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Abstract. It is known that the Fuchsian differential equation which
produces the sixth Painlevé equation corresponds to the Fuchsian differential

equation with different parameters via Euler’s integral transformation, and
Heun’s equation also corresponds to Heun’s equation with different parame-

ters, again via Euler’s integral transformation. In this paper we study the

correspondences in detail. After investigating correspondences with respect to
monodromy, it is demonstrated that the existence of polynomial-type solutions

corresponds to apparency of a singularity. For the elliptical representation of

Heun’s equation, correspondence with respect to monodromy implies isospec-
tral symmetry. We apply the symmetry to finite-gap potentials and express

the monodromy of Heun’s equation with parameters which have not yet been

studied.

1. Introduction.

The Gauss hypergeometric differential equation

z(1− z)d
2y

dz2
+ (γ − (α+ β + 1)z)

dy

dz
− αβy = 0. (1.1)

is very famous both in physics and especially so in mathematics; it is a canonical form of

the second-order Fuchsian differential equation with three singularities on the Riemann

sphere C ∪ {∞}. There are several important generalizations of Gauss hypergeometric

differential equation. We now treat two examples, Heun’s equation and the sixth Painlevé

equation.

Heun’s differential equation (or Heun’s equation) is a canonical form of a second-

order Fuchsian equation with four singularities, which is given by

d2y

dz2
+

(
ε0
z

+
ε1

z − 1
+

εt
z − t

)
dy

dz
+

αβz − q
z(z − 1)(z − t)

y = 0, (1.2)

with the condition ε0 + ε1 + εt = α + β + 1 (see [12]). The exponents at z = 0 (resp.

z = 1, z = t, z =∞) are 0 and 1− ε0 (resp. 0 and 1− ε1, 0 and 1− εt, α and β).
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The sixth Painlevé system is a system of non-linear ordinary differential equations

defined by

dλ

dt
=
∂H

∂µ
,

dµ

dt
= −∂H

∂λ
, (1.3)

with the Hamiltonian

H =
1

t(t− 1)

{
λ(λ− 1)(λ− t)µ2 − {θ0(λ− 1)(λ− t) + θ1λ(λ− t) (1.4)

+(θt − 1)λ(λ− 1)}µ+ κ1(κ2 + 1)(λ− t)} .

By eliminating µ in (1.3), we obtain the sixth Painlevé equation for λ which is a non-

linear ordinary differential equation of order two in the independent variable t. It is

known that the sixth Painlevé system is related to monodromy preserving deformations

of certain Fuchsian differential equations. Let λ 6∈ {0, 1, t,∞} and Dy1(θ0, θ1, θt, θ∞;λ, µ)

be the second-order linear differential equation given by

d2y1(z)

dz2
+

(
1− θ0

z
+

1− θ1

z − 1
+

1− θt
z − t

− 1

z − λ

)
dy1(z)

dz

+

(
κ1(κ2 + 1)

z(z − 1)
+

λ(λ− 1)µ

z(z − 1)(z − λ)
− t(t− 1)H

z(z − 1)(z − t)

)
y1(z) = 0, (1.5)

κ1 = (θ∞ − θ0 − θ1 − θt)/2, κ2 = −(θ∞ + θ0 + θ1 + θt)/2,

where H is given as in (1.4). Then (1.5) is a Fuchsian differential equation with five

singularities {0, 1, t, λ,∞} on the Riemann sphere. The exponents at z = p (p ∈ {0, 1, t})
(resp. z = λ, z = ∞) are 0 and θp (resp. 0 and 2, κ1 and κ2 + 1), and it follows from

the condition given by (1.4) that the singularity z = λ is apparent. The sixth Painlevé

system (1.3) is derived from a monodromy preserving deformation of (1.5) (for details,

see [4]), and the function y1(z) is obtained from a first order 2× 2 Fuchsian differential

system with four singularities {0, 1, t,∞}, denoted by DY (θ0, θ1, θt, θ∞;λ, µ; k) in [22],

[23].

Heun’s equation and the Fuchsian differential equation Dy1(θ0, θ1, θt, θ∞;λ, µ) admit

integral transformations. We fix a base point o for the integrals in the complex plane

C appropriately. Let f(z) be a holomorphic function locally defined around z = o and

fγ(z) be the function analytically continued along a cycle γ whose base point is o. Define

〈γ, f〉κ =

∫
γ

f(w)(z − w)κdw. (1.6)

This is called Euler’s integral transformation (or an Euler transformation). Let p be an

singularity of the function f(w) in the Riemann sphere C ∪ {∞}, γp be a cycle on the

Riemann sphere with variable w which starts from w = o, goes around w = p in a counter-

clockwise direction and ends at w = o, and [γz, γp] = γzγpγ
−1
z γ−1

p be the Pochhammer

contour. The following proposition was obtained by Novikov [10], independently by

Kazakov and Slavyanov [8], and also derived by considering an explicit form of a middle

convolution of a 2× 2 Fuchsian differential system [23]:
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Proposition 1.1 ([8], [10], [23]). If y1(z) is a solution of Dy1(θ0, θ1, θt, θ∞;λ, µ),

then the function

ỹ(z) = 〈[γz, γp], y1〉κ2−1 =

∫
[γz,γp]

y1(w)(z − w)κ2−1dw, (1.7)

satisfies Dy1(θ̃0, θ̃1, θ̃t, θ̃∞; λ̃, µ̃) for p ∈ {0, 1, t,∞}, where

κ2 = −(θ∞ + θ0 + θ1 + θt)/2, θ̃p = κ2 + θp (p = 0, 1, t,∞), (1.8)

λ̃ = λ− κ2

µ− θ0
λ −

θ1
λ−1 −

θt
λ−t

, µ̃ =
κ2 + θ0

λ̃
+
κ2 + θ1

λ̃− 1
+
κ2 + θt

λ̃− t
+

κ2

λ− λ̃
.

Kazakov and Slavyanov established an integral transformation for solutions of Heun’s

equation in [7], and it was also obtained by taking suitable limits in Proposition 1.1, which

was discussed in [23] by considering the relationship with the space of initial conditions

of the sixth Painlevé equation.

Proposition 1.2 ([7], [23]). Let α, β, ε0, ε1, εt be the parameters in Heun’s

equation (1.12). Set η = α or β and

ε′0 = ε0 − η + 1, ε′1 = ε1 − η + 1, ε′t = εt − η + 1, (1.9)

{α′, β′} = {2− η, α+ β − 2η + 1}, q′ = q + (1− η)(εt + ε1t+ (ε0 − η)(t+ 1)).

Let v(w) be a solution of

d2v

dw2
+

(
ε′0
w

+
ε′1

w − 1
+

ε′t
w − t

)
dv

dw
+

α′β′w − q′

w(w − 1)(w − t)
v = 0. (1.10)

Then the function

y(z) = 〈[γz, γp], v〉−η =

∫
[γz,γp]

v(w)(z − w)−ηdw (1.11)

is a solution of

d2y

dz2
+

(
ε0
z

+
ε1

z − 1
+

εt
z − t

)
dy

dz
+

αβz − q
z(z − 1)(z − t)

y = 0, (1.12)

for p ∈ {0, 1, t,∞}.

Note that the inverse correspondence of the parameters is given by setting η = α or β

and

η = 2− η′, ε0 = ε′0 − η′ + 1, ε1 = ε′1 − η′ + 1, εt = ε′t − η′ + 1, (1.13)

{α, β} = {2− η′, α′ + β′ − 2η′ + 1}, q = q′ + (1− η′)(ε′t + ε′1t+ (ε′0 − η′)(t+ 1)).

In this paper, Euler’s integral transformations given by (1.7), (1.11) are considered.

If we have a solution of the differential equation Dy1(θ0, θ1, θt, θ∞;λ, µ) (resp. Heun’s
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differential equation (1.10)), then we may study the solution of Dy1(θ̃0, θ̃1, θ̃t, θ̃∞; λ̃, µ̃)

(resp. (1.12)) by means of Euler’s integral transformations in (1.7) (resp. (1.11)). We

apply this strategy for the case where the differential equation Dy1(θ0, θ1, θt, θ∞;λ, µ)

(resp. (1.10)) has a polynomial-type solution. Then it is shown that one of the singu-

larities {0, 1, t,∞} of the differential equation Dy1(θ̃0, θ̃1, θ̃t, θ̃∞; λ̃, µ̃) (resp. (1.12)) turns

out to be apparent, and the inverse statement also holds (see Theorems 4.3 and 4.2).

As a by-product, we have integral representations of solutions of Heun’s equation for

which one of the singularities {0, 1, t,∞} is apparent (see Theorems 5.2 and 5.4). We

also investigate properties of monodromy by means of integral transformations, which

are used for the study of solutions.

It is known that Heun’s equation has an elliptical representation. Let ℘(x) be

the Weierstrass doubly periodic function with periods (2ω1, 2ω3), ω0(= 0), ω1, ω2(=

−ω1 − ω3), ω3 be the half-periods and ei = ℘(ωi) (i = 1, 2, 3). Heun’s equation (1.2) is

transformed to (
− d2

dx2
+

3∑
i=0

li(li + 1)℘(x+ ωi)− E

)
f(x) = 0, (1.14)

by setting z = (℘(x)−e1)/(e2−e1), t = (e3−e1)/(e2−e1). For details see section 6. Then

the integral transformation of (1.11) provides a correspondence of (1.14) with a different

parameter described in Proposition 6.2. For the elliptical representation, the invariance

of monodromy by the integral transformation with respect to the shift of a period is

remarkable. For details see Theorem 6.4. We also obtain correspondences of solutions

expressed by quasi-solvability (existence of a polynomial-type solution) and apparency of

one of the singularities {0, ω1, ω2, ω3}. We apply the integral transformation for the case

where Heun’s equation has the finite-gap property, i.e. the case where l0, l1, l2, l3 ∈ Z. For

the case l0, l1, l2, l3 ∈ Z we can calculate the monodomy in principle for all E by means

of hyperelliptic integrals [18] and by the Hermite–Krichever Ansatz [19]. By applying

monodromy invariance, we can calculate the monodromy of Heun’s equation for the case

l0, l1, l2, l3 ∈ Z+1/2 and l0 + l1 + l2 + l3 ∈ 2Z+1, which have not been studied previously.

This paper is organized as follows: In section 2, we investigate the transformation

of the monodromy induced by Euler’s integral transformation. In section 3, we ob-

tain some properties of solutions and monodromy of the Fuchsian differential equations

Dy1(θ0, θ1, θt, θ∞;λ, µ), Dy1(θ̃0, θ̃1, θ̃t, θ̃∞; λ̃, µ̃) and Heun’s equations ((1.10), (1.12)). In

section 4, we have correspondences of polynomial-type solutions and solutions such that

one of the singularities is apparent. In section 5, we obtain integral representations of

solutions of Heun’s equation which have apparent singularities by using polynomial-type

solutions. In section 6, we translate the results to the elliptical representation of Heun’s

equation. In section 7, we review results on finite-gap potentials and calculate the mon-

odromy of the elliptical representation of Heun’s equation for the case l0, l1, l2, l3 ∈ Z+1/2

and l0 + l1 + l2 + l3 ∈ 2Z + 1. In the appendix we provide the technical details.
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2. Monodromy and integral transformation.

