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_ _ R
Abstract. Let fr7(z,2) = z‘ll1+b1 zilzz 4+t zZ’illJr " lznillzn +

z%"“’” 22" z1 be a mixed weighted homogeneous polynomial of cyclic type and

gr1(z) = zfl zo+ -+ zZ’i}lzn + zp™ 21 be the associated weighted homoge-

neous polynomial where a; > 1 and b; > 0 for j = 1,...,n. We show that two
links S2" 71 n f1_11 (0) and S2"~1n 91_11 (0) are diffeomorphic and their Milnor
fibrations are isomorphic.

1. Introduction.

Let f(z,z) be a mixed polynomial of complex variables z = (z1,..., z,) given as

m
flz,2z):= Z c;zVizh,
i=1

where ¢; € C* and 2% = z/"'--.2,"" for v; = (Vi1,...,Vin) (vespectively zHi =
2zt for i = (i, .-+, Min)). Here Z; represents the complex conjugate of z;.

A point w € C" is called a mized singular point of f(z,z) if the gradient vectors of
R f and J f are linearly dependent at w. Certain restricted classes of mixed polynomials
of the variables z which admit Milnor fibrations had been considered by Seade, see for
instance [7], [8]. The last author introduced the notion of the Newton boundary and
the concept of non-degeneracy for a mixed polynomial and he showed the existence of
Milnor fibration for the class of strongly non-degenerate mixed polynomials [3].

We consider the classes of mixed polynomials which was first introduced by Ruas—
Seade—Verjovsky [6] and Cisneros-Molina [1]. Let pi,...,p, and q1,...,q, be integers
such that ged(py,...,pn) = ged(qu,...,qn) = 1. We define the S'-action and the R*-
action on C" as follows:

coz=(P2z,...,P"2,), ce S

roz=(r"z,...,r"z,), reR".
If there exists a positive integer d, such that f(z, Z) satisfies
f(Przy, .. Pran, @2, .. @ 2,) =c f(z,2), ce S,

we say that f(z,2z) is a polar weighted homogeneous polynomial. Similarly f(z,Zz) is
called a radial weighted homogeneous polynomial if there exists a positive integer d, such
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that
frTzy, . otz rT . %) =¥ f(z,2), reR".

Let f be a polar and radial weighted homogeneous polynomial. Then f admits the global
Milnor fibration f : C™\ f~1(0) — C*, see for instance [6], [1], [2], [3].
Let f(z,2) = >.", c;z""2" be a mixed polynomial with ¢; # 0,5 =1,...,m. Put

m
= E c;zV TR
i=1

We call g the associated Laurent polynomial of f. A mixed polynomial f is called simpli-
cial if m < n and the ranks of the matrices N £ M are m where N = (v1,...,v,)
and M = (u1,...,4n). Here v; and u; are considered as column vectors v; =
Wity oy Vin), i = Yty - oy phin)- [ is called full if m = n. A full simplicial mixed
polynomial f and its associated Laurent polynomial g admit a unique polar weight and
a unique radial weight in the above sense [2]. It is useful to consider a graph I" associated
to f. First we associate a vertex v; if z; or z; appears in f. We join v; and v; by an edge
if there is a monomial z"*z#** which contains both variables z;, z;. That is vy o+ ttk,a > 0
for a = ,j. Most important graphs are a bamboo graph

U1 Vo Un—1 Un
B,: e . ... ° °

and a cyclic graph C),, which is obtained from B,, adding an edge between v,, and v;.
We restrict the Milnor fibrations defined by f and g on the complex torus C*"* where

C*™ = (C*)™. In [2, Theorem 10], it is shown that there exists a canonical diffeomorphism

@ : C* — C*™ which gives an isomorphism of the Milnor fibrations defined by f and g:

C\ f71H0) S €\ g7 1(0)

[/ ls

ok — ok

However the canonical diffeomorphism ¢ does not extend to C™ \ {O} in general. Here
O is the origin of C™. The exceptional case is a mixed Brieskorn polynomial, for which
this canonical diffeomorphism extends as a continuous homeomorphism [6]. In [4], the
last author studied the following simplicial polar weighted homogeneous polynomials:

