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Abstract. Let fII(z, z̄) = za1+b1
1 z̄b11 z2 + · · · + z

an−1+bn−1
n−1 z̄

bn−1
n−1 zn +

zan+bn
n z̄bnn z1 be a mixed weighted homogeneous polynomial of cyclic type and
gII(z) = za1

1 z2 + · · ·+ z
an−1
n−1 zn + zan

n z1 be the associated weighted homoge-
neous polynomial where aj ≥ 1 and bj ≥ 0 for j = 1, . . . , n. We show that two

links S2n−1
ε ∩ f−1

II (0) and S2n−1
ε ∩ g−1

II (0) are diffeomorphic and their Milnor

fibrations are isomorphic.

1. Introduction.

Let f(z, z̄) be a mixed polynomial of complex variables z = (z1, . . . , zn) given as

f(z, z̄) :=
m∑
i=1

ciz
νi z̄µi ,

where ci ∈ C∗ and zνi = z
νi,1
1 · · · zνi,nn for νi = (νi,1, . . . , νi,n) (respectively z̄µi =

z̄
µi,1

1 · · · z̄µi,n
n for µi = (µi,1, . . . , µi,n)). Here z̄j represents the complex conjugate of zj .

A point w ∈ Cn is called a mixed singular point of f(z, z̄) if the gradient vectors of

R f and I f are linearly dependent at w. Certain restricted classes of mixed polynomials

of the variables z which admit Milnor fibrations had been considered by Seade, see for

instance [7], [8]. The last author introduced the notion of the Newton boundary and

the concept of non-degeneracy for a mixed polynomial and he showed the existence of

Milnor fibration for the class of strongly non-degenerate mixed polynomials [3].

We consider the classes of mixed polynomials which was first introduced by Ruas–

Seade–Verjovsky [6] and Cisneros-Molina [1]. Let p1, . . . , pn and q1, . . . , qn be integers

such that gcd(p1, . . . , pn) = gcd(q1, . . . , qn) = 1. We define the S1-action and the R∗-

action on Cn as follows:

c ◦ z = (cp1z1, . . . , c
pnzn), c ∈ S1,

r ◦ z = (rq1z1, . . . , r
qnzn), r ∈ R∗.

If there exists a positive integer dp such that f(z, z̄) satisfies

f(cp1z1, . . . , c
pnzn, c̄

p1 z̄1, . . . , c̄
p1 z̄n) = cdpf(z, z̄), c ∈ S1,

we say that f(z, z̄) is a polar weighted homogeneous polynomial. Similarly f(z, z̄) is

called a radial weighted homogeneous polynomial if there exists a positive integer dr such
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that

f(rq1z1, . . . , r
qnzn, r

q1 z̄1, . . . , r
qn z̄n) = rdrf(z, z̄), r ∈ R∗.

Let f be a polar and radial weighted homogeneous polynomial. Then f admits the global

Milnor fibration f : Cn \ f−1(0) → C∗, see for instance [6], [1], [2], [3].

Let f(z, z̄) =
∑m
i=1 ciz

νi z̄µi be a mixed polynomial with cj ̸= 0, j = 1, . . . ,m. Put

g(z) :=
m∑
i=1

ciz
νi−µi .

We call g the associated Laurent polynomial of f . A mixed polynomial f is called simpli-

cial if m ≤ n and the ranks of the matrices N ± M are m where N = (ν1, . . . , νn)

and M = (µ1, . . . , µn). Here νi and µi are considered as column vectors νi =
t(νi1, . . . , νin), µi = t(µi1, . . . , µin). f is called full if m = n. A full simplicial mixed

polynomial f and its associated Laurent polynomial g admit a unique polar weight and

a unique radial weight in the above sense [2]. It is useful to consider a graph Γ associated

to f . First we associate a vertex vi if zi or z̄i appears in f . We join vi and vj by an edge

if there is a monomial zνk z̄µk which contains both variables zi, zj . That is νk,a+µk,a > 0

for a = i, j. Most important graphs are a bamboo graph

Bn :
v1• v2• . . .

vn−1• vn•

and a cyclic graph Cn which is obtained from Bn adding an edge between vn and v1.

We restrict the Milnor fibrations defined by f and g on the complex torus C∗n where

C∗n = (C∗)n. In [2, Theorem 10], it is shown that there exists a canonical diffeomorphism

φ : C∗n → C∗n which gives an isomorphism of the Milnor fibrations defined by f and g:

C∗n \ f−1(0)
φ−→C∗n \ g−1(0)yf yg

C∗ = C∗
.