In this section we investigate the transformation of the monodromy induced by

Euler’s integral transformation given by (1.6).

We review some facts about cycles in order to discuss the monodromy. Let a, b ∈
C∪{∞} (a 6= b) and pab be a path linking a and b. We put the base point o of integrals in

(1.6) on the left side of the path pab and the o does not coincide with the singularity of the

differential equation or the point z. Let z be a point on pab. We consider deformations

of the cycles γa, γb and γz in the w-plane as the point z turns around the singularity a

or b anti-clockwise and the points z, a, b do not cross the cycle. As the point z turns

around the singularity w = a anti-clockwise, the cycle γa is deformed to γaγzγaγ
−1
z γ−1

a ,

the cycle γz is deformed to γaγzγ
−1
a and the cycle γb is not deformed (see Figure 1).

As the point z turns around the singularity b anti-clockwise, the cycle γb is deformed to

γzγbγ
−1
z , the cycle γz is deformed to γzγbγzγ

−1
b γ−1

z and the cycle γa is not deformed (see

also Figure 1).

z

a b

o

pab

o

a
z

γa

⇒

o

a
z

⇒

o

a
z

γaγzγaγ
−1
z γ−1

a

o

a
z

γaγzγ
−1
a

o

z

b

γzγbγ
−1
z

o

z
b

γzγbγzγ
−1
b γ−1

z

Figure 1. Deformation of the cycles.

The Euler’s integral transformation by the Pochhammer contour admits the follow-

ing expression,

〈[γz, γa], f〉κ =

∫
γzγaγ

−1
z γ−1

a

f(w)(z − w)κdw = (e2π
√
−1κ − 1)〈γa, f〉κ + 〈γz, f − fγa〉κ,

(2.1)

where we used the relations 0 = 〈γa, f〉κ + 〈γ−1
a , fγa〉κ and 0 = 〈γz, f〉κ +

e2π
√
−1κ〈γ−1

z , f〉κ. The formula obtained by replacing a with b also holds true. Then

analytic continuation of the transformed functions are calculated as follows;
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Proposition 2.1.

〈[γz, γb], f〉γaκ = 〈[γz, γb], f〉κ + 〈[γz, γa], fγb〉κ − 〈[γz, γa], f〉κ, (2.2)

〈[γz, γa], f〉γaκ = e2π
√
−1κ〈[γz, γa], fγa〉κ,

〈[γz, γa], f〉γbκ = 〈[γz, γa], f〉κ + e2π
√
−1κ〈[γz, γb], fγa〉κ − e2π

√
−1κ〈[γz, γb], f〉κ,

〈[γz, γb], f〉γbκ = e2π
√
−1κ〈[γz, γb], fγb〉κ.

Proof. We show the first equality. It follows from (2.1) that

〈[γz, γb], f〉γaκ = 〈[γaγzγ−1
a , γb], f〉κ = 〈γa, f〉κ + 〈γz, fγa〉κ − e2π

√
−1κ〈γa, f〉κ

+ e2π
√
−1κ〈γb, f〉κ + e2π

√
−1κ〈γa, fγb〉κ − 〈γz, fγbγa〉κ − 〈γa, fγb〉κ − 〈γb, f〉κ. (2.3)

By expanding the right hand side of the first equality, we have the same expression. The

second formula follows from

〈[γz, γa], f〉γaκ = 〈γaγz[γz, γa](γaγz)
−1, f〉κ = e2π

√
−1κ〈[γz, γa], fγa〉κ.

The other formulas are shown similarly. �

From now on, we assume that the function y(w) is a solution of a second-order

differential equation, the two points a, b ∈ C are regular singularities of the differential

equation whose exponents are 0 and θa, 0 and θb respectively, where the case of Heun’s

equation and that of the differential equation Dy1(θ0, θ1, θt, θ∞;λ, µ) are included. We

put the base point o of integrals in (1.7) on the left side of the path pab. Let y(2)(w) be

a solution of the second-order differential equation such that the functions y(w), y(2)(w)

form a basis of solutions of the differential equation, and we denote the monodromy

matrices around the singularity w = a by

(y(w)γa , y(2)(w)γa) = (y(w), y(2)(w))

(
a′11 a

′
12

a′21 a
′
22

)
= (y(w), y(2)(w))M ′(a). (2.4)

The eigenvalues of the monodromy matrix M ′(a) in (2.4) are 1 and e2π
√
−1θa . If one

of the exponents around the singularities w = a is zero, then there exists a non-zero

solution f(w) that is holomorphic about w = a and it follows from (2.1) that the function

〈[γz, γa], f〉κ is zero. Let a′1y(w) + a′2y
(2)(w) be a non-zero holomorphic solution of the

differential equation about w = a. Then we have

a′1〈[γz, γa], y〉κ + a′2〈[γz, γa], y(2)〉κ = 0. (2.5)

Since a′1y1(w)γa + a′2y
(2)(w)γa = a′1y(w) + a′2y

(2)(w), we have(
a′11 − 1 a′12

a′21 a′22 − 1

)(
a′1
a′2

)
=

(
0

0

)
,

(a′11 − 1)(a′22 − 1)− a′12a
′
21 = 0,

a′11 + a′22 = trM ′(a) = 1 + e2π
√
−1θa .

(2.6)

We use similar notations for the singularity w = b. If 〈[γz, γa], y〉κ 6= 0 and 〈[γz, γb], y〉κ 6=
0, then y(w) is not holomorphic about w = a, b and a′2 6= 0 6= b′2. Combining with (2.2),
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we have

〈[γz, γa], y〉γbκ = 〈[γz, γa], b′11y + b′21y
(2)〉κ =

〈
[γz, γa], b′11y −

a′1
a′2
b′21y

〉
κ

, (2.7)

〈[γz, γb], y〉γaκ = 〈[γz, γb], y〉κ + 〈[γz, γa], yγb〉κ − 〈[γz, γa], y〉κ

=

(
b′11 − 1− a′1

a′2
b′21

)
〈[γz, γa], y〉κ + 〈[γz, γb], y〉κ,

〈[γz, γa], y〉γaκ = e2π
√
−1κ〈[γz, γa], a′11y + a′21y

(2)〉κ

= e2π
√
−1κ

〈
[γz, γa], a′11y −

a′1
a′2
a′21y

〉
κ

= e2π
√
−1κ(a′11 + a′22 − 1)〈[γz, γa], y〉κ,

〈[γz, γa], y〉γbκ = 〈[γz, γa], y〉κ + e2π
√
−1κ

(
a′11 − 1− b′1

b′2
a′21

)
〈[γz, γb], y〉κ,

〈[γz, γb], y〉γbκ = e2π
√
−1κ(b′11 + b′22 − 1)〈[γz, γb], y〉κ.

For the case that the functions 〈[γz, γa], y〉κ, 〈[γz, γb], y〉κ are linearly independent, we

denote the monodromy matrix on the cycle γp with respect to 〈[γz, γa], y〉κ, 〈[γz, γb], y〉κ
by M

(p)
a,b , Then we have

M
(a)
a,b =

(
e2π
√
−1κ(a′11 + a′22 − 1) b′11 − 1− a′1

a′2
b′21

0 1

)
, (2.8)

M
(b)
a,b =

(
1 0

e2π
√
−1κ

(
a′11 − 1− b′1

b′2
a′21

)
e2π
√
−1κ(b′11 + b′22 − 1)

)
.

Thus tr(M
(a)
a,b ) = 1 + e2π

√
−1(κ+θa), tr(M

(b)
a,b) = 1 + e2π

√
−1(κ+θb), and we have

M
(a)
a,bM

(b)
a,b = e2π

√
−1κ

(
a′11b

′
11+a′12b

′
21+a′21b

′
12+a′22b

′
22

−b′11−b′22+1
(b′11 + b′22 − 1)(b′11 − 1− a′1

a′2
b′21)

a′11 − 1− b′1
b′2
a′21 b′11 + b′22 − 1

)
,

(2.9)

tr(M
(a)
a,bM

(b)
a,b) = e2π

√
−1κtr(M ′(a)M ′(b)), det(M

(a)
a,bM

(b)
a,b) = e4π

√
−1κdet(M ′(a)M ′(b)).

Note that values of the trace and determinant are independent of the choice of basis.

We consider the case where 〈[γz, γa], y〉κ, 〈[γz, γb], y〉κ are linearly dependent. We

further assume that the point w = c is also a regular singularity, 〈[γz, γp], y〉κ 6= 0 for

p = a, b, c and 〈[γz, γa], y〉κ, 〈[γz, γc], y〉κ are linearly independent. Then 〈[γz, γb], y〉κ =

d〈[γz, γa], y〉κ for some d 6= 0. It follows from (2.7) that 〈[γz, γa], y〉γaκ = a11〈[γz, γa], y〉κ =

(1 + a12/d)〈[γz, γa], y〉κ and 〈[γz, γa], y〉γbκ = b22〈[γz, γa], y〉κ = (1 + db21)〈[γz, γa], y〉κ,

where a11 = e2π
√
−1κ(a′11 + a′22 − 1), a12 = b′11 − 1− b′21a

′
1/a
′
2, b21 = e2π

√
−1κ(a′11 − 1−

a′21b
′
1/b
′
2), b22 = e2π

√
−1κ(b′11+b′22−1). Hence we have a11 = 1+a12/d, b22 = 1+db21 and

a12b21 = (a11−1)(b22−1). By applying (2.6), (2.8), the relation a12b21 = (a11−1)(b22−1)

can be written as
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e4π
√
−1κ det(M ′(a)M ′(b))− e2π

√
−1κtr(M ′(a)M ′(b)) + 1 = 0. (2.10)

Assume that the points a, b, c are located anticlockwise with respect to the point o. In

a similar way as we obtained (2.8), we have

(〈[γz, γb], y〉γbκ , 〈[γz, γc], y〉γbκ ) = (〈[γz, γb], y〉κ, 〈[γz, γc], y〉κ) (2.11)(
e2π
√
−1κ(b′11 + b′22 − 1) c′11 − 1− b′1

b′2
c′21

0 1

)
,

(〈[γz, γb], y〉γcκ , 〈[γz, γc], y〉γcκ ) = (〈[γz, γb], y〉κ, 〈[γz, γc], y〉κ)(
1 0

e2π
√
−1κ

(
b′11 − 1− c′1

c′2
b′21

)
e2π
√
−1κ(c′11 + c′22 − 1)

)
,

(〈[γz, γc], y〉γcκ , 〈[γz, γa], y〉γcκ ) = (〈[γz, γc], y〉κ, 〈[γz, γa], y〉κ)(
e2π
√
−1κ(c′11 + c′22 − 1) a′11 − 1− c′1

c′2
a′21

0 1

)
,

(〈[γz, γc], y〉γaκ , 〈[γz, γa], y〉γaκ ) = (〈[γz, γc], y〉κ, 〈[γz, γa], y〉κ)(
1 0

e2π
√
−1κ

(
c′11 − 1− a′1

a′2
c′21

)
e2π
√
−1κ(a′11 + a′22 − 1)

)
.