_ _ b b
fa,b(za Z) — Za1+b1 b1 4+t ZZn 11-|- n— 1Znn 11 + Zan-}-bﬂz
_ b b an—1+bn—1 by
f](Z, z) _ Zlh-‘r 1 12’2 4o 11 1Zn 1lzn 4 Zan+bnzzn
_ by =b an—1+bn— bn
fII(Z7 Z) — a1+ 1 12 e zom 11 1 lzn 4 Za’L+b’LZZ'LZl
where a; > 1 and b; > 0 for j = 1,...,n. Here the notation is the same as in [4].

Note that the graph of f; is a bamboo and that of f;; is a cyclic graph. The graph of
fap is n disjoint vertices without any edges. A polar weighted homogeneous polynomial
fab(2, Z) and a weighted homogeneous polynomial gq(z) are called a mized Brieskorn
polynomial and a Brieskorn polynomial respectively. A mixed polynomial f;(z,2) is
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called a simplicial mized polynomial of bamboo type and fr;(z,z) is called a simplicial
mized polynomial of cyclic type respectively. He showed that two links of f, and the
associated polynomial g,(z) in a small sphere are isotopic and their Milnor fibrations
are isomorphic for ¢+ = (a,b) and I. He conjectured the assertion will be also true for
the case fr;.

2. Statement of the result.

The purpose of this paper is to give a positive answer to the above conjecture.
Thus we study the following simplicial polynomial fr;(z,z) and its associated weighted
homogeneous polynomial gr7(z):

> b1 b an—1+bn—1 _bn— -
fII(Z z) _ 21111-1- 12,112,2 NI anll 1Zn,112'n + Z?LnernZznzl’
a An—1
g11(2) =2tz 42, 7 2 + 20 2,
where a; > 1 and b; > 0 for j = 1,...,n. We assume that f;; contains a conjugate z;

for some j. This implies
(a) there exists j € {1,...,n} such that b; > 1.

We also assume that fj; is simplicial. As the determinant of N — M is given by
ai---a, + (—1)"*1, we assume also that
(b) there exists k € {1,...,n} such that a; > 2.
Though this assumption is not necessary if n is odd, we assume (b) anyway. Since
fr1(z, z) is a polar and radial weighted homogeneous, fr7(z, z) admits a global fibration

fir :C"\ f1(0) = C*

[6], [1], [2], [3]. The complex polynomial g;;(z) is a weighted homogeneous polynomial
with respect to the same polar weight of fr; and gyr with n = 3 is listed in the classifica-
tion of weighted homogeneous surfaces in C? with isolated singularity [5]. We consider
the hypersurfaces

Vi = f1'(0), Vg =95/ (0)
and respective links
Kie=Vy;nS2t K, .=V,ns !

where S?"~1 is the (2n — 1)-dimensional sphere centered at the origin O with radius
¢. Then the two links Ky, and K, . are smooth for any ¢ > 0 ([2]). We consider the
following family of mixed polynomials:
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Jrri(z,2) == (1 =) f11(2, 2) + tgr1(2)
_ (1 N t)(z?l-i-bl 211)1 2y 4o Zzil1+bnf1zzni—1lzn + Zzn+b7L227Lzl)
+t(2{ 2y 4 2 2 20 2)
n
= Z 270z {(1 = 1) 2?7 + t}
j=1

where 0 < ¢ < 1. Here the numbering is modulo n, so 2,41 = z1. Though the mixed
polynomial fr;; is not radial weighted homogeneous for ¢t # 0,1, frr+ is polar weighted
homogeneous for 0 < ¢ < 1 with the same weight P = (p1, ..., pn) which is characterized
by ajp; + pjy1 =dp, j=1,...,n. Put

Vi = f174(0), Kpe=82"""nV,, 0<t<1
Note that
frro = fr1, frr = 911

Vf = ‘/07 Kﬁa = KO,E? Vg = V17 Kg7a = Kl,a-

First recall that V; has an isolated mixed singularity at the origin O and V; \ {O} is
non-singular for any 0 <t < 1 by [4, Lemma 9]. Our main result is:

TRANSVERSALITY THEOREM 1.  Let V; be as above. For any fized € > 0, the sphere
S2n=1 and the family of hypersurfaces Vi are transversal for 0 <t < 1.

