vi1, where

V=0, Va={veVidwe AVau}, V=V

If such an integer doesn’t exist, we define di-depth(A V,d) = oc.

REMARK 4.13. d;-depth is a rational homotopy invariant. Indeed, any DGA map
between minimal models f* : (AV,d) — (A W,d) preserves the filtration mentioned
above, that is, f* : AV, — AW,. Hence, if f* is an isomorphism, then f* : A(V, \
Vie1) = AW, \ W,_1). Therefore we define d;-depth of a space X by d;-depth of its
minimal model.

REMARK 4.14. There is a coformal space X, such that 7, (£2X) is isomorphic to
. (2Xc5) as a Lie algebra. Such a space is called the associated coformal space of X.
Topologically, d;-depth(X) can be considered as the height of the generalized Postnikov
tower of Xy.
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THEOREM 4.15.  For a 1-connected space X we have WL(X) = nil(2X) =
dy-depth(X).

PrROOF. By Lemma 4.11, we have WL(X) < nil(£2X). By Proposition 4.7, we
have nil(2X) < dy-depth(X). We show WL(X) > d;-depth(X).

Let (A V,d) be a Sullivan model for X and V' = {V; };<,, be the filtration which gives
di-depth. We denote the component of ¢} in V®*! by @7, We show that @} (z') # 0
for ' € Viy1 \ Vi by induction on i. Let {v,;} be a basis of V. We can write ¢*(z') =
>_;vj ®Uj, where U; € V. It follows from Proposition 4.9 that there exists an integer j
such that U; € V;\ Vi_1. By induction hypothesis, @; (z') = >_; v; ® ¢;_; (U;) # 0. This
completes the proof. O

ExXAMPLE 4.16. We give a space X with nil(2X) = n.
Define a Sullivan model (A{V;}i<n,d) as follows.

‘/; = {xai}> ‘/0 = {xame}
d:V;— \Viaa

To; — Tay_y NTo, (1 <0< n)

i

Tay, — 0

xg — 0,

where |zg| is odd. By Theorem 4.15, nil(A V') = n.

5. Nilpotency of homotopy associative H-spaces.

In this section, we investigate the nilpotency of a connected homotopy associative
H-space G.

Let L be a connected graded Lie algebra. We regard L as a differential graded Lie
algebra(DGL) with zero differential. First, we recall the functor ¢* [FHT, §23|, which
sends L to a minimal model for a coformal space Z such that m.(£27) = L as a graded
Lie algebra. We denote the functor DGA — DGL taking the primitive space by &2. By
Theorem 4.5 of [Qui, Appendix B], €*Z H,(G) is a minimal model for a coformal space
Z such that m,(27) = 7, (G). Taking the universal enveloping algebra and the dual, we
have an isomorphism of Hopf algebras H*(G) = H*(£2Z). Therefore by Theorem 4.15,
we have

THEOREM 5.1.

nil(G) = d;-depth(¢* Z H..(Q)).
In other words,

nilG = nilr, (G),
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where m,.(G) is considered as a Lie algebra equipped with the Samelson product.

REMARK 5.2. If G is homotopy commutative, then & H,(G) is abelian. Therefore,
€¢* P H,(G) has zero differential. This implies that there is an H-equivalence G ~ 22Y
for some space Y.
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