By applying 〈[γz, γb], y〉κ = d〈[γz, γa], y〉κ, we obtain

(〈[γz, γa], y〉γaκ , 〈[γz, γc], y〉γaκ ) = (〈[γz, γa], y〉κ, 〈[γz, γc], y〉κ) (2.12)(
e2π
√
−1κ(a′11 + a′22 − 1) e2π

√
−1κ

(
c′11 − 1− a′1

a′2
c′21

)
0 1

)
,

(〈[γz, γa], y〉γbκ , 〈[γz, γc], y〉γbκ ) = (〈[γz, γa], y〉κ, 〈[γz, γc], y〉κ)(
e2π
√
−1κ(b′11 + b′22 − 1) (c′11 − 1− b′1

b′2
c′21)d

0 1

)
.

Then det(M
(a)
a,cM

(b)
a,c) = e4π

√
−1κ det(M ′(a)M ′(b)) and tr(M

(a)
a,cM

(b)
a,c) =

e4π
√
−1κ det(M ′(a)M ′(b)) + 1. Combining with (2.10), we have tr(M

(a)
a,cM

(b)
a,c) =

e2π
√
−1κtr(M ′(a)M ′(b)), which is also shown for the case where the points a, b, c are

located clockwise with respect to the point o.

3. Solutions and monodromy.

In this section, we start with the proposition on the existence of a global simple

solution of a second-order Fuchsian differential equation and the reducibility of the mon-

odromy. The monodromy representation of solutions of a Fuchsian differential equation

is said to be reducible, iff the monodromy matrices Mγ for fixed basis of solutions have

a non-trivial invariant subspace which does not depend on the cycle γ, i.e. there exists a

non-trivial subspace of the solutions which is invariant under analytic continuation along

any cycle.
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Proposition 3.1. Let Dy = 0 (D = d2/dw2 + a1(w)d/dw + a2(w)) be a second-

order Fuchsian differential equation with singularities {t1, . . . , tn,∞(= tn+1)}, and let

θ
(1)
l and θ

(2)
l be the exponents at the singularity w = tl (l = 1, . . . , n+ 1).

(i) If the monodromy representation of solutions of the differential equation Dy = 0 is

reducible, there exists a non-zero solution y(w) such that y(w) = h(w)
∏n
l=1(w − tl)αl ,

h(w) is a polynomial in the variable w and
∏n
l=1 h(tl) 6= 0.

(ii) If there exists a non-zero solution y(w) of Dy = 0 such that y(w) = h(w)
∏n
l=1(w −

tl)
αl , h(w) is a polynomial of degree k and

∏n
l=1 h(tl) 6= 0, then αl ∈ {θ(1)

l , θ
(2)
l } for each

l = 1, . . . , n and θ
(1)
n+1 = −k −

∑n
l=1 αl or θ

(2)
n+1 = −k −

∑n
l=1 αl.

Proof. Assume that the monodromy representation of solutions of the Fuchsian

equation Dy = 0 is reducible. Let γ̃l (l = 1, . . . , n+ 1) be a cycle on the Riemann sphere

which traces a path around the singularity w = tl anti-clockwise. Since the dimension

of the space of solutions of the differential equation Dy = 0 is two, it follows from

reducibility that there exists a non-zero solution y(w) such that yγ̃l(w) = e2π
√
−1α̃ly(w)

for some constants α̃l and l = 1, . . . , n+1. The monodromy of the function y(w)
∏n
l=1(w−

tl)
−α̃l on C is trivial, because γ̃n+1 is written as products of γ̃−1

l (l = 1, . . . , n). Since y(w)

satisfies the Fuchsian equation Dy = 0, the function y(w)
∏n
l=1(w− tl)−α̃l does not have

any singularities except for {t1 . . . , tn+1}, and the singularity w =∞ is regular at most.

Hence the function y(w)
∏n
l=1(w − tl)−α̃l may have poles at w = tl (l = 1, . . . , n), it is

holomorphic on C\{t1, . . . , tn} and the regular singularity w =∞ is apparent. Therefore

we have y(w)
∏n
l=1(w− tl)−α̃l = p(w)

∏n
l=1(w− tl)−ml for some integers m1, . . . ,mn and

a polynomial p(w). Thus y(w) may be written as y(w) = h(w)
∏n
l=1(w − tl)αl , where

h(w) is a polynomial in the variable w and
∏n
l=1 h(tl) 6= 0. Therefore we have (i).

If y(w) = h(w)
∏n
l=1(w − tl)αl (h(w): a polynomial of degree k,

∏n
l=1 h(tl) 6= 0)

satisfies the Fuchsian equation Dy = 0, it follows from that the exponents at w = tl
(l ∈ {1, . . . , n}) are θ

(1)
l , θ

(2)
l and h(p) 6= 0 that αl ∈ {θ(1)

l , θ
(2)
l }. Write h(w) = ckw

k +

ck−1w
k−1 + · · ·+ c0 (ck 6= 0). Then we have the expansion y(w) = (1/w)−k−

∑n
l=1 αl(ck +

(ck−1− ck
∑n
l=1 tlαl)/w+ · · · ) around w =∞ and the index −k−

∑n
l=1 αl must coincide

with one of the exponents at w = ∞, which are θ
(1)
n+1 and θ

(2)
n+1. Therefore we have

θ
(1)
n+1 = −k −

∑n
l=1 αl or θ

(2)
n+1 = −k −

∑n
l=1 αl. �

Proposition 3.1 is applicable to the Fuchsian equation Dy1(θ0, θ1, θt, θ∞;λ, µ) and

Heun’s equation (1.10) readily.

We introduce a proposition which connects polynomial-type solutions (the ones de-

scribed in Proposition 3.1) to the ones such that one of the singularities is apparent

through the Euler’s integral transformation. A regular singularity z = p of a second-

order linear differential equation is called apparent, if and only if the monodromy matrix

along the singularity z = p is a scalar matrix. Note that it is equivalent that the differ-

ence of the exponents is an integer and the logarithmic solution along z = p disappear,

which means A〈p〉 = 0 in (A.2) in the case that one of the exponents is zero.

For a cycle γ, we set

〈γ, y〉 =

{
〈γ, y〉κ2−1, if y(w) satisfies Dy1(θ0, θ1, θt, θ∞;λ, µ),

〈γ, y〉−η, if y(w) satisfies Heun’s equation (1.10).
(3.1)
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It follows from Proposition 1.1 (resp. Proposition 1.2) that if y(w) is a solution of

Dy1(θ0, θ1, θt, θ∞;λ, µ) (resp. (1.10)) then 〈[γz, γp], y〉 (p ∈ {0, 1, t,∞}) is a solution of

Dy1(θ̃0, θ̃1, θ̃t, θ̃∞; λ̃, µ̃) (resp. (1.12)). The local expansion of the function 〈[γz, γp], y〉
(p = 0, 1, t,∞) about z = p can be calculated using (A.8), (A.13) for the case κ = κ2−1,

θ
(1)
∞ = κ1, θ

(2)
∞ = κ2 + 1 (resp. θp = 1 − ε′p (p = 0, 1, t), κ = −η, θ

(1)
∞ = α + β − 2η + 1,

θ
(2)
∞ = 2 − η) by using the local expansion of solutions of Dy1(θ0, θ1, θt, θ∞;λ, µ) (resp.

(1.10)) (see (A.1), (A.2), (A.10), (A.11)). They are used to obtain the condition that

the function 〈[γz, γp], y〉 (p ∈ {0, 1, t,∞}) is identically zero for all solutions y(w) to

Dy1(θ0, θ1, θt, θ∞;λ, µ) (resp. (1.10)).

Proposition 3.2. (i) Let p ∈ {0, 1, t} and assume κ2 6∈ Z (resp. η 6∈ Z). The

function 〈[γz, γp], y〉 is identically zero for all solutions y(w) of Dy1(θ0, θ1, θt, θ∞;λ, µ)

(resp. (1.10)), if and only if θp ∈ Z≥0 (resp. ε′p ∈ Z≤1) and the singularity w = p

is apparent (i.e. A〈p〉 = 0 in (A.2)), or θp + κ2 ∈ Z≤−1 (resp. εp ∈ Z≥2) and the

differential equation Dy1(θ0, θ1, θt, θ∞;λ, µ) (resp. (1.10)) has a solution of the form of

a product of (w − p)θp (resp. (w − p)1−ε′p) and a non-zero polynomial of degree no more

than −θp − κ2 − 1 (resp. εp − 2).

(ii) Under the assumption κ2 6∈ Z (resp. η 6∈ Z), the function 〈[γz, γ∞], y〉 is identically

zero for all solutions y(w) of Dy1(θ0, θ1, θt, θ∞;λ, µ) (resp. (1.10)), if and only if θ∞ ∈
Z≥1 (resp. α+ β − η ∈ Z≥1) and the singularity w =∞ is apparent, or κ1 ∈ Z≤0 (resp.

α + β − 2η ∈ Z≤−1) and the differential equation Dy1(θ0, θ1, θt, θ∞;λ, µ) (resp. (1.10))

has a non-zero polynomial in the variable w of degree −κ1 (resp. 2η − α− β − 1).

Proposition 3.2 will be proved in the appendix.

We investigate a sufficient condition for the functions 〈[γz, γ0], y〉, 〈[γz, γ1], y〉,
〈[γz, γt], y〉 to span the two-dimensional space of solutions of Dy1(θ̃0, θ̃1, θ̃t, θ̃∞; λ̃, µ̃) (resp.

(1.12)).

Proposition 3.3. There exists a solution y(w) of Dy1(θ0, θ1, θt, θ∞;λ, µ) (resp.

(1.10)) such that 〈[γz, γ0], y〉 6= 0, 〈[γz, γ1], y〉 6= 0, 〈[γz, γt], y〉 6= 0 and the func-

tions 〈[γz, γ0], y〉, 〈[γz, γ1], y〉, 〈[γz, γt], y〉 span the two-dimensional space of solutions

of Dy1(θ̃0, θ̃1, θ̃t, θ̃∞; λ̃, µ̃) (resp. (1.12)), if κ2 6∈ Z and θp, θ̃p 6∈ Z for all p ∈ {0, 1, t,∞}
(resp. η, ε0, ε1, εt, α− β, ε′0, ε′1, ε′t, α′ − β′ 6∈ Z).

Although the proposition might be obvious to the experts, we give a proof in the

appendix with a more detailed proposition.

By applying the results on the monodromy of integral representations in section 2,

we have the following theorem for monodromy matrices:

Theorem 3.4. Let a, b ∈ {0, 1, t} (a 6= b), M ′(p) be a monodromy matrix of a cer-

tain basis of solutions of Dy1(θ0, θ1, θt, θ∞;λ, µ) (resp. (1.10)) on the cycle γp (p ∈ {a, b})
and M (p) be a monodromy matrix of a certain basis of solutions of Dy1(θ̃0, θ̃1, θ̃t, θ̃∞; λ̃, µ̃)

(resp. (1.12)) on the cycle γp. Then we have

tr((M (a)M (b))n) = e2π
√
−1nκ2tr((M ′(a)M ′(b))n), (3.2)
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(resp. tr((M (a)M (b))n) = e−2π
√
−1nηtr((M ′(a)M ′(b))n)),

for n ∈ Z.