3. Proof of Transversality Theorem 1.

3.1. Strategy of the proof.
We follow the recipe of [4]. First recall that

frii(z,2) == (1= 1) f11(2, 2) + tgr1(2)

= 2z {1 )|z + 1),

Jj=1

Recall that V; is non-singular off the origin by [4]. To show the transversality of the
sphere S27~1 and V;, we have to show that the Jacobian matrix of R fi7,4,7 fr7,s and
p(z) has rank 3 at every intersection w € S2"~* N V;. Here p(z) = ||z[|?, the square of
the radius ||z||. However this computation is extremely complicated. Instead, we follow
the recipe of [4]. We will show the existence of a tangent vector v € Ty, V; which is not
tangent to the sphere 5’62(?*1,

Take a point w = (wy,...,w,) € Vi N 5825“1 and fix it hereafter. To find such
a vector v, we will construct a real analytic path

w(s) = (r1(s)wy, ..., rn(s)wy)

on a neighborhood of s = 0 so that w(0) = w and
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frip(w(s),w(s)) = (s + 1) frr+(w, w) (1)

where 7;(s), j = 1,...,n are real-valued functions on |s| <« 1 which satisfy certain
functional equalities. The equality (1) implies that the curve w(s) is an embedded curve
in V; with w(0) = w. Then we define the vector as the tangent vector of this curve
at s =0:

dw
= —(0). 2
v="00) 2
To find such a path w(s) = (r1(s)wi, ..., (8)wy,), we solve a certain functional equation,

using the inverse mapping theorem.

3.2. Construction of w(s).
First, for w € V; with w # O, we consider the following map:

®, : R — R
(r1,..yrn,8) = (h1,..., Ay, s),
where h; is a polynomial function of variables rq,...,r, and s defined by
hj = ’I“;-IjTjJrl{(l — t)‘wj|2bj7‘j2-bj + t} - (S + 1){(1 - t)|wj|2bj + t}7 ] = 17 L (3)

where ¢ is fixed on 0 < ¢t < 1. Here the numbering is modulo n, so r,+1 = r1. We want
to solve the equations hy =--- = h, =0inry,...,r, expressing r; as a function of s so
that we get the system of equations

hj(ri(s),...,rn(s),8) =0, j=1,...,n. (4)
This equality is equivalent to (1) which is more explicitly written as

frr(w(s),w(s)) = (s + 1) frr(w, w) where

n

frrp(w(s), w(s)) =Y (rj(s)w;)* (rjya(s)wr){(1 = B)|w;[*7r;(5)* + ¢},

j=1

(s + Dfrra(w, @) = (s + 1) ) wibwjan {1 = Oy +¢).
j=1

We will solve the functional equality (1) using the inverse mapping theorem.

LEMMA 1. Let w € V; with w # O and 0 < t < 1. Then the Jacobian matrix
J (Do) has rankn+1 at (r1,...,7mn,8) = (1,...,1,0), where
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ory or, Os

J(®w) = | Ohy, Ok, Ohy,

Oy Or, Os
Ds D5 D
ory or, Os

PrROOF. By a direct computation, the Jacobian matrix of ®,, is given as

1,1 (1,2 0 NN 0 *51

0 aspa3

J((I)w) = )
0 ... 0 On—1,n—1On—-1,n
O 1 0o ... 0 Qnon _Bn
0 ... ... 0 1
where
R p 1 — w12 (a; + 2 )20 ¢
Qjj =T, ri+1{( )|wj| (a; + J)Tj + ajt},
g1 =P {1 = )|y 4 ¢},
@z{(l—t)lel%wt}, j=1...,n
Since 0 < ¢t < 1, «;; and «;j ;41 at (1,...,1,0) are positive real numbers for each
j=1,...,n. If a;; and «a; j41 are not evaluated at (1,...,1,0), they may be negative,

for instance «; ; is negative if r; is positive and 7;4; is negative. The determinant
det J(®,,) is given as

det J((I) ) = Otl 1...0p n -+ (71)n+1a172 e an—l,nan,l (5)

fH Ty {(1 = w7 (ag + 20)r5" + ast}

I H ri (1~ t)w; [P + ).