However the canonical diffeomorphism φ does not extend to Cn \ {O} in general. Here

O is the origin of Cn. The exceptional case is a mixed Brieskorn polynomial, for which

this canonical diffeomorphism extends as a continuous homeomorphism [6]. In [4], the

last author studied the following simplicial polar weighted homogeneous polynomials:
fa,b(z, z̄) = za1+b11 z̄b11 + · · ·+ z

an−1+bn−1

n−1 z̄
bn−1

n−1 + zan+bnn z̄bnn

fI(z, z̄) = za1+b11 z̄b11 z2 + · · ·+ z
an−1+bn−1

n−1 z̄
bn−1

n−1 zn + zan+bnn z̄bnn

fII(z, z̄) = za1+b11 z̄b11 z2 + · · ·+ z
an−1+bn−1

n−1 z̄
bn−1

n−1 zn + zan+bnn z̄bnn z1,

where aj ≥ 1 and bj ≥ 0 for j = 1, . . . , n. Here the notation is the same as in [4].

Note that the graph of fI is a bamboo and that of fII is a cyclic graph. The graph of

fa,b is n disjoint vertices without any edges. A polar weighted homogeneous polynomial

fa,b(z, z̄) and a weighted homogeneous polynomial ga(z) are called a mixed Brieskorn

polynomial and a Brieskorn polynomial respectively. A mixed polynomial fI(z, z̄) is
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called a simplicial mixed polynomial of bamboo type and fII(z, z̄) is called a simplicial

mixed polynomial of cyclic type respectively. He showed that two links of fι and the

associated polynomial gι(z) in a small sphere are isotopic and their Milnor fibrations

are isomorphic for ι = (a, b) and I. He conjectured the assertion will be also true for

the case fII .

2. Statement of the result.

The purpose of this paper is to give a positive answer to the above conjecture.

Thus we study the following simplicial polynomial fII(z, z̄) and its associated weighted

homogeneous polynomial gII(z):{
fII(z, z̄) = za1+b11 z̄b11 z2 + · · ·+ z

an−1+bn−1

n−1 z̄
bn−1

n−1 zn + zan+bnn z̄bnn z1,

gII(z) = za11 z2 + · · ·+ z
an−1

n−1 zn + zann z1,

where aj ≥ 1 and bj ≥ 0 for j = 1, . . . , n. We assume that fII contains a conjugate z̄j
for some j. This implies

(a) there exists j ∈ {1, . . . , n} such that bj ≥ 1.

We also assume that fII is simplicial. As the determinant of N −M is given by

a1 · · · an + (−1)n+1, we assume also that

(b) there exists k ∈ {1, . . . , n} such that ak ≥ 2.

Though this assumption is not necessary if n is odd, we assume (b) anyway. Since

fII(z, z̄) is a polar and radial weighted homogeneous, fII(z, z̄) admits a global fibration

fII : Cn \ f−1
II (0) → C∗

[6], [1], [2], [3]. The complex polynomial gII(z) is a weighted homogeneous polynomial

with respect to the same polar weight of fII and gII with n = 3 is listed in the classifica-

tion of weighted homogeneous surfaces in C3 with isolated singularity [5]. We consider

the hypersurfaces

Vf := f−1
II (0), Vg := g−1

II (0)

and respective links

Kf,ε = Vf ∩ S2n−1
ε , Kg,ε = Vg ∩ S2n−1

ε

where S2n−1
ε is the (2n − 1)-dimensional sphere centered at the origin O with radius

ε. Then the two links Kf,ε and Kg,ε are smooth for any ε > 0 ([2]). We consider the

following family of mixed polynomials:
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fII,t(z, z̄) := (1− t)fII(z, z̄) + tgII(z)

= (1− t)(za1+b11 z̄b11 z2 + · · ·+ z
an−1+bn−1

n−1 z̄
bn−1

n−1 zn + zan+bnn z̄bnn z1)

+ t(za11 z2 + · · ·+ z
an−1

n−1 zn + zann z1)

=

n∑
j=1

z
aj
j zj+1{(1− t)|zj |2bj + t}

where 0 ≤ t ≤ 1. Here the numbering is modulo n, so zn+1 = z1. Though the mixed

polynomial fII,t is not radial weighted homogeneous for t ̸= 0, 1, fII,t is polar weighted

homogeneous for 0 ≤ t ≤ 1 with the same weight P = (p1, . . . , pn) which is characterized

by ajpj + pj+1 = dp, j = 1, . . . , n. Put

Vt = f−1
II,t(0), Kt,ε = S2n−1

ε ∩ Vt, 0 ≤ t ≤ 1.

Note that

fII,0 = fII , fII,1 = gII

Vf = V0, Kf,ε = K0,ε, Vg = V1, Kg,ε = K1,ε.

First recall that Vt has an isolated mixed singularity at the origin O and Vt \ {O} is

non-singular for any 0 ≤ t ≤ 1 by [4, Lemma 9]. Our main result is:

Transversality Theorem 1. Let Vt be as above. For any fixed ε > 0, the sphere

S2n−1
ε and the family of hypersurfaces Vt are transversal for 0 ≤ t ≤ 1.