Proof. Set κ = κ2 − 1 (resp. κ = −η) for the case of the differential equa-

tion Dy1(θ0, θ1, θt, θ∞;λ, µ) (resp. (1.10)). Firstly we show that tr(M (a)M (b)) =

e2π
√
−1κtr(M ′(a)M ′(b)) and det(M (a)M (b)) = e4π

√
−1κdet(M ′(a)M ′(b)) under the as-

sumption of Proposition 3.3. It follows from Proposition 3.3 that there exists a

solution y(w) of Dy1(θ0, θ1, θt, θ∞;λ, µ) (resp. (1.10)) such that 〈[γz, γ0], y〉 6= 0,

〈[γz, γ1], y〉 6= 0, 〈[γz, γt], y〉 6= 0 and the functions 〈[γz, γ0], y〉, 〈[γz, γ1], y〉, 〈[γz, γt], y〉
span the two-dimensional space of solutions of Dy1(θ̃0, θ̃1, θ̃t, θ̃∞; λ̃, µ̃) (resp. (1.12)).

Let c be the element in {0, 1, t} which is different from a and b. Then 〈[γz, γa], y〉,
〈[γz, γb], y〉 are linearly independent or 〈[γz, γa], y〉, 〈[γz, γc], y〉 are linearly independent

and 〈[γz, γa], y〉 = d〈[γz, γb], y〉 for some d(6= 0). Hence it follows from the calcula-

tions of monodromy in section 2 that if κ2 6∈ Z and θp, θ̃p 6∈ Z for all p ∈ {0, 1, t,∞}
(resp. η, ε0, ε1, εt, α−β, ε′0, ε′1, ε′t, α′−β′ 6∈ Z) then tr(M (a)M (b)) = e2π

√
−1κtr(M ′(a)M ′(b))

and det(M (a)M (b)) = e4π
√
−1κdet(M ′(a)M ′(b)). It is known the analyticity of the coef-

ficients of the equation leads to the analyticity of the monodromy matrix, when the

solutions of the equation which describe the monodromy are analytic with respect

to the parameter and form a basis of the space of the equation. Hence we have

tr(M (a)M (b)) = e2π
√
−1κtr(M ′(a)M ′(b)) and det(M (a)M (b)) = e4π

√
−1κdet(M ′(a)M ′(b))

for all cases by taking a limit from the case κ2 6∈ Z and θp, θ̃p 6∈ Z for all p ∈ {0, 1, t,∞}
(resp. η, ε0, ε1, εt, α − β, ε′0, ε

′
1, ε
′
t, α
′ − β′ 6∈ Z). Note that the trace and the determi-

nant of a matrix is independent from the choice of the basis. Let l′1, l′2 (resp. l1, l2)

be the solutions of the quadratic equation x2 − tr(M ′(a)M ′(b))x + det(M ′(a)M ′(b)) =

0 (resp. x2 − tr(M (a)M (b))x + det(M (a)M (b)) = 0). Then we have {l1, l2} =

{e2π
√
−1κl′1, e

2π
√
−1κl′2} and tr((M (a)M (b))n) = (l1)n+ (l2)n = e2π

√
−1nκ((l′1)n+ (l′2)n) =

e2π
√
−1nκtr((M ′(a)M ′(b))n) for n ∈ Z. �

It follows from the relations M ′(0)M ′(1)M ′(t)M ′(∞) = 1 and M (0)M (1)M (t)M (∞) =

1 that tr((M (p)M (∞))n) = e−2π
√
−1nκ2tr((M ′(p)M ′(∞))n) (resp. tr((M (p)M (∞))n) =

e2π
√
−1nηtr((M ′(p)M ′(∞))n)) for p ∈ {0, 1, t} and n ∈ Z. It seems that we do not have a

simple formula connecting tr(M (a)(M (b))−1) and tr(M ′(a)(M ′(b))−1) for a, b ∈ {0, 1, t},
a 6= b. Note that (3.2) can be written as tr((M (a)M (b))n) =tr((M ′(a)M ′(b))n) for a 2× 2

sl2-Fuchsian system with four singularities, and it was obtained by Inaba–Iwasaki–Saito

[3] and Boalch [1].

4. Correspondence between polynomial-type solutions and apparency of

a singularity.

In this section, we establish correspondences between polynomial-type solutions and

apparency of a singularity, which are induced by integral transformations.

Let y(w) be a solution of Dy1(θ0, θ1, θt, θ∞;λ, µ) (resp. (1.10)), p ∈ {0, 1, t}, and

consider the local expansion of the solution about w = p as (A.1), (A.2) by setting

κ = κ2− 1 (resp. θp = 1− ε′p, κ = −η). It follows from the local expansion of 〈[γz, γp], y〉
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about z = p (see (A.8) for the case θp ∈ Z≤−1, θp + κ 6∈ Z≤−2) that if θp ∈ Z≤−1,

κ2 6∈ Z (resp. ε′p ∈ Z≥2, η 6∈ Z) and the singularity w = p of the differential equation

Dy1(θ0, θ1, θt, θ∞;λ, µ) (resp. (1.10)) is apparent, then A〈p〉 = 0 in (A.2), (A.8), the

function 〈[γz, γp], y〉 is non-zero and it is a product of (z − p)θp+κ2 (resp. (z − p)2−ε′p−η)

and a polynomial of degree no more than −θp−1 (resp. ε′p−2). Since 〈[γz, γp], y〉 satisfies

Dy1(θ̃0, θ̃1, θ̃t, θ̃∞; λ̃, µ̃) (resp. (1.12)), we have the following proposition:

Proposition 4.1. Let p ∈ {0, 1, t}. If θp ∈ Z≤−1, κ2 6∈ Z (resp. ε′p ∈ Z≥2, η 6∈ Z)

and the singularity w = p of the differential equation Dy1(θ0, θ1, θt, θ∞;λ, µ) (resp. (1.10))

is apparent, then there exists a non-zero solution of Dy1(θ̃0, θ̃1, θ̃t, θ̃∞; λ̃, µ̃) (resp. (1.12))

which can be written as (z−p)θp+κ2h(z) (resp. (z−p)1−εph(z)) where h(z) is a polynomial

of degree no more than −θp − 1 (resp. ε′p − 2).

The following theorem asserts various correspondences between polynomial-type so-

lutions and apparency of a singularity for Heun’s equation.

Theorem 4.2. Let a, b, c be elements of {0, 1, t} such that a 6= b 6= c 6= a and

η, α, β, ε0, ε1, εt, α
′, β′, ε′0, ε

′
1, ε
′
t be the parameters defined in (1.9) or (1.13).

(i) If ε′a ∈ Z≥2, η 6∈ Z and the singularity w = a of (1.10) is apparent, then there exists

a non-zero solution of (1.12) which can be written as (z − a)1−εah(z) where h(z) is a

polynomial of degree no more than ε′a−2. Moreover if α′, β′ 6∈ Z, then degE h(z) = ε′a−2.

(ii) If ε′a ∈ Z≤0, η 6∈ Z, α′, β′, εb, εc 6∈ Z and the singularity w = a of (1.10) is apparent,

then there exists a non-zero solution of (1.12) which can be written as (z − b)1−εb(z −
c)1−εch(z) where h(z) is a polynomial with deg h(z) = −ε′a.

(iii) If εa ∈ Z≥2, α, β 6∈ Z and there exists a non-zero solution of (1.10) which can be

written as a product of (w−a)1−ε′a and a polynomial, then the singularity z = a of (1.12)

is apparent.

(iv) If εa ∈ Z≤0, α, β, ε′b, ε
′
c 6∈ Z and there exists a non-zero solution of (1.10) which can

be written as (w−b)1−ε′b(w−c)1−ε′ch(w) where h(w) is a polynomial, then the singularity

z = a of (1.12) is apparent.

(v) If α + β − η ∈ Z≤0, η 6∈ Z and the singularity w = ∞ of (1.10) is apparent, then

there exists a non-zero solution of (1.12) which can be written as a polynomial of degree

η − α− β.

(vi) If α+ β− η ∈ Z≥2, η, ε0, ε1, εt 6∈ Z and the singularity w =∞ of (1.10) is apparent,

then there exists a non-zero solution of (1.12) which can be written as z1−ε0(z−1)1−ε1(z−
t)1−εth(z) where h(z) is a polynomial of degree α+ β − η − 2.

(vii) If α+β−2η ∈ Z≤−1, η, ε′0 6∈ Z and there exists a non-zero solution of (1.10) written

as a polynomial in w, then the singularity z =∞ of (1.12) is apparent.

(viii) If α+ β − 2η ∈ Z≥1, η, ε′0, ε
′
1, ε
′
t 6∈ Z and there exists a non-zero solution of (1.10)

which can be written as w1−ε′0(w − 1)1−ε′1(w − t)1−ε′th(w) where h(w) is a polynomial,

then the singularity z =∞ of (1.12) is apparent.

We will prove Theorem 4.2 in the appendix with a more detailed proposition.

Correspondences between polynomial-type solutions and apparency of a singularity

for the differential equations Dy1(θ0, θ1, θt, θ∞;λ, µ) and Dy1(θ̃0, θ̃1, θ̃t, θ̃∞; λ̃, µ̃) can also
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be described as follows:

Theorem 4.3. Set κ1 = (θ∞ − θ0 − θ1 − θt)/2, κ2 = −(θ∞ + θ0 + θ1 + θt)/2,

θ̃p = κ2 + θp (p = 0, 1, t,∞) and

λ̃= λ− κ2

µ− (θ0/λ)− θ1/(λ− 1)− θt/(λ− t)
, µ̃=

κ2 + θ0

λ̃
+
κ2 + θ1

λ̃− 1
+
κ2 + θt

λ̃− t
+

κ2

λ− λ̃
.

(4.1)

Let a, b, c be elements of {0, 1, t} such that a 6= b 6= c 6= a. Assume that λ, λ̃ 6∈ {0, 1, t,∞}.
(i) If θa ∈ Z≤−1, κ2 6∈ Z and the singularity w = a of the differential equation

Dy1(θ0, θ1, θt, θ∞;λ, µ) in the variable w is apparent, then there exists a non-zero so-

lution of the differential equation Dy1(θ̃0, θ̃1, θ̃t, θ̃∞; λ̃, µ̃) in the variable z which can be

written as (z − a)θ̃ah(z) where h(z) is a polynomial of degree no more than −θa − 1.

Moreover if κ1 6∈ Z, then degE h(z) = −θa − 1.