The proof of Lemma 1 is reduced to the following assertion.
ASSERTION 1. det J(®y,) > 0.

PrOOF. (i) If n is an odd number, det J(®,,) at (1,...,1,0) is obviously positive.
(ii) Suppose that n is a positive even number. Consider

o ;= {1 = )|w; P (a; + 26,)r7" + ajt}.

Note that [}_, o ; = [[}—, @} ;. We have the following.
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n n n n
!
det J(®y) = H Qjj— H Qjj+1 = H Q= H Qjj+1
j=1 j=1 =1 j=1

noool
det J(®y) >0 — —1 >,
o1 Qg
As of ; > «aj j11, the equality takes place if o) ; = a; ;41 for j = 1,...,n. We assume

that o} ; = aj j41 at (1,...,1,0) for any j,1 < j <n. Then
(1= 6)|wy* (a; +2bj) +ajt = (1= O)jw; | + ¢, j=1,....n

and this is the case if and only if (wj,a;) = (0,1) or (a;,b;) = (1,0). Thus the Jacobian
of @, at (1,...,1,0) is equal to 0 if and only if (wj;,a;) = (0,1) or (aj,b;) = (1,0) for
j=1,...,n. However these cases do not happen, since by assumption (b) there exists j
with a; > 2. Thus the assertion is proved. This completes also the proof of Lemma 1. [

Now we are ready to prove the transversality of 552;1_1 and V; for any 9 > 0 and
0<t< 1.

3.3. Proof of Transversality Theorem.

The assertion is known for ¢ = 0,1 by [3]. Thus we assume that 0 < ¢ < 1. Recall
that frr; : C* — C has a unique singularity at the origin O for any 0 < ¢ < 1 by [4,
Lemma 9]. As the codimension of Ty, S2"~ 1 in C™ = R?" is 1, to show the transversality,
it suffices to show the existence of a vector v € Ty, V; with v ¢ TwSEf_l.

For a given w = (wy, ..., w,) € V4, we consider the nullity set I, = {i | w; = 0}.

Case 1: I, = (. This is the most essential case and does not appear for the mixed
polynomials fq s and f;. The corresponding graph is cyclic.

By Lemma 1, the Jacobian of ®,, at (1,...,1,0) is non-zero. By the Inverse mapping
theorem, there exist a neighborhood U € R"*! of (1,...,1,0) and a neighborhood W C
R 1 of ®ppy(1,...,1,0) = (0,...,0) and a real analytic mapping W, = (1, .., %n,id) :
W — U so that

$,0V,, =idyw and Y, od, =idy.

Put 0 := (0,...,0) € R™ and consider V' C R := WN ({0} xR), a neighborhood of 0 € R
and define smooth functions 7; : V' — R of the variable s by r;(s) := ¥,(0,...,0,s).
Note that 7;(0) = 1. We have the equalities:

hi(ri(s),...,mn(s),s) =0,s€V,j=1,...,n.
As we have seen in the above discussion, this implies
737 (8)rj1 ({1 = 0wy [*7(s)*7 + 1} — (s + D{(1 = )]y | + ¢} =0,

which implies
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fII t( er ]TJ+1 )w;jijrl{(l _ t)|wj|2bjrj(s)2bj + t}
= (5 + 1) frr(w,w).

Thus frr7+(w(s),w(s)) = 0. Put v = dw/ds(0). We have v € T,,V; by the definition.
Now to finish the proof of the transversality assertion, we need only to show

ASSERTION 2. v # 0 and v ¢ T,,52" 1.
To prove the assertion, we consider the differential in s of
hj(ri(s),- - ra(s),8) = 15(8) i ($){ (L) Jw; 775 (5)*% -t} —(s+1){(1—t) [w; [ +1}.