3. Proof of Transversality Theorem 1.

3.1. Strategy of the proof.

We follow the recipe of [4]. First recall that

fII,t(z, z̄) := (1− t)fII(z, z̄) + tgII(z)

=
n∑
j=1

z
aj
j zj+1{(1− t)|zj |2bj + t}.

Recall that Vt is non-singular off the origin by [4]. To show the transversality of the

sphere S2n−1
ε0 and Vt, we have to show that the Jacobian matrix of R fII,t, I fII,t and

ρ(z) has rank 3 at every intersection w ∈ S2n−1
ε0 ∩ Vt. Here ρ(z) = ∥z∥2, the square of

the radius ∥z∥. However this computation is extremely complicated. Instead, we follow

the recipe of [4]. We will show the existence of a tangent vector v ∈ TwVt which is not

tangent to the sphere S2n−1
ε0 .

Take a point w = (w1, . . . , wn) ∈ Vt ∩ S2n−1
ε0 and fix it hereafter. To find such

a vector v, we will construct a real analytic path

w(s) = (r1(s)w1, . . . , rn(s)wn)

on a neighborhood of s = 0 so that w(0) = w and
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fII,t(w(s), w̄(s)) = (s+ 1)fII,t(w, w̄) (1)

where rj(s), j = 1, . . . , n are real-valued functions on |s| ≪ 1 which satisfy certain

functional equalities. The equality (1) implies that the curve w(s) is an embedded curve

in Vt with w(0) = w. Then we define the vector as the tangent vector of this curve

at s = 0:

v =
dw

ds
(0). (2)

To find such a pathw(s) = (r1(s)w1, . . . , rn(s)wn), we solve a certain functional equation,

using the inverse mapping theorem.

3.2. Construction of w(s).

First, for w ∈ Vt with w ̸= O, we consider the following map:

Φw : Rn+1 → Rn+1

(r1, . . . , rn, s) 7→ (h1, . . . , hn, s),

where hj is a polynomial function of variables r1, . . . , rn and s defined by

hj = r
aj
j rj+1{(1− t)|wj |2bjr

2bj
j + t} − (s+ 1){(1− t)|wj |2bj + t}, j = 1, . . . , n (3)

where t is fixed on 0 ≤ t ≤ 1. Here the numbering is modulo n, so rn+1 = r1. We want

to solve the equations h1 = · · · = hn = 0 in r1, . . . , rn expressing rj as a function of s so

that we get the system of equations

hj(r1(s), . . . , rn(s), s) ≡ 0, j = 1, . . . , n. (4)

This equality is equivalent to (1) which is more explicitly written as

fII,t(w(s), w̄(s)) = (s+ 1)fII,t(w, w̄) where

fII,t(w(s), w̄(s)) =

n∑
j=1

(rj(s)wj)
aj (rj+1(s)wj+1){(1− t)|wj |2bjrj(s)2bj + t},

(s+ 1)fII,t(w, w̄) = (s+ 1)
n∑
j=1

w
aj
j wj+1{(1− t)|wj |2bj + t}.

We will solve the functional equality (1) using the inverse mapping theorem.

Lemma 1. Let w ∈ Vt with w ̸= O and 0 < t < 1. Then the Jacobian matrix

J(Φw) has rank n+ 1 at (r1, . . . , rn, s) = (1, . . . , 1, 0), where
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J(Φw) =



∂h1
∂r1

· · · ∂h1
∂rn

∂h1
∂s

...
∂hn
∂r1

· · · ∂hn
∂rn

∂hn
∂s

∂s

∂r1
· · · ∂s

∂rn

∂s

∂s


.

Proof. By a direct computation, the Jacobian matrix of Φw is given as

J(Φw) =



α1,1 α1,2 0 . . . 0 −β1

0 α2,2 α2,3
. . .

...
...

...
. . .

. . .
. . .

...
...

0 . . . 0 αn−1,n−1 αn−1,n

...

αn,1 0 . . . 0 αn,n −βn
0 . . . . . . . . . 0 1


,

where

αj,j = r
aj−1
j rj+1{(1− t)|wj |2bj (aj + 2bj)r

2bj
j + ajt},

αj,j+1 = r
aj
j {(1− t)|wj |2bjr

2bj
j + t},

βj = {(1− t)|wj |2bj + t}, j = 1, . . . , n.

Since 0 < t < 1, αj,j and αj,j+1 at (1, . . . , 1, 0) are positive real numbers for each

j = 1, . . . , n. If αj,j and αj,j+1 are not evaluated at (1, . . . , 1, 0), they may be negative,

for instance αj,j is negative if rj is positive and rj+1 is negative. The determinant

det J(Φw) is given as

det J(Φw) = α1,1 . . . αn,n + (−1)n+1α1,2 · · ·αn−1,nαn,1 (5)

=
n∏
j=1

r
aj−1

j rj+1{(1− t)|wj |2bj (aj + 2bj)r
2bj
j + ajt}

+ (−1)n+1
n∏
j=1

r
aj
j {(1− t)|wj |2bjr

2bj
j + t}.