(ii) If θa ∈ Z≥0, κ1, κ2, θ̃b, θ̃c 6∈ Z and the singularity w = a of the differential equation

Dy1(θ0, θ1, θt, θ∞;λ, µ) is apparent, then there exists a non-zero solution of the differen-

tial equation Dy1(θ̃0, θ̃1, θ̃t, θ̃∞; λ̃, µ̃) which can be written as (z− b)θ̃b(z− c)θ̃ch(z) where

h(z) is a polynomial with deg h(z) = θa.

(iii) If θ̃a ∈ Z≤0, κ2, θ∞ 6∈ Z and there exists a non-zero solution of

Dy1(θ0, θ1, θt, θ∞;λ, µ) which can be written as a product of (w − a)θa and a polyno-

mial, then the singularity z = a of Dy1(θ̃0, θ̃1, θ̃t, θ̃∞; λ̃, µ̃) is apparent.

(iv) If θ̃a ∈ Z≥1, κ2, θ∞, θb, θc 6∈ Z and there exists a non-zero solution of

Dy1(θ0, θ1, θt, θ∞;λ, µ) which can be written as (w − b)θb(w − c)θch(w) where h(w) is

a polynomial, then the singularity z = a of Dy1(θ̃0, θ̃1, θ̃t, θ̃∞; λ̃, µ̃) is apparent.

(v) If θ∞ ∈ Z≤0, κ2 6∈ Z and the singularity w = ∞ of Dy1(θ0, θ1, θt, θ∞;λ, µ) is appar-

ent, then there exists a non-zero solution of Dy1(θ̃0, θ̃1, θ̃t, θ̃∞; λ̃, µ̃) which can be written

as a polynomial of degree −θ∞.

(vi) If θ∞ ∈ Z≥1, κ2, θ̃0, θ̃1, θ̃t 6∈ Z and the singularity w =∞ of Dy1(θ0, θ1, θt, θ∞;λ, µ)

is apparent, then there exists a non-zero solution of Dy1(θ̃0, θ̃1, θ̃t, θ̃∞; λ̃, µ̃) which can be

written as zθ̃0(z − 1)θ̃1(z − t)θ̃th(z) where h(z) is a polynomial of degree θ∞ − 1.

(vii) If κ1 ∈ Z≤0, κ2, θ0 6∈ Z and there exists a non-zero solution of Dy1(θ0, θ1, θt, θ∞;λ, µ)

written as a polynomial in w, then the singularity z = ∞ of Dy1(θ̃0, θ̃1, θ̃t, θ̃∞; λ̃, µ̃) is

apparent.

(viii) If κ1 ∈ Z≥1, κ2, θ0, θ1, θt 6∈ Z and there exists a non-zero solution of

Dy1(θ0, θ1, θt, θ∞;λ, µ) which can be written as wθ0(w− 1)θ1(w− t)θth(w) where h(w) is

a polynomial, then the singularity z =∞ of Dy1(θ̃0, θ̃1, θ̃t, θ̃∞; λ̃, µ̃) is apparent.

5. Quasi-solvability and apparency of a singularity for Heun’s equation.

We recall the quasi-solvability of Heun’s equation.

Proposition 5.1 ([12], [17] etc.). Let νj ∈ {0, 1− ε′j} for j = 0, 1, t, η′ ∈ {α′, β′}
and assume that −(η′+ν0+ν1+νt) ∈ Z≥0. Set n = −(η′+ν0+ν1+νt). Then there exists

a polynomial P (q′) of degree n + 1 in the variable q′ such that if q′ satisfies P (q′) = 0

then there exists a solution of (1.10) written as wν0(w − 1)ν1(w − t)νtp(w), where p(w)
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is a polynomial of degree no more than n in the variable w.

Example 1. We investigate polynomial-type solutions of Heun’s equation for the

case ε′0 − β′ + 2 = 0. Set ν0 = 0, ν1 = 1− ε′1, νt = 1− ε′t and η′ = α′ in Proposition 5.1.

Then n = −(α′ + 2 − ε′1 − ε′t) = −(ε′0 − β′ + 1) = 1. We look for a solution of (1.10) of

the form (w − 1)1−ε′1(w − t)1−ε′t(c+ w). By substituting it into (1.10), we have

c(q′ − β′ε′1t+ β′t+ 2ε′1t− 2t− 2 + β′ − β′ε′t + 2ε′t) + 2t− β′t = 0, (5.1)

c(β′ − ε′t − ε′1 + 2) + q′ + ε′1t+ 2β′t− 2t− β′ε′1t+ 2β′ − 2− β′ε′t + ε′t = 0.

Hence

c =
q′ − (β′ − 1)((ε′1 − 2)t+ ε′t − 2)

ε′t + ε′1 − β′ − 2
, (5.2)

(q′)2 + ((−2β′ε′1 + 3β′ + 3ε′1 − 4)t+ (−2β′ε′t + 3β′ + 3ε′t − 4))q′

+ (β′ − 2)[(ε′1 − 1)(ε′1 − 2)(β′ − 1)t2t

+ {(β′ − 1)(2ε′tε
′
1 − 3ε′1 − 3ε′t + 5)− ε′1 − ε′t + 3}+ (ε′t − 1)(ε′t − 2)(β′ − 1)] = 0.

(5.3)

Therefore, if q′ satisfies the quadratic equation in (5.3), then the function (w−1)1−ε′1(w−
t)1−ε′t(c+ w) satisfies (1.10) where c is chosen as (5.2).

We are going to obtain explicit expressions for solutions of Heun’s equation which

have an apparent singularity by using solutions which are expressed by quasi-solvability.

Theorem 5.2. Let a, b, c be elements of {0, 1, t} such that a 6= b 6= c 6= a and

η, α, β, ε0, ε1, εt, α
′, β′, ε′0, ε

′
1, ε
′
t be the parameters defined in (1.9) or (1.13).

(i) If εa ∈ Z≤0, α, β, ε′b, ε
′
c 6∈ Z and the singularity z = a of (1.12) is apparent, then there

exists a non-zero solution of (1.10) which can be written as (w − b)1−ε′b(w − c)1−ε′ch(w)

where h(w) is a polynomial of degree −εa and the functions∫
[γz,γp]

(w − b)1−ε′b(w − c)1−ε′ch(w)(z − w)−ηdw, (p = b, c), (5.4)

are non-zero solutions of (1.12).

(ii) If α + β − 2η ∈ Z≥1, η, ε′0, ε
′
1, ε
′
t 6∈ Z and the singularity z = ∞ of (1.12)

is apparent, then there exists a non-zero solution of (1.10) which can be written as

w1−ε′0(w − 1)1−ε′1(w − t)1−ε′th(w) where h(w) is a polynomial of degree α + β − 2η − 1

and the functions∫
[γz,γp]

w1−ε′0(w − 1)1−ε′1(w − t)1−ε′th(w)(z − w)−ηdw, (p = 0, 1, t), (5.5)

are non-zero solutions of (1.12).

Proof. By Theorem 4.2 (ii) (resp. Theorem 4.2 (vi)) and the duality of the pa-

rameters (α, β, ε0, ε1, εt, η) and (α′, β′, ε′0, ε
′
1, ε
′
t, η
′) in (1.9) and (1.13), we obtain the exis-
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tence of a non-zero solution of (1.10) which can be written as (w− b)1−ε′b(w− c)1−ε′ch(w)

(resp. w1−ε′0(w−1)1−ε′1(w− t)1−ε′th(w)) where h(w) is a polynomial of degree −εa (resp.

α + β − 2η − 1). It follows from Proposition 1.2 that (5.4) (resp. (5.5)) is a solution of

(1.12). We show that (5.4) for p = b is non-zero. We expand (w − c)1−ε′ch(w) about

w = b as
∑∞
j=0 c̃j(w − b)j . Then there are infinitely many terms such that c̃j 6= 0,

because ε′c 6∈ Z. (5.4) for p = b is written as (A.8) for the case θb = 1 − ε′b 6∈ Z≤0,

θb + κ + 1 = 2 − ε′b − η = 1− εb ∈ Z≤−1, and it is not identically zero. It is also shown

that (5.4) for p = c and (5.5) for p = 0, 1, t are not identically zero. �

Example 2. We investigate solutions of (1.12) for the case ε0 = −1 and the sin-

gularity z = 0 of (1.12) is apparent. The condition that the singularity z = 0 is apparent

is described as an algebraic equation of q by following the method in the appendix, and

it is written as

q2 + (ε1t+ εt − t− 1)q + αβt = 0, (5.6)

which is equivalent to (5.3) by applying (1.9) for η = β. If (5.6) is satified, then the

function (w− 1)1−ε′1(w− t)1−ε′t(w+ q/α) satisfies (1.10), which follows from Example 1.

By applying the integral transformation, the functions∫
[γz,γp]

(w − 1)1−ε′1(w − t)1−ε′t
(
w +

q

α

)
(z − w)−βdw, (5.7)

are solutions of (1.12), if q satisfies (5.6).

If εa ∈ Z≥2, α, β 6∈ Z and the singularity z = a of (1.12) is apparent, then there

exists a non-zero solution of (1.10) which can be written as (w− a)1−ε′ah(w) where h(w)

is a polynomial of degree εa − 2, and the functions∫
[γz,γp]

(w − a)1−ε′ah(w)(z − w)−ηdw, (p = 0, 1, t,∞), (5.8)

are solutions of (1.12). But it is shown that (5.8) is identically zero for p = 0, 1, t,∞.

(For the case p = a, it follows from (A.8) on the case θp 6∈ Z, θp + κ ∈ Z≤−2. For the

case p = b, c, it follows from holomorphy of (w − a)1−ε′ah(w) about p = b, c. For the

case p = ∞, it follows from γ0γ1γtγ∞ = 1.) We have a similar situation for the case

α+β− 2η ∈ Z≤−1, η, ε′0 6∈ Z. To obtain non-vanishing expressions of integrals, we apply

the following proposition.

Proposition 5.3. Let η, ε0, ε1, εt, ε
′
0, ε
′
1, ε
′
t be the parameters defined in (1.9) or

(1.13) and v(w) be a solution of (1.10). Then the function

y(z) = z1−ε0(z − 1)1−ε1(z − t)1−εt
∫

[γz,γp]

wε
′
0−1(w − 1)ε

′
1−1(w − t)ε

′
t−1v(w)(z − w)η−2dw

(5.9)

is a solution of (1.12) for p ∈ {0, 1, t,∞}.
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Proof. Let v(w) be a solution of (1.10). Then the function ṽ(w) = wε
′
0−1(w −

1)ε
′
1−1(w − t)ε′t−1v(w) is a solution of

d2ṽ

dw2
+

(
2− ε′0
w

+
2− ε′1
w − 1

+
2− ε′t
w − t

)
dṽ

dw
+

(2− α′)(2− β′)w − q̃′

w(w − 1)(w − t)
ṽ = 0, (5.10)

q̃′ = q′ − (ε′0 + ε′t − 2)− (ε′0 + ε′1 − 2)t.