By a direct computation, we get the equality

p Oh; d
%hj(rl(s), ces 77"n(3)’8) = (Z ory ;j) - /Bj

dr; drjiq
=y = = =0

where
o =157 e { (U= ) w7 (a; + 26,75 + ajt},
g =P {0 = )|, 03 4t}
B = {1 = t)w;[* + t}
for 5 =1,...,n. The above equality can be written as
an By
A = where
1,1 (1,2 0 [N 0
0 aspaa3
A=
0 e 0 Ap—1,n—10n—1n
Oy 1 0o ... 0 Qnon

s

Observe that the above equality says dr;/ds(s) is independent of s. By Lemma 1, the
determinant of A is positive. We first consider the differential dr;/ds and will show that
dri/ds(0) > 0. Put m = [n/2], the largest integer such that m < n/2. By the Cramer’s
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formula, the differential dry/ds of r; is equal to

ﬁl a1 2 0 ... 0
4 ) : Qg2 (02 3 N ;
1
— =——det :
ds detA| 00
AP Un—1,n
Bn 0 ... 0 apn
~ det A4 1Y A1 B A
detAZk 1(Aog—2fop 1A%, — Asp_182r A% 1), n=2m
detAEk 1(Aog—2fop 1A%, — Ao 1Bor A1) + An1Bn Al 41,
n=2m-+1
where
1 j=1 IT Fagpier j<n—1
Aj = j—1 . J A§'+1 = = . :
[[i=i e j>2 Jj=n
We have

Aok—2Bok—1A%, — Asp—1PakAdy 1 = Ask—2A45; 1 (Bak—102k 2k — Q2k—1,2 52k )-
As aj11(1,...,1) = B; for j =1,...,n, we observe that

Bok—10ok 261y, 1) — agg—1,2k(1, ..., 1) Bk
= Por—1{azk2x(1, ..., 1) — Bar}
= Bor—1{(1 — t)|war|**** (azk + 2bar) + azt — (1 — t)|wak "> — t}
= Bap—1{(1 — t)|wak|**** (agk + 2bax — 1) + (aze — 1)t} > 0.

The equality holds only if asy, = 1 and by, = 0. Note that w; # 0 for any i =1,...,n by
the assumption. Anyway we have

dTl

E(O) >0
If n is an odd integer, we see that dry/ds(0) > 0 by the last unpaired term: dry/ds(0) >
An_1BnA; 1 > 0. If there exists some k such that az; > 2, we have also the strict
inequality: dry/ds(0) > 0.

Next we consider dry/ds for k > 2. First observe that our polynomial frr; has

a symmetry for the cyclic permutation of the coordinates ¢ = (1,2,...,n). Secondly after
cyclic change of coordinates, say 2’ = (21,...,2;,) = (24i(1),- - -+ Zi(n)), the equality (3)
does not change. That is, w'(s) = (rei(1)Wei(1), - - - » Toi(n)Wo'i (n)) is the obtained solution
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curve. The tangent vector v’ = dw’/ds(0) is also equal to v after the corresponding
cyclic permutation of coordinates. Therefore we can apply the above argument to have
the inequality (dr,i(1)/ds)(0) > 0 for any i. As we have some j with a; > 2, this implies

d’l“j,1

T (0) > 0.

Now we are ready to show that v # 0 and v ¢ T,,S2"~!. By the assumption of w, the
path w(s) satisfies

Jrri(w(s),w(s)) = (s + 1) fr1¢(w,w) =0,

d|lw(s)||? “ dr " dr
” ( ” |S_ _22 J | ]|2 ZT |w]‘2>0

This implies that v # 0 and v ¢ T, 5271,

Case 2: Now we consider the case I, # 0. Put I, be the complement of I, and C*w =
{z€C"| % =0,i € I,}. We consider the mixed polynomial f'(z,2) = frr|c-1s,. Let
J be the set of indices j for which z; or Z; appears in f’. Note that J C I, but it can
be a proper subset.