The proof of Lemma 1 is reduced to the following assertion.

Assertion 1. det J(Φw) > 0.

Proof. (i) If n is an odd number, det J(Φw) at (1, . . . , 1, 0) is obviously positive.

(ii) Suppose that n is a positive even number. Consider

α′
j,j := r

aj
j {(1− t)|wj |2bj (aj + 2bj)r

2bj
j + ajt}.

Note that
∏n
j=1 αj,j =

∏n
j=1 α

′
j,j . We have the following.
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det J(Φw) =
n∏
j=1

αj,j −
n∏
j=1

αj,j+1 =
n∏
j=1

α′
j,j −

n∏
j=1

αj,j+1

det J(Φw) ≥ 0 ⇐⇒
n∏
j=1

α′
j,j

αj,j+1
≥ 1.

As α′
j,j ≥ αj,j+1, the equality takes place if α′

j,j = αj,j+1 for j = 1, . . . , n. We assume

that α′
j,j = αj,j+1 at (1, . . . , 1, 0) for any j, 1 ≤ j ≤ n. Then

(1− t)|wj |2bj (aj + 2bj) + ajt = (1− t)|wj |2bj + t, j = 1, . . . , n

and this is the case if and only if (wj , aj) = (0, 1) or (aj , bj) = (1, 0). Thus the Jacobian

of Φw at (1, . . . , 1, 0) is equal to 0 if and only if (wj , aj) = (0, 1) or (aj , bj) = (1, 0) for

j = 1, . . . , n. However these cases do not happen, since by assumption (b) there exists j

with aj ≥ 2. Thus the assertion is proved. This completes also the proof of Lemma 1. □

Now we are ready to prove the transversality of S2n−1
ε0 and Vt for any ε0 > 0 and

0 ≤ t ≤ 1.

3.3. Proof of Transversality Theorem.

The assertion is known for t = 0, 1 by [3]. Thus we assume that 0 < t < 1. Recall

that fII,t : Cn → C has a unique singularity at the origin O for any 0 ≤ t ≤ 1 by [4,

Lemma 9]. As the codimension of TwS
2n−1
ε0 in Cn ∼= R2n is 1, to show the transversality,

it suffices to show the existence of a vector v ∈ TwVt with v /∈ TwS
2n−1
ε0 .

For a given w = (w1, . . . , wn) ∈ Vt, we consider the nullity set Iw = {i | wi = 0}.
Case 1: Iw = ∅. This is the most essential case and does not appear for the mixed

polynomials fa,b and fI . The corresponding graph is cyclic.

By Lemma 1, the Jacobian of Φw at (1, . . . , 1, 0) is non-zero. By the Inverse mapping

theorem, there exist a neighborhood U ⊂ Rn+1 of (1, . . . , 1, 0) and a neighborhood W ⊂
Rn+1 of Φw(1, . . . , 1, 0) = (0, . . . , 0) and a real analytic mapping Ψw = (ψ1, . . . , ψn, id) :

W → U so that

Φw ◦Ψw = idW and Ψw ◦ Φw = idU.

Put 0 := (0, . . . , 0) ∈ Rn and consider V ⊂ R :=W ∩ ({0}×R), a neighborhood of 0 ∈ R
and define smooth functions rj : V → R of the variable s by rj(s) := ψj(0, . . . , 0, s).

Note that rj(0) = 1. We have the equalities:

hj(r1(s), . . . , rn(s), s) ≡ 0, s ∈ V, j = 1, . . . , n.

As we have seen in the above discussion, this implies

r
aj
j (s)rj+1(s){(1− t)|wj |2bjrj(s)2bj + t} − (s+ 1){(1− t)|wj |2bj + t} ≡ 0,

which implies
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fII,t(w(s), w̄(s)) =
n∑
j=1

rj(s)
ajrj+1(s)w

aj
j wj+1{(1− t)|wj |2bjrj(s)2bj + t}

= (s+ 1)fII,t(w, w̄).

Thus fII,t(w(s), w̄(s)) ≡ 0. Put v = dw/ds(0). We have v ∈ TwVt by the definition.

Now to finish the proof of the transversality assertion, we need only to show

Assertion 2. v ̸= 0 and v /∈ TwS
2n−1
ε0 .

To prove the assertion, we consider the differential in s of

hj(r1(s), . . . , rn(s), s) = rj(s)
ajrj+1(s){(1−t)|wj |2bjrj(s)2bj+t}−(s+1){(1−t)|wj |2bj+t}.