It follows from Proposition 1.2 that the function ỹ(z) =
∫

[γz,γp]
ṽ(w)(z − w)−(2−η)dw

(p = 0, 1, t,∞) is a solution of

d2ỹ

dz2
+

(
2− ε0
z

+
2− ε1
z − 1

+
2− εt
z − t

)
dỹ

dz
+

(2− α)(2− β)z − q̃
z(z − 1)(z − t)

ỹ = 0, (5.11)

q̃ = q̃′ + (1− η) {2− ε′t + (2− ε′1)t+ (2− ε′0 − η)(t+ 1)} .

By setting y(z) = z1−ε0(z − 1)1−ε1(z − t)1−εt ỹ(z), it follows that y(z) is a solution of

(1.12). �

Theorem 5.4. Let a, b, c be elements of {0, 1, t} such that a 6= b 6= c 6= a and

η, α, β, ε0, ε1, εt, ε
′
0, ε
′
1, ε
′
t be the parameters defined in (1.9) or (1.13).

(i) If εa ∈ Z≥2, α, β, ε′b, ε
′
c 6∈ Z and the singularity z = a of (1.12) is apparent, then there

exists a non-zero solution of (1.10) which can be written as (w− a)1−ε′ah(w) where h(w)

is a polynomial of degree εa − 2, and the functions

z1−ε0(z − 1)1−ε1(z − t)1−εt
∫

[γz,γp]

(w − b)ε
′
b−1(w − c)ε

′
c−1h(w)(z − w)η−2dw, (p = b, c),

(5.12)

are non-zero solutions of (1.12).

(ii) If α+β−2η ∈ Z≤−1, η, ε′0, ε
′
1, ε
′
t 6∈ Z and the singularity z =∞ of (1.12) is apparent,

then there exists a non-zero solution of (1.10) which can be written as h(w) where h(w)

is a polynomial of degree 2η − α− β − 1 and the functions

z1−ε0(z − 1)1−ε1(z − t)1−εt
∫

[γz,γp]

wε
′
0−1(w − 1)ε

′
1−1(w − t)ε

′
t−1h(w)(z − w)η−2dw,

(5.13)

(p = 0, 1, t) are non-zero solutions of (1.12).

Proof. By Theorem 4.2 (i) (resp. Theorem 4.2 (v)) and the duality of the param-

eters in (1.9) and (1.13), we obtain the existence of a non-zero solution of (1.10) which

can be written as (w − a)1−ε′ah(w) (resp. h(w)) where h(w) is a polynomial of degree

εa − 2 (resp. 2η − α − β − 1). It follows from Proposition 5.3 that (5.12) (resp. (5.13))

is a solution of (1.12). It can be shown by a similar argument to that in the proof of

Theorem 5.2 that (5.12) for p = b, c and (5.13) for p = 0, 1, t are not identically zero. �
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6. Elliptical representation of Heun’s equation.

Heun’s differential equation has an elliptical representation as we mentioned in the

introduction. In this section, we rewrite several results on the integral transformation of

Heun’s equation to the elliptical representation form.

We review the elliptical representation of Heun’s differential equation. Set

H(l′0,l
′
1,l
′
2,l
′
3) = − d2

dx2
+

3∑
i=0

l′i(l
′
i + 1)℘(x+ ωi). (6.1)

Let α′i be a number such that α′i = −l′i or α′i = l′i + 1 for each i ∈ {0, 1, 2, 3}. By setting

z =
℘(x)− e1

e2 − e1
, t =

e3 − e1

e2 − e1
, f(x) = vzα

′
1/2(z − 1)α

′
2/2(z − t)α

′
3/2; (6.2)

the equation

d2v

dz2
+

(
ε′0
z

+
ε′1

z − 1
+

ε′t
z − t

)
dv

dz
+

α′β′z − q′

z(z − 1)(z − t)
v = 0 (6.3)

is transformed to

H(l′0,l
′
1,l
′
2,l
′
3)f(x) = E′f(x), (6.4)

where

{α′, β′} =

{
α′1 + α′2 + α′3 + α′0

2
,
α′1 + α′2 + α′3 + 1− α′0

2

}
, (6.5)

ε′0 = α′1 +
1

2
, ε′1 = α′2 +

1

2
, ε′t = α′3 +

1

2
,

q′ =
−E′

4(e2 − e1)
+

(−(α′ − β′)2 + 2(ε′0)2 − 4ε′0 + 1)(t+ 1)

12

+
6ε′0ε

′
t + 2(ε′t)

2 − 4ε′t − (ε′1)2 + 2ε′1
12

+
(6ε′0ε

′
1 + 2(ε′1)2 − 4ε′1 − (ε′t)

2 + 2ε′t)t

12
.

We investigate a correspondence of cycles on the Riemann sphere and the torus. For

the transformation z = (℘(x) − e1)/(e2 − e1), the path from x to −x (resp. −x + 2ω1,

−x+ 2ω2, −x+ 2ω3) which traces a semicircle around ω0 (resp. ω1, ω2, ω3) corresponds

to a cycle which surrounds ∞ (resp. 0, 1, t) on the Riemann sphere C ∪ {∞} whose

coordinate is z. Let γ0, (resp. γ1, γt, γ∞) be a cycle on the Riemann sphere which

surrounds the point z = 0 (resp. z = 1, z = t, z = ∞) anticlockwise. We choose the

cycles so that γ0γ1γtγ∞ ∼ id. Then the shift of the period x → x+ 2ω1 corresponds to

a cycle which is homotopic to γtγ1, γ1γt, γ
−1
t γ−1

1 or γ−1
1 γ−1

t on the punctured Riemann

sphere, whose choice is dependent on specifying the point x and the zone where the shift

x→ x+ 2ω1 passes (see Figure 2).

It is also shown that the shift of the period x→ x+2ω3 corresponds to the cycle which

is homotopic to γ0γ1, γ1γ0, γ−1
0 γ−1

1 or γ−1
1 γ−1

0 on the punctured Riemann sphere, whose

choice is dependent on specifying the point x and the zone where the shift x→ x+ 2ω3
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ω3 ω1 + ω3 2ω1 + ω3

0(= ω0) ω1 2ω1

x

⇒
z = ℘(x)−e1

e2−e1 t 1

γt γ1

z

Figure 2. Correspondence of cycles.

passes.

We rewrite the integral transformation of Heun’s equation (i.e. Proposition 1.2) in

elliptical representation form, which was announced in [24]. It is remarkable that the

eigenvalue E is unchanged by the integral transformation.

Theorem 6.1. Let σ(x) be the Weierstrass sigma function, σi(x) (i = 1, 2, 3) be

the Weierstrass co-sigma function which has a zero at x = ωi, and Ii (i = 0, 1, 2, 3) be the

cycle on the complex plane with the variable ξ such that points ξ = x and ξ = −x+ 2ωi
are contained and the half-periods Zω1 +Zω3 are not contained inside the cycle. Let α′i be

a number such that α′i = −l′i or α′i = l′i + 1 for each i ∈ {0, 1, 2, 3}. Set d = −
∑3
i=0 α

′
i/2

and η = d+ 2. If f̃(x) satisfies

H(l′0,l
′
1,l
′
2,l
′
3)f̃(x) = Ef̃(x), (6.6)

then the functions

f(x) = σ(x)α
′
0+d+1σ1(x)α

′
1+d+1σ2(x)α

′
2+d+1σ3(x)α

′
3+d+1

·
∫
Ii

f̃(ξ)σ(ξ)1−α′0σ1(ξ)1−α′1σ2(ξ)1−α′2σ3(ξ)1−α′3(σ(x+ ξ)σ(x− ξ))−ηdξ (6.7)

(i ∈ {0, 1, 2, 3}) satisfy

H(α′0+d,α′1+d,α′2+d,α′3+d)f(x) = Ef(x). (6.8)

Proof. Let f̃(x) be a solution of H(l′0,l
′
1,l
′
2,l
′
3)f̃(x) = E′f̃(x). By the transforma-

tion given by (6.2), the function f(w) = f̃(℘̃−1(w))w−α
′
1/2(w − 1)−α

′
2/2(w − t)−α′3/2 is a

solution of (6.3) where ℘̃−1(w) is the inverse function of w = ℘̃(ξ) = (℘(ξ)−e1)/(e2−e1),

the parameters are given by (6.5) and we choose β′ = (α′1 + α′2 + α′3 + α′0)/2 = −d.

Next we apply Proposition 1.2 with the parameter η = 2 − β′. Then the func-

tions
∫

[γz,γp]
f(w)(z − w)−ηdw (p = 0, 1, t,∞) are solutions of (1.12) and we have

ε0 = ε′0 − η′ + 1 = α′1 + d + 3/2, ε1 = α′2 + d + 3/2, εt = α′3 + d + 3/2 and

{α, β} = {2 − β′,−α′ + β′ + 1} = {2 + d, α′0 + 1/2}. The value q is expressed in

terms of E′ and other parameters. We set αi = α′i + d + 1(∈ {−(α′i + d), α′i + d + 1})
(i = 0, 1, 2, 3) and transform to the elliptical form by (6.2), (6.5) where the prime (′) is

omitted. It is shown by a direct calculation that the value E coincides with the original

value E′, and the functions

f(x) = z(α′1+d+1)/2(z − 1)(α′2+d+1)/2(z − t)(α′3+d+1)/2
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·
∫

[γz,γp]

f̃(℘̃−1(w))w−α
′
1/2(w − 1)−α

′
2/2(w − t)−α

′
3/2(z − w)−ηdw (6.9)

are solutions of H(α′0+d,α′1+d,α′2+d,α′3+d)f(x) = E′f(x) for p ∈ {0, 1, t,∞}, where z =

(℘(x) − e1)/(e2 − e1). On the transformation w = (℘(ξ) − e1)/(e2 − e1), the cycles

[γz, γ∞], [γz, γ0], [γz, γ1], [γz, γt] correspond to the cycles I0, I1, I2, I3. By changing the

variable as w = (℘(ξ) − e1)/(e2 − e1) in (6.9) and applying the relations
√
℘(ξ)− ei =

σi(ξ)/σ(ξ) (i = 1, 2, 3), ℘(x) − ℘(ξ) = −σ(x + ξ)σ(x − ξ)/(σ(x)σ(ξ))2 and ℘′(ξ) =

−2σ1(ξ)σ2(ξ)σ3(ξ)/σ(ξ)3, we obtain the proposition. �

Proposition 6.2. Set

α0 ∈ {−l0, l0 + 1}, l′0 =
−α0 − l1 − l2 − l3

2
− 1, l′1 =

α0 + l1 − l2 − l3
2

− 1, (6.10)

l′2 =
α0 − l1 + l2 − l3

2
− 1, l′3 =

α0 − l1 − l2 + l3
2

− 1, η =
α0 − l1 − l2 − l3

2
.