Case 2-1. Assume that f' =0, i.e., J = . We take simply a real analytic path as
follows:

w(s) = (s+ Nw
for s € R. Since w € V; \ {O}, we observe that

2
frri(w(s),w(s)) =0, W@O: 2||wl|* > 0.

Case 2-2. Assume that f’ # 0. Then using the connected components of the graph
of f’, we can express f’ uniquely as follows.

f(z,2) = filzr,) + -+ frlz1)

where the graph of f; is a bamboo and the variables of f;, f;, ¢ # j are disjoint and
the above expression is a join type expression. Here I; be the set of indices of variables
of f; and zy, = (2;)jer, are the variables of f; for ¢ = 1,..., k. We have the equality
U L=Jand ;NI =0fori#j Put Cii ={z€C" |2 =0,j ¢ I;}. Fixing i, we
will construct a curve wy, (s) on C*% so that

filwr(s)) = (s + 1) fi(wr,).

The construction of the curve wy, (s) can be reduced to the argument of [4, Lemma 10].
We will give briefly the proof which is based on the argument of [4].

For j ¢ J, we put w;(s) = w; and wye(s) = wye € C’° where C’" = {z € C" |
zj» = 0,7 € J}. Here w e is the projection of w to C’°. Foreach i =1,..., k, we will
construct a curve wr,(s) on Cli and define w;(s) = wy,(s) + --- + wy, (s). Finally we
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define a curve w(s) = w e + wy(s) € C™ so that
filwr,(s)) = (s + 1) fi(wr,),

frii(w(s)) = f'(w(s))
1(wr () + -+ fr(wr, (s))

= (s+D{fi(wn) + -+ fu(wr,)}

— (5 + 1) frre(w) =0.
So we fix i. For simplicity’s sake, we assume I; = {j | v; < j < 7;} with 7; < n. The last
assumption 7; < n is for the simplicity of the indices. This implies that

Ti—1

filzr) = D 2Pz {2 (1 - ) + ).

Jj=vi
We will show that there exists a differentiable positive real-valued function solution

(ro;(8),...,r7(s)) of the following equation so that w;(s) = r;(s)w;, j € I; and

wy? (s)wjs1 (s){|w;(s)* (1 = t) + 1} = (s + Dw wypr {w;[* (1 — 1) + 1}

for j = v;,...,7; — 1. We first consider the equality
(B) v (P (= 1) + 2 = sy P (1 - 0) + )
where s := (s +1)/rj11, ©v; <j<7—1

First we define 7, = 1 to start with. The left side of (£7) is a monotone increasing
function of r; > 0. Thus assuming s; > 0 and considering s; as an independent variable,
we can solve (E7) in 7; as a function of s;. Thus we put r; = 1;(s;). We claim

ASSERTION 3.

dibs
wj(l) =1, dfjj(sj) > 0, (6)
Pi(s5)" < 85, j=vi,...,7i — L. (7)

ProOOF. For j = 7; — 1, the assertion is obvious. Assume that j < 7; — 1. The as-
sertion (6) is obvious. The assertion (7) follows from (6), as 1(s;) is monotone increasing
on s; and

[P (1 =) 41 > w2 (1= 1) + £, 75 > 1. 5

Now we define s;(s) and r;(s) inductively from j = 7, downward (more precisely
from the right end vertex of the graph to the left) as follows:

Tu(8) =1, s;(s) = (s +1)/rj41(5), 75(5) = ¥;(s;(s))

forv; <j <71 —1.
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ASSERTION 4.  s;(s) > 1 and rj(s) > 1 for j =wv;,...,7;, —1 and s > 0.

PrOOF. We show the assertion by a downward induction. For j = 7, — 1, the
assertion is obvious. By the inequality (7), we have for j < 7, — 1

5:(5) 0+ = ( s+1 )aj“ B (s 4 1)%+1
! 7i4+1(5) Yip1(sj41(s))+t

(
> (S + ]_)(aJ+1 _ (S i 1)aj+1717‘j+2(3)
s)

sj+1(s)

for s > 0. By the definition of 7;(s) and Assertion 3, s;(s) > 1 and r;(s) > 1 for
j=vi...,7i—1land s > 0. |

By Assertion 3 and Assertion 4, we see easily that

o1 0) > 0
Z5(0)>0, j =iy T — 2.