By a direct computation, we get the equality

d

ds
hj(r1(s), . . . , rn(s), s) =

( n∑
k=1

∂hj
∂rk

drk
ds

)
− βj

= αj,j
drj
ds

+ αj,j+1
drj+1

ds
− βj ≡ 0

where

αj,j = r
aj−1
j rj+1{(1− t)|wj |2bj (aj + 2bj)r

2bj
j + ajt},

αj,j+1 = r
aj
j {(1− t)|wj |2bjr

2bj
j + t},

βj = {(1− t)|wj |2bj + t}

for j = 1, . . . , n. The above equality can be written as

A



dr1
ds
...
...
...
drn
ds


=



β1
...
...
...

βn


where

A :=



α1,1 α1,2 0 . . . 0

0 α2,2 α2,3
. . .

...
...

. . .
. . .

. . .
...

0 . . . 0 αn−1,n−1 αn−1,n

αn,1 0 . . . 0 αn,n

 .

Observe that the above equality says drj/ds(s) is independent of s. By Lemma 1, the

determinant of A is positive. We first consider the differential dr1/ds and will show that

dr1/ds(0) ≥ 0. Put m = [n/2], the largest integer such that m ≤ n/2. By the Cramer’s
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formula, the differential dr1/ds of r1 is equal to

dr1
ds

=
1

detA
det



β1 α1,2 0 . . . 0
... α2,2 α2,3

. . .
...

... 0
. . .

. . .
...

...
...

. . .
. . . αn−1,n

βn 0 . . . 0 αn,n


=

1

detA

n∑
j=1

(−1)j−1Aj−1βjA
′
j+1

=


1

detA

∑m
k=1(A2k−2β2k−1A

′
2k −A2k−1β2kA

′
2k+1), n = 2m

1

detA

∑m
k=1(A2k−2β2k−1A

′
2k −A2k−1β2kA

′
2k+1) +An−1βnA

′
n+1,

n = 2m+ 1

where

Aj−1 =

{
1 j = 1∏j−1
ℓ=1 αℓ,ℓ+1 j ≥ 2

, A′
j+1 =

{∏n−1
ℓ=j αℓ+1,ℓ+1 j ≤ n− 1

1 j = n
.

We have

A2k−2β2k−1A
′
2k −A2k−1β2kA

′
2k+1 = A2k−2A

′
2k+1(β2k−1α2k,2k − α2k−1,2kβ2k).

As αj,j+1(1, . . . , 1) = βj for j = 1, . . . , n, we observe that

β2k−1α2k,2k(1, . . . , 1)− α2k−1,2k(1, . . . , 1)β2k

= β2k−1{α2k,2k(1, . . . , 1)− β2k}

= β2k−1{(1− t)|w2k|2b2k(a2k + 2b2k) + a2kt− (1− t)|w2k|2b2k − t}

= β2k−1{(1− t)|w2k|2b2k(a2k + 2b2k − 1) + (a2k − 1)t} ≥ 0.

The equality holds only if a2k = 1 and b2k = 0. Note that wi ̸= 0 for any i = 1, . . . , n by

the assumption. Anyway we have

dr1
ds

(0) ≥ 0.

If n is an odd integer, we see that dr1/ds(0) > 0 by the last unpaired term: dr1/ds(0) ≥
An−1βnA

′
n+1 > 0. If there exists some k such that a2k ≥ 2, we have also the strict

inequality: dr1/ds(0) > 0.

Next we consider drk/ds for k ≥ 2. First observe that our polynomial fII,t has

a symmetry for the cyclic permutation of the coordinates σ = (1, 2, . . . , n). Secondly after

cyclic change of coordinates, say z′ = (z′1, . . . , z
′
n) = (zσi(1), . . . , zσi(n)), the equality (3)

does not change. That is, w′(s) = (rσi(1)wσi(1), . . . , rσi(n)wσi(n)) is the obtained solution
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curve. The tangent vector v′ = dw′/ds(0) is also equal to v after the corresponding

cyclic permutation of coordinates. Therefore we can apply the above argument to have

the inequality (drσi(1)/ds)(0) ≥ 0 for any i. As we have some j with aj ≥ 2, this implies

drj−1

ds
(0) > 0.

Now we are ready to show that v ̸= 0 and v /∈ TwS
2n−1
ε0 . By the assumption of w, the

path w(s) satisfies

fII,t(w(s), w̄(s)) = (s+ 1)fII,t(w, w̄) ≡ 0,

d∥w(s)∥2

ds
|s=0 = 2

n∑
j=1

rj(0)
drj
ds

(0)|wj |2 = 2
n∑
j=1

drj
ds

(0)|wj |2 > 0.

This implies that v ̸= 0 and v /∈ TwS
2n−1
ε0 .

Case 2: Now we consider the case Iw ̸= ∅. Put Icw be the complement of Iw and C∗Icw =

{z ∈ Cn | zi = 0, i ∈ Iw}. We consider the mixed polynomial f ′(z, z̄) = fII,t|C∗Icw . Let

J be the set of indices j for which zj or z̄j appears in f ′. Note that J ⊂ Icw but it can

be a proper subset.