If f̃(x) satisfies H(l′0,l
′
1,l
′
2,l
′
3)f̃(x) = Ef̃(x), then the functions

f(x) = σ(x)α0σ1(x)−l1σ2(x)−l2σ3(x)−l3

·
∫
Ii

f̃(ξ)σ(ξ)l
′
0+1σ1(ξ)l

′
1+1σ2(ξ)l

′
2+1σ3(ξ)l

′
3+1(σ(x+ ξ)σ(x− ξ))−ηdξ (6.11)

(i ∈ {0, 1, 2, 3}) satisfy

H(l0,l1,l2,l3)f(x) = Ef(x). (6.12)

Proof. We obtain the proposition by applying Theorem 6.1 for α′0 = 1 + (α0 +

l1 + l2 + l3)/2, α′1 = 1 + (−α0 − l1 + l2 + l3)/2, α′2 = 1 + (−α0 + l1 − l2 + l3)/2,

α′3 = 1 + (−α0 + l1 + l2 − l3)/2. Note that H(−l0−1,−l1−1,−l2−1,−l3−1) = H(l0,l1,l2,l3). �

We review an aspect of the monodromy of a differential equation with periodic

potential. Let q(x) be a periodic function with a period T and {f1(x), f2(x)} be a basis

of solutions of the differential equation(
− d2

dx2
+ q(x)

)
f(x) = Ef(x). (6.13)

Then f1(x + T ) and f2(x + T ) are also solutions. Let MT be a monodromy matrix for

the shift x→ x+ T with respect to the basis {f1(x), f2(x)}, i.e.

(f1(x+ T ), f2(x+ T )) = (f1(x), f2(x))MT = (f1(x), f2(x))

(
m11 m12

m21 m22

)
. (6.14)

Since the coefficient of the first-order derivative in (6.13) is zero, the following lemma is

satisfied;

Lemma 6.3. We have detMT = 1.
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Proof. Since f ′′i (x) = (q(x) − E)fi(x) (i = 1, 2), we have (f ′1(x)f2(x) −
f1(x)f ′2(x))′ = 0. Hence f ′1(x)f2(x) − f1(x)f ′2(x) = C for some constant C 6= 0 which

follows from the linear independence of f1(x), f2(x). We have

C = f ′1(x+ T )f2(x+ T )− f1(x+ T )f ′2(x+ T )

= (m11m22 −m12m21)(f ′1(x)f2(x)− f1(x)f ′2(x)) = (m11m22 −m12m21)C. (6.15)

Hence detMT = 1. �

Note that this situation is applicable to the elliptical representation of Heun’s equa-

tion by setting T = 2ω1 or 2ω3 (or any period of the elliptic function ℘(x)). If trMT > 2

or trMT < −2 (resp. −2 < trMT < 2), then there exists a basis of solutions f+(x), f−(x)

such that f±(x+ T ) = e±νf±(x) (resp. f±(x+ T ) = e±
√
−1νf±(x)) for some ν ∈ R such

that e2ν − (trMT )eν + 1 = 0 (resp. e2
√
−1ν − (trMT )e

√
−1ν + 1 = 0). If trMT = 2 (resp.

trMT = −2), then there exists a non-zero periodic (anti-periodic) solution, i.e. a solution

f(x) such that f(x + T ) = f(x) (resp. f(x + T ) = −f(x)). It does not simply follow

from trMT = 2 (resp. trMT = −2) that every solution is periodic (resp. anti-periodic).

Whether this is the case is determined by the Jordan normal form of MT .

Theorem 6.4. Let k ∈ {1, 3} and M
(l0,l1,l2,l3)
2ωk

(E) be the monodromy matrix by

the shift of the period x → x + 2ωk with respect to a certain basis of solutions to

H(l0,l1,l2,l3)f(x) = Ef(x). Let α′i be a number such that α′i = −l′i or α′i = l′i + 1 for

each i ∈ {0, 1, 2, 3} and set d = −
∑3
i=0 α

′
i/2. Then

trM
(l′0,l

′
1,l
′
2,l
′
3)

2ωk
(E) = trM

(α′0+d,α′1+d,α′2+d,α′3+d)
2ωk

(E). (6.16)

Proof. We prove the case k = 1 such that the shift of the period x → x + 2ω1

corresponds to a cycle which is homotopic to γtγ1. Let f̃(x) (resp. f(x)) be a solution of

(6.6) (resp. (6.8)). Then the function f̃(℘̃−1(w))w−α
′
1/2(w − 1)−α

′
2/2(w − t)−α′3/2 (resp.

f(℘̃−1(z))z−(α′1+d+1)/2(z−1)−(α′2+d+1)/2(z−t)−(α′3+d+1)/2) is a solution of (1.10) (resp.

(1.12)). Thus we have exp(−2π
√
−1(α′2 + α′3)/2)trM

(l′0,l
′
1,l
′
2,l
′
3)

2ω1
(E) = trM ′(t)M ′(1) and

exp(−2π
√
−1(α′2 +α′3 +2d+2)/2)trM

(α′0+d,α′1+d,α′2+d,α′3+d)
2ω1

(E) = trM (t)M (1). It follows

from Theorem 3.4 that tr(M (t)M (1)) = exp(−2π
√
−1η)tr(M ′(t)M ′(1)). Combining these

relations with the relation η = d+ 2 in the proof of Theorem 6.1, we obtain (6.16). The

other cases can be proved similarly. �

Corollary 6.5. Assume that the parameters l0, l1, l2, l3, l′0, l′1, l′2, l′3 satisfy

(6.10). Let k ∈ {1, 3}. Then

trM
(l′0,l

′
1,l
′
2,l
′
3)

2ωk
(E) = trM

(l0,l1,l2,l3)
2ωk

(E). (6.17)

Corollary 6.6. We keep the notations in Theorem 6.4. Let k ∈ {1, 3}.
If there exists a non-zero solution f̃(x,E) of (H(l′0,l

′
1,l
′
2,l
′
3) − E)f̃(x,E) = 0 such

that f̃(x + 2ωk, E) = Ck(E)f̃(x,E), then there exists a non-zero solution f(x,E) of

(H(α′0+d,α′1+d,α′2+d,α′3+d) − E)f(x,E) = 0 such that f(x + 2ωk, E) = Ck(E)f(x,E). In

other word, periodicity is preserved by the integral transformation.
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Proof. Let t′k (resp. tk) be a solution of the quadratic equation (t′k)2 −
trM

(l′0,l
′
1,l
′
2,l
′
3)

2ωk
(E)t′k + 1 = 0 (resp. t2k − trM

(α′0+d,α′1+d,α′2+d,α′3+d)
2ωk

(E)tk + 1 = 0). Since

detM
(l′0,l

′
1,l
′
2,l
′
3)

2ωk
(E) = detM

(α′0+d,α′1+d,α′2+d,α′3+d)
2ωk

(E) = 1, the value t′k (resp. tk) is an

eigenvalue of the monodromy matrix M
(l′0,l

′
1,l
′
2,l
′
3)

2ωk
(E) (resp. M

(α′0+d,α′1+d,α′2+d,α′3+d)
2ωk

(E))

and we have {Ck(E), Ck(E)−1} = {t′k, (t′k)−1}. Thus Corollary 6.6 follows from

trM
(l′0,l

′
1,l
′
2,l
′
3)

2ωk
(E) = trM

(α′0+d,α′1+d,α′2+d,α′3+d)
2ωk

(E). �

Corollary 6.7. Assume that the parameters l0, l1, l2, l3, l′0, l′1, l′2, l′3 satisfy

(6.10). Let k ∈ {1, 3}. If there exists a non-zero solution f̃(x,E) of (H(l′0,l
′
1,l
′
2,l
′
3) −

E)f̃(x,E) = 0 such that f̃(x + 2ωk, E) = Ck(E)f̃(x,E), then there exists a non-zero

solution f(x,E) of (6.12) such that f(x+ 2ωk, E) = Ck(E)f(x,E).

If ω1 ∈ R 6=0 and ω3 ∈
√
−1R 6=0, then the potential

∑3
i=0 li(li + 1)℘(x+ωi) in (1.14)

is real-valued for x ∈ R. From the viewpoint of quantum mechanics, we are interested

in finding square-integrable eigenstates in a suitable Hilbert space for the elliptical rep-

resentation of Heun’s equation, and periodicity with respect to the shift x→ x+ 2ω1 is

related to square-integrable eigenstates (see [17], [18]). Ruijsenaars [13] established that

the spectrum of (6.6) coincides with that of (6.12) by investigating a certain Hilbert–

Schmidt operator. Theorem 6.4 can be regarded as a complex-functional version of

Ruijsenaars’ result. Khare and Sukhatme [9] earlier made a conjecture about correspon-

dences between quasi-solvable solutions of (6.6) and those of (6.12), and Corollary 6.6

gives an approach for a reformulation of their conjecture in terms of monodromy.

For elliptical representations, quasi-solvability is described as follows:

Proposition 6.8 ([17, Proposition 5.1]). Let β′i be a number such that β′i = −l′i
or β′i = l′i + 1 for each i ∈ {0, 1, 2, 3}, and set d̃ = −

∑3
i=0 β

′
i/2. Suppose that d̃ ∈ Z≥0,

and let Vβ′0,β′1,β′2,β′3 be the d̃+ 1-th dimensional space spanned by{
Φ̂(℘(x))℘(x)n

}
n=0,...,d̃

, (6.18)

where Φ̂(z) = (z−e1)β
′
1/2(z−e2)β

′
2/2(z−e3)β

′
3/2. Then the operator H(l′0,l

′
1,l
′
2,l
′
3) preserves

the space Vβ′0,β′1,β′2,β′3 .

To find eigenvalues of the operator H(l′0,l
′
1,l
′
2,l
′
3) on the space Vβ′0,β′1,β′2,β′3 , we obtain

an algebraic equation of order d̃ + 1 in the variable E, which is related to P (q′) = 0 in

Proposition 5.1 for the case ν0 = (β′1−α′1)/2, ν1 = (β′2−α′2)/2, νt = (β′3−α′3)/2, where

α′i ∈ {−l′i, l′i + 1} and the transformation between Proposition 5.1 and Proposition 6.8 is

determined by (6.2). The eigenvector corresponding to the eigenvalue E can be written

as a product of Φ̂(℘(x)) and the polynomial in the variable ℘(x) of degree no more than

d̃.