Now we define the curve wr,(s) on Cli by
w;(s) =rij(s)w;, je€I.

As a vector in C™, the other coefficients of wy,(s) are defined to be zero. Then by the
construction we have

wr,(0) =wr, fi(wr(s),wr(s)) = (s+1)fi(wr,wr,),

dl|wy, |? drei—1 2
s> 2—— —1|7>0
e
where |s] < 1 and 1 < i < k. After constructing wry,(s) for each ¢ = 1,...,k, we define
a smooth curve w(s) = (w1(s),...,wn(s)) by the summation

w(s) = wye(s) + wy(s),
wy(s) =wp (s) +- -+ wp(s).

Then w(s) satisfies

k
fris(w(s)) = f'(w(s), w(s)) = Zfz‘(wu(s)@li(s))
k
=(s+1) Zfi(wfw’wh) =(s+ 1)fl(w7ﬂ’)

i=1

= (S + 1)f][7t(’w7’a}) =0,

dlw(s))?, = dlwr,(s)]?
Tas T T el

i=1
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Thus defining v := dw/ds(0), we conclude v € Ty, V; \ T S2"~ 1. This completes the
proof of the transversality.

REMARK 1. In the above argument, if v,, is a vertex of the graph of f; and it is not
the right end vertex, we use the expression I; = {j mod n | v; < j < 7;} with 7; > n.
This implies that

Ti—1

filzr) =Y 27zl (1 —t) + )

J=vi

where zj4n = 25,040 = aj,b;4, = b;. We do the same argument as above starting the
right end variable z,, = 2z, .

3.4. Applications.

COROLLARY 1.  Let V; be the hypersurface defined by frr+ and let K. be its link.
Then there exists an isotopy 1y : (S2" 1, Ko.) — (S Ky.) for 0 < t < 1 with
o = id.

This is immediate from Ehresmann’s fibration theorem ([9]). As for the Milnor
fibration of the second type, we have:

COROLLARY 2. For a fized € > 0, there exists a positive real number 1y so that
fﬁ}t(n) and S?"~1 intersect transversely for anyn, |n| < mno and 0 <t < 1. In particular
this implies that there exists a family of diffeomorphisms 1y : OEy(no,e) — OE:(no,€)
such that the following diagram is commutative:

0Eo(no,¢€) ﬂ>3]51:(77075)
lfn,o Jf]],t
S = Sy
where OE(no,€) = {z € C" | |frr.:(2)] = no, ||z]| < €}

PRrROOF. Fix a positive real number e. Let

9E(no,e) == {(2,1) € C" < [0, 1] | [ f1r,1(2)] = mo, || 2]| <}
0%E(no,€) == {(2,1) € C" x [0,1] | |frr(2)| = mo, | 2]| = €}

Since S2"~! intersects with V; transversely and S2"~! NV, is compact for any 0 < ¢ < 1,
there exists a positive real number 79 such that f I_Ilt (n) and S?"~1 intersect transversely
for any n,|n| < no and 0 < ¢t < 1. Thus the projection 7’ : (9€(no, ), 0?E(no, ) —
[0,1] is a proper submersion. By the Ehresmann’s fibration theorem [9], 7’ is a locally
trivial fibration over [0,1]. So the projection 7’ induces a family of isomorphisms 1 :
0Ey(no,e) — OE(no, €) of fibrations for any z with |frr+(z)] < np and 0 <¢ < 1. O

Now, we consider again the Milnor fibration of the link complement. Consider the
mapping
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frra/\frrel s S\ Kpe — St (8)