Case 2-1. Assume that f ′ ≡ 0, i.e., J = ∅. We take simply a real analytic path as

follows:

w(s) = (s+ 1)w

for s ∈ R. Since w ∈ Vt \ {O}, we observe that

fII,t(w(s), w̄(s)) ≡ 0,
d∥w(s)∥2

ds
|s=0= 2∥w∥2 > 0.

Case 2-2. Assume that f ′ ̸≡ 0. Then using the connected components of the graph

of f ′, we can express f ′ uniquely as follows.

f ′(z, z̄) = f1(zI1) + · · ·+ fk(zIk)

where the graph of fi is a bamboo and the variables of fi, fj , i ̸= j are disjoint and

the above expression is a join type expression. Here Ii be the set of indices of variables

of fi and zIi = (zj)j∈Ii are the variables of fi for i = 1, . . . , k. We have the equality

∪ki=1Ii = J and Ii ∩ Ij = ∅ for i ̸= j. Put CIi = {z ∈ Cn | zj = 0, j ̸∈ Ii}. Fixing i, we

will construct a curve wIi(s) on C∗Ii so that

fi(wIi(s)) = (s+ 1)fi(wIi).

The construction of the curve wIi(s) can be reduced to the argument of [4, Lemma 10].

We will give briefly the proof which is based on the argument of [4].

For j /∈ J , we put wj(s) = wj and wJc(s) = wJc ∈ CJc

where CJc

= {z ∈ Cn |
zj′ = 0, j′ ∈ J}. Here wJc is the projection of w to CJc

. For each i = 1, . . . , k, we will

construct a curve wIi(s) on CIi and define wJ(s) = wI1(s) + · · · +wIk(s). Finally we



16-7538: 2017.12.26

Topology of mixed hypersurfaces of cyclic type 397

define a curve w(s) = wJc +wJ (s) ∈ Cn so that

fi(wIi(s)) = (s+ 1)fi(wIi),

fII,t(w(s)) = f ′(w(s))

= f1(wI1(s)) + · · ·+ fk(wIk(s))

= (s+ 1){f1(wI1) + · · ·+ fk(wIk)}
= (s+ 1)fII,t(w) ≡ 0.

So we fix i. For simplicity’s sake, we assume Ii = {j | υi ≤ j ≤ τi} with τi ≤ n. The last

assumption τi ≤ n is for the simplicity of the indices. This implies that

fi(zIi) =

τi−1∑
j=υi

z
aj
j zj+1{|zj |2bj (1− t) + t}.

We will show that there exists a differentiable positive real-valued function solution

(rυi(s), . . . , rτi(s)) of the following equation so that wj(s) = rj(s)wj , j ∈ Ii and

w
aj
j (s)wj+1(s){|wj(s)|2bj (1− t) + t} = (s+ 1)w

aj
j wj+1{|wj |2bj (1− t) + t}

for j = υi, . . . , τi − 1. We first consider the equality

(E′′
j ) : r

aj
j {|wj |2bjr

2bj
j (1− t) + t} = sj{|wj |2bj (1− t) + t}

where sj := (s+ 1)/rj+1, υi ≤ j ≤ τi − 1.

First we define rτi = 1 to start with. The left side of (E′′
j ) is a monotone increasing

function of rj > 0. Thus assuming sj > 0 and considering sj as an independent variable,

we can solve (E′′
j ) in rj as a function of sj . Thus we put rj = ψj(sj). We claim

Assertion 3.

ψj(1) = 1,
dψj
dsj

(sj) > 0, (6)

ψj(sj)
aj ≤ sj , j = υi, . . . , τi − 1. (7)

Proof. For j = τi − 1, the assertion is obvious. Assume that j < τi − 1. The as-

sertion (6) is obvious. The assertion (7) follows from (6), as ψ(sj) is monotone increasing

on sj and

|wj |2bjr
2bj
j (1− t) + t ≥ |wj |2bj (1− t) + t, rj ≥ 1. □

Now we define sj(s) and rj(s) inductively from j = τi downward (more precisely

from the right end vertex of the graph to the left) as follows:

rµi(s) = 1, sj(s) = (s+ 1)/rj+1(s), rj(s) = ψj(sj(s))

for υi ≤ j ≤ τi − 1.
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Assertion 4. sj(s) ≥ 1 and rj(s) ≥ 1 for j = υi, . . . , τi − 1 and s ≥ 0.