As fr1+(z,2) is polar weighted homogeneous polynomial, the S'-action gives non-
vanishing vector field, denoted as /90 on S2"~1\ K, . so that fr7(coz) = c¥ f1,(2)
for ¢ € S1, this gives a fibration structure for (8) for any € > 0 and we call it a spherical
Milnor fibration or a Milnor fibration of the first description. The isomorphism class of
the fibration does not depend on e. Consider two fibrations

frre: 0B (no,e) = Sy o frre/|firel « SEPTU\ Ky e — ST

The first fibration is called a Milnor fibration of the second description or a tubular
Milnor fibration. The isomorphism class of the tubular fibration does not depend on the
choice of € and 1y < €. As we know that two fibrations are isomorphic for sufficiently
small £ > 0 and any ¢ ([3, Theorem 36]), they are isomorphic for any ¢. Combining this
and Corollary 2, we can sharpen Corollary 1 as follows.

COROLLARY 3. Let ¢y : (S 1 Ko.) — (S2" 1, K;.) be an isotopy in Corol-
lary 1. ¥ can be constructed so that the following diagram is commutative.
S2nI\ Ky S2 U\ K

lf11,0/|f11,0| lfU,t/UII,t
Sl id

— St
Taking t = 1, we get a positive answer to the conjecture in [4].

PrROOF. Choose a positive real number 7 as in Corollary 2. Consider the cobor-
dism variety V. := {(z,t) € S~ x [0,1]| fr1.+(2,2) = 0} and its open neighborhood
Wy, = {(z,t) € S2"71 x [0,1] || fr1,:(2)| < n} of V.. Consider the projection mapping

782 % [0,1] = [0,1], (z,t) > t.

Let (0/060)" be the projection of the gradient vector of Jlog frr+(z,2) to the tangent
space of §2"~1 x [0,1] \ Ve. Using the vector field 9/96 on S2"~! x [0, 1], we see easily
that (9/00)" is a non-vanishing vector on S2"~! x [0, 1]\ V. which is linearly independent
with 9/0t over R. Now we construct a vector filed X on S2"~! x [0,1] \ V. such that

1. dme(X(2z,t)) = 3/0u and {X(z,t),(0/00)'(z,t)} are orthogonal.
2. For (z,t) € Wy, /2, {X(2,1), grad|frr+|(z,t)} are also orthogonal.

Here 0/0u is a tangent vector on [0,1]. The condition (1) implies the argument of frr,
does not change along the integral curve of X. The conditions (1) and (2) implies the
integral curve of X keeps the level fr;, = n for any n with || < n9/2. Thus integral
curves of vector field X exists over [0,1] and we construct the isotopy ; using the
integration curves of & 0

REMARK 2. Let f(z,2) = Y.i", ¢;z" 2" be a full simplicial mixed polynomial
and g(z) be the associated Laurent polynomial of f. The last author defined a canonical
diffeomorphism of ¢ : C*™ — C*" as follows (]2]):
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p:C" — C*™,
z = (Pl exp(iel)a <oy Pn exp(ian)) = w = (51 exp(ial)a cee 7£n exp(i@n))

where (p1,...,pn) and (&1,...,&,) satisfy

log p1 log &1
O T N A L
IOg Pn lOg gn
where N = (v1,...,v,) and M = (p1, ..., in). Then ¢ satisfies that o(C** N f=1(c)) =
C*" N g~ Y(c) for any ¢ € C ([2, Theorem 10]). However ¢ cannot be extended to

a homeomorphism of C™ \ {O} to itself in general, except the case of mixed Brieskorn
polynomial.

ExaMPLE 1. We will give an example of the above remark. Let f(z,2z) be a
simplicial polynomial defined by

flz,z)= zfilzg + z§22z3 + zgégzl.

Then the diffeomorphism of ¢ : C*3 — C*3, z = (21, 20, 23) + w = (w1, ws,w3) is given
by

wy 2117/ 2| 74/9| 25]*/9 exp(ib1)
wa | = | 2172|2277 23] 74 exp(if2)
w3 \z1|_4/9|22|2/9|23|17/9 exp(ifs)

The above map cannot extend to a continuous map on the coordinate planes
{(21,22,23) € C3 | 212223 = 0} as the negative exponents in the above description.
So the map ¢ cannot extend to a homeomorphism of C3\ {O} to itself.
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