Proof. We show the assertion by a downward induction. For j = τi − 1, the

assertion is obvious. By the inequality (7), we have for j < τi − 1

sj(s)
aj+1 =

(
s+ 1

rj+1(s)

)aj+1

=
(s+ 1)aj+1

ψj+1(sj+1(s))aj+1

≥ (s+ 1)aj+1

sj+1(s)
= (s+ 1)aj+1−1rj+2(s)

for s ≥ 0. By the definition of rj(s) and Assertion 3, sj(s) ≥ 1 and rj(s) ≥ 1 for

j = υi, . . . , τi − 1 and s ≥ 0. □

By Assertion 3 and Assertion 4, we see easily that{
drτi−1

ds (0) > 0
drj
ds (0) ≥ 0, j = υi, . . . , τi − 2.

Now we define the curve wIi(s) on CIi by

wj(s) = rj(s)wj , j ∈ Ii.

As a vector in Cn, the other coefficients of wIi(s) are defined to be zero. Then by the

construction we have

wIi(0) = wIi , fi(wIi(s), w̄Ii(s)) = (s+ 1)fi(wIi , w̄Ii),

d∥wIi∥2

ds
|s=0≥ 2

drτi−1

ds
(0)|wτi−1|2 > 0

where |s| ≪ 1 and 1 ≤ i ≤ k. After constructing wIi(s) for each i = 1, . . . , k, we define

a smooth curve w(s) = (w1(s), . . . , wn(s)) by the summation

w(s) = wJc(s) +wJ (s),

wJ (s) = wI1(s) + · · ·+wIk(s).

Then w(s) satisfies

fII,t(w(s)) = f ′(w(s), w̄(s)) =
k∑
i=1

fi(wIi(s), w̄Ii(s))

= (s+ 1)

k∑
i=1

fi(wIi , w̄Ii) = (s+ 1)f ′(w, w̄)

= (s+ 1)fII,t(w, w̄) ≡ 0,

d∥w(s)∥2

ds
|s=0 =

k∑
i=1

d∥wIi(s)∥2

ds
|s=0> 0.
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Thus defining v := dw/ds(0), we conclude v ∈ TwVt \ TwS2n−1
ε0 . This completes the

proof of the transversality.

Remark 1. In the above argument, if vn is a vertex of the graph of fi and it is not

the right end vertex, we use the expression Ii = {j mod n | υi ≤ j ≤ τi} with τi > n.

This implies that

fi(zIi) =

τi−1∑
j=υi

z
aj
j zj+1{|zj |2bj (1− t) + t}

where zj+n = zj , aj+n = aj , bj+n = bj . We do the same argument as above starting the

right end variable zτi = zτi−n.

3.4. Applications.

Corollary 1. Let Vt be the hypersurface defined by fII,t and let Kt,ε be its link.

Then there exists an isotopy ψt : (S2n−1
ε ,K0,ε) → (S2n−1

ε ,Kt,ε) for 0 ≤ t ≤ 1 with

ψ0 = id.

This is immediate from Ehresmann’s fibration theorem ([9]). As for the Milnor

fibration of the second type, we have:

Corollary 2. For a fixed ε > 0, there exists a positive real number η0 so that

f−1
II,t(η) and S

2n−1
ε intersect transversely for any η, |η| ≤ η0 and 0 ≤ t ≤ 1. In particular

this implies that there exists a family of diffeomorphisms ψt : ∂E0(η0, ε) → ∂Et(η0, ε)

such that the following diagram is commutative:

∂E0(η0, ε)
ψt−→ ∂Et(η0, ε)yfII,0 yfII,t

S1
η0 = S1

η0

where ∂Et(η0, ε) = {z ∈ Cn | |fII,t(z)| = η0, ∥z∥ ≤ ε}.

Proof. Fix a positive real number ε. Let

∂E(η0, ε) := {(z, t) ∈ Cn × [0, 1] | |fII,t(z)| = η0, ∥z∥ ≤ ε}
∂2E(η0, ε) := {(z, t) ∈ Cn × [0, 1] | |fII,t(z)| = η0, ∥z∥ = ε}.

Since S2n−1
ε intersects with Vt transversely and S2n−1

ε ∩Vt is compact for any 0 ≤ t ≤ 1,

there exists a positive real number η0 such that f−1
II,t(η) and S

2n−1
ε intersect transversely

for any η, |η| ≤ η0 and 0 ≤ t ≤ 1. Thus the projection π′ : (∂E(η0, ε), ∂2E(η0, ε)) →
[0, 1] is a proper submersion. By the Ehresmann’s fibration theorem [9], π′ is a locally

trivial fibration over [0, 1]. So the projection π′ induces a family of isomorphisms ψt :

∂E0(η0, ε) → ∂Et(η0, ε) of fibrations for any z with |fII,t(z)| ≤ η0 and 0 ≤ t ≤ 1. □

Now, we consider again the Milnor fibration of the link complement. Consider the

mapping
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fII,t/|fII,t| : S2n−1
ε \Kt,ε → S1. (8)

As fII,t(z, z̄) is polar weighted homogeneous polynomial, the S1-action gives non-

vanishing vector field, denoted as ∂/∂θ on S2n−1
ε \Kt,ε so that fII,t(c ◦ z) = cdpfII,t(z)

for c ∈ S1, this gives a fibration structure for (8) for any ε > 0 and we call it a spherical

Milnor fibration or a Milnor fibration of the first description. The isomorphism class of

the fibration does not depend on ε. Consider two fibrations

fII,t : ∂Et(η0, ε) → S1
η0 , fII,t/|fII,t| : S2n−1

ε \Kt,ε → S1.

The first fibration is called a Milnor fibration of the second description or a tubular

Milnor fibration. The isomorphism class of the tubular fibration does not depend on the

choice of ε and η0 ≪ ε. As we know that two fibrations are isomorphic for sufficiently

small ε > 0 and any t ([3, Theorem 36]), they are isomorphic for any ε. Combining this

and Corollary 2, we can sharpen Corollary 1 as follows.

Corollary 3. Let ψt : (S2n−1
ε ,K0,ε) → (S2n−1

ε ,Kt,ε) be an isotopy in Corol-

lary 1. ψt can be constructed so that the following diagram is commutative.

S2n−1
ε \K0,ε

ψt−→ S2n−1
ε \Kt,εyfII,0/|fII,0| yfII,t/|fII,t|

S1 id−→ S1

Taking t = 1, we get a positive answer to the conjecture in [4].

Proof. Choose a positive real number η0 as in Corollary 2. Consider the cobor-

dism variety Vε := {(z, t) ∈ S2n−1
ε × [0, 1] | fII,t(z, z̄) = 0} and its open neighborhood

Wη := {(z, t) ∈ S2n−1
ε × [0, 1] | |fII,t(z)| < η} of Vε. Consider the projection mapping

π : S2n−1
ε × [0, 1] → [0, 1], (z, t) 7→ t.

Let (∂/∂θ)′ be the projection of the gradient vector of I log fII,t(z, z̄) to the tangent

space of S2n−1
ε × [0, 1] \ Vε. Using the vector field ∂/∂θ on S2n−1

ε × [0, 1], we see easily

that (∂/∂θ)′ is a non-vanishing vector on S2n−1
ε × [0, 1]\Vε which is linearly independent

with ∂/∂t over R. Now we construct a vector filed X on S2n−1
ε × [0, 1] \ Vε such that

1. dπ∗(X (z, t)) = ∂/∂u and {X (z, t), (∂/∂θ)′(z, t)} are orthogonal.

2. For (z, t) ∈ Wη0/2, {X (z, t), grad |fII,t|(z, t)} are also orthogonal.

Here ∂/∂u is a tangent vector on [0, 1]. The condition (1) implies the argument of fII,t
does not change along the integral curve of X . The conditions (1) and (2) implies the

integral curve of X keeps the level fII,t = η for any η with |η| ≤ η0/2. Thus integral

curves of vector field X exists over [0, 1] and we construct the isotopy ψt using the

integration curves of X . □

Remark 2. Let f(z, z̄) =
∑m
i=1 ciz

νi z̄µi be a full simplicial mixed polynomial

and g(z) be the associated Laurent polynomial of f . The last author defined a canonical

diffeomorphism of φ : C∗n → C∗n as follows ([2]):
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φ : C∗n → C∗n,

z = (ρ1 exp(iθ1), . . . , ρn exp(iθn)) 7→ w = (ξ1 exp(iθ1), . . . , ξn exp(iθn))

where (ρ1, . . . , ρn) and (ξ1, . . . , ξn) satisfy

(N +M)

log ρ1
...

log ρn

 = (N −M)

log ξ1
...

log ξn


where N = (ν1, . . . , νn) and M = (µ1, . . . , µn). Then φ satisfies that φ(C∗n ∩ f−1(c)) =

C∗n ∩ g−1(c) for any c ∈ C ([2, Theorem 10]). However φ cannot be extended to

a homeomorphism of Cn \ {O} to itself in general, except the case of mixed Brieskorn

polynomial.

Example 1. We will give an example of the above remark. Let f(z, z̄) be a

simplicial polynomial defined by

f(z, z̄) = z31 z̄1z2 + z32 z̄2z3 + z33 z̄3z1.

Then the diffeomorphism of φ : C∗3 → C∗3, z = (z1, z2, z3) 7→ w = (w1, w2, w3) is given

by 
w1

w2

w3

 =


|z1|17/9|z2|−4/9|z3|2/9 exp(iθ1)

|z1|2/9|z2|17/9|z3|−4/9 exp(iθ2)

|z1|−4/9|z2|2/9|z3|17/9 exp(iθ3)

 .

The above map cannot extend to a continuous map on the coordinate planes

{(z1, z2, z3) ∈ C3 | z1z2z3 = 0} as the negative exponents in the above description.

So the map φ cannot extend to a homeomorphism of C3 \ {O} to itself.
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