Since the functions ℘(x + 2ωi) (i = 0, 1, 2, 3) are even and doubly periodic, the

solutions of (6.12) about x = ωi (i = 0, 1, 2, 3) can be expanded as
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f(x) =



C〈i〉
∞∑
j=0

c
(i)
j (x− ωi)−li+2j +D〈i〉

∞∑
j=0

c̃
(i)
j (x− ωi)li+1+2j , li 6∈ 1/2 + Z,

C〈i〉
∞∑
j=0

c
(i)
j (x− ωi)|li+1/2|+1/2+2j +D〈i〉 li ∈ 1/2 + Z,

·

 ∞∑
j=0

c̃
(i)
j (x− ωi)−|li+1/2|+1/2+2j +A〈i〉

∞∑
j=0

c
(i)
j (x− ωi)|li+1/2|+1/2+2j

 ,

(6.19)

where C〈i〉 and D〈i〉 are constants, c
(i)
0 = c̃

(i)
0 = 1, and c

(i)
j and c̃

(i)
j (j = 1, 2, . . . ) are

determined recursively. If li ∈ 1/2 +Z and A〈i〉 6= 0 (resp. A〈i〉 = 0), then the singularity

x = ωi is non-apparent (resp. apparent). Note that if li = −1/2, then the singularity

x = ωi is always non-apparent, i.e. A〈i〉 6= 0. By the transformation given by (6.2), the

condition that l0 ∈ 1/2 + Z (resp. l1 ∈ 1/2 + Z, l2 ∈ 1/2 + Z, l3 ∈ 1/2 + Z) and the

singularity x = 0 (resp. x = ω1, x = ω2, x = ω3) is (non-)apparent is equivalent to that

α − β ∈ Z (resp. ε0 ∈ Z, ε1 ∈ Z, εt ∈ Z) and the singularity z = ∞ (resp. z = 0, z = 1,

z = t) is (non-)apparent. The condition that the singularity x = ωi (i ∈ {0, 1, 2, 3})
is apparent (i.e. A〈i〉 = 0) for the case li ∈ −1/2 + Z6=0 is described as follows: Set

j0 = −|li + 1/2|+ 1/2, c̃
(i)
0 = 1, f(x) =

∑∞
j=0 c̃

(i)
j (x−ωi)j0+2j . By substituting f(x) into

(6.12) and expanding (6.12) as a series in x−ωi, we obtain an equation for c̃
(i)
0 , c̃

(i)
1 , . . . c̃

(i)
j

on the coefficients of (x − ωi)j0+2j−2. We determine c̃
(i)
j′ (j′ = 1, . . . , |li + 1/2| − 1) by

solving the equation for c̃
(i)
0 , c̃

(i)
1 , . . . c̃

(i)
j′ recursively for each j′ and we have degE c̃

(i)
j′ = j′.

On the coefficient of (x − ωi)j0+|2li+1|−2, the term concerned with c̃
(i)
|li+1/2| disappears

and we have an algebraic equation of degree |li + 1/2| with respect to the variable E,

which we denote by P (i)(E) = 0, where P (i)(E) is monic. Then the condition that the

singularity x = ωi (i ∈ {0, 1, 2, 3}) is apparent is equivalent to the eigenvalue E satisfying

P (i)(E) = 0. The following proposition can be proved by rewriting Theorem 4.2 in its

elliptical form.

Proposition 6.9. Let α′i be a number such that α′i = −l′i or α′i = l′i + 1 for each

i ∈ {0, 1, 2, 3}. Set d = −
∑3
i=0 α

′
i/2.

(i) If α′0 ∈ 3/2 + Z≥0 (resp. α′1 ∈ 3/2 + Z≥0, α′2 ∈ 3/2 + Z≥0, α′3 ∈ 3/2 +

Z≥0), d 6∈ Z and the singularity x = 0 (resp. x = ω1, x = ω2, x =

ω3) of (6.6) is apparent, then there exists a non-zero solution of (6.8) which be-

longs to the space V−α′0−d,α′1+d+1,α′2+d+1,α′3+d+1 (resp. Vα′0+d+1,−α′1−d,α′2+d+1,α′3+d+1,

Vα′0+d+1,α′1+d+1,−α′2−d,α′3+d+1, Vα′0+d+1,α′1+d+1,α′2+d+1,−α′3−d).

(ii) If α′0 ∈ −1/2 + Z≤0 (resp. α′1 ∈ −1/2 + Z≤0, α′2 ∈ −1/2 + Z≤0, α′3 ∈ −1/2 + Z≤0),

α′1 + d, α′2 + d, α′3 + d 6∈ 1/2 + Z (resp. α′0 + d, α′2 + d, α′3 + d 6∈ 1/2 + Z, α′0 + d, α′1 +

d, α′3 + d 6∈ 1/2 + Z, α′0 + d, α′1 + d, α′2 + d 6∈ 1/2 + Z), d 6∈ Z and the singular-

ity x = 0 (resp. x = ω1, x = ω2, x = ω3) of (6.6) is apparent, then there exists a

non-zero solution of (6.8) which belongs to the space Vα′0+d+1,−α′1−d,−α′2−d,−α′3−d (resp.

V−α′0−d,α′1+d+1,−α′2−d,−α′3−d, V−α′0−d,−α′1−d,α′2+d+1,−α′3−d, V−α′0−d,−α′1−d,−α′2−d,α′3+d+1).

(iii) If α′0+d ∈ 1/2+Z≥0 (resp. α′1+d ∈ 1/2+Z≥0, α′2+d ∈ 1/2+Z≥0, α′3+d ∈ 1/2+Z≥0),
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l′1, l
′
2, l
′
3 6∈ 1/2 +Z (resp. l′0, l

′
2, l
′
3 6∈ 1/2 +Z, l′0, l

′
1, l
′
3 6∈ 1/2 +Z, l′0, l

′
1, l
′
2 6∈ 1/2 +Z), d 6∈ Z

and there exists a non-zero solution of (6.6) which belongs to the space V1−α′0,α′1,α′2,α′3
(resp. Vα′0,1−α′1,α′2,α′3 , Vα′0,α′1,1−α′2,α′3 , Vα′0,α′1,α′2,1−α′3), then the singularity x = 0 (resp.

x = ω1, x = ω2, x = ω3) of (6.8) is apparent.

(iv) If α′0 + d ∈ −3/2 + Z≤0 (resp. α′1 + d ∈ −3/2 + Z≤0, α′2 + d ∈ −3/2 + Z≤0,

α′3 + d ∈ −3/2 + Z≤0), l′1, l
′
2, l
′
3 6∈ 1/2 + Z (resp. l′0, l

′
2, l
′
3 6∈ 1/2 + Z, l′0, l

′
1, l
′
3 6∈ 1/2 + Z,

l′0, l
′
1, l
′
2 6∈ 1/2 + Z), d 6∈ Z and there exists a non-zero solution of (6.6) which

belongs to the space Vα′0,1−α′1,1−α′2,1−α′3 (resp. V1−α′0,α′1,1−α′2,1−α′3 , V1−α′0,1−α′1,α′2,1−α′3 ,

V1−α′0,1−α′1,1−α′2,α′3), then the singularity x = 0 (resp. x = ω1, x = ω2, x = ω3) of

(6.8) is apparent.

With respect to the elliptical representation of Heun’s equation, Theorems 5.2 and

5.4 can be rewritten as follows:

Proposition 6.10. Let α0 ∈ {−l0, l0 + 1} and l′0, l
′
1, l
′
2, l
′
3, η be the parameters

defined in (6.10).

(i) If −α0 ∈ 1/2 + Z≥0 (resp. l1 ∈ 1/2 + Z≥0, l2 ∈ 1/2 + Z≥0, l3 ∈ 1/2 + Z≥0),

l′1, l
′
2, l
′
3 6∈ 1/2 +Z (resp. l′0, l

′
2, l
′
3 6∈ 1/2 +Z, l′0, l

′
1, l
′
3 6∈ 1/2 +Z, l′0, l

′
1, l
′
2 6∈ 1/2 +Z), η 6∈ Z

and the singularity x = 0 (resp. x = ω1, x = ω2, x = ω3) of (6.12) is apparent, then

there exists a non-zero solution f̃(x) of (6.6) which belongs to the space V−l′0,l′1+1,l′2+1,l′3+1

(resp. Vl′0+1,−l′1,l′2+1,l′3+1, Vl′0+1,l′1+1,−l′2,l′3+1, Vl′0+1,l′1+1,l′2+1,−l′3) and the functions

f(x) = σ(x)α0σ1(x)−l1σ2(x)−l2σ3(x)−l3

·
∫
Ii

f̃(y)σ(y)l
′
0+1σ1(y)l

′
1+1σ2(y)l

′
2+1σ3(y)l

′
3+1(σ(x+ y)σ(x− y))−ηdy (6.20)

for i = 1, 2, 3 (resp. i = 2, 3, i = 1, 3, i = 1, 2) are non-zero solutions of (6.12).

(ii) If −α0 ∈ −3/2 + Z≤0 (resp. l1 ∈ −3/2 + Z≤0, l2 ∈ −3/2 + Z≤0, l3 ∈ −3/2 + Z≤0),

l′1, l
′
2, l
′
3 6∈ 1/2 +Z (resp. l′0, l

′
2, l
′
3 6∈ 1/2 +Z, l′0, l

′
1, l
′
3 6∈ 1/2 +Z, l′0, l

′
1, l
′
2 6∈ 1/2 +Z), η 6∈ Z

and the singularity x = 0 (resp. x = ω1, x = ω2, x = ω3) of (6.12) is apparent, then

there exists a non-zero solution f̃(x) of (6.6) which belongs to the space Vl′0+1,−l′1,−l′2,−l′3
(resp. V−l′0,l′1+1,−l′2,−l′3 , V−l′0,−l′1,l′2+1,−l′3 , V−l′0,−l′1,−l′2,l′3+1) and the functions

f(x) = σ(x)−α0+1σ1(x)l1+1σ2(x)l2+1σ3(x)l3+1

·
∫
Ii

f̃(y)σ(y)−l
′
0σ1(y)−l

′
1σ2(y)−l

′
2σ3(y)−l

′
3(σ(x+ y)σ(x− y))η−2dy (6.21)

for i = 1, 2, 3 (resp. i = 2, 3, i = 1, 3, i = 1, 2) are non-zero solutions of (6.12).

7. Finite-gap potentials and integral transformations.

We now review the definitions of a finite-gap potential and its properties.

Definition 1. Assume q(x) is real-valued and continuous for x ∈ R. We set

H = −d2/dx2 + q(x). Let σb(H) be the set such that
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E ∈ σb(H) ⇔ All solutions of (H − E)f(x) = 0 are bounded on x ∈ R,

and σb(H) is the topological closure of σb(H) in R. If the set R \ σb(H) can be written

as

R \ σb(H) = (−∞, E0) ∪ (E1, E2) ∪ · · · ∪ (E2g−1, E2g), (7.1)

with E0 < E1 < · · · < E2g then q(x) is called a finite-gap (g-gap) potential.

If q(x) is real-valued and continuous for x ∈ R and periodic with period T (> 0), then

|trMT | > 2 ⇒ E 6∈ σb(H) and |trMT | < 2 ⇒ E ∈ σb(H), where MT is a monodromy

matrix for the shift x→ x+ T with eigenvalue E.

Definition 2. If there exists an odd-order differential operator A = (d/dx)
2g+1

+∑2g−1
j=0 bj(x) (d/dx)

2g−1−j
such that [A,−d2/dx2 + q(x)] = 0, then q(x) is called an

algebro-geometric finite-gap potential.

Note that the equation [A,−d2/dx2 + q(x)] = 0 is equivalent to the function q(x)

being a solution of some stationary higher-order KdV equation. It is known that if q(x)

is real-holomorphic on R and q(x + T ) = q(x), then q(x) is a finite-gap potential if and

only if q(x) is an algebro-geometric finite-gap potential (see [11]).

For the elliptical representation of Heun’s equation, the following theorem is known.

Theorem 7.1 ([25]). The potential
∑3
i=0 l

′
i(l
′
i + 1)℘(x + ωi) is algebro-geometric

finite-gap, if and only if l′i ∈ Z for i = 0, 1, 2, 3.

The function
∑3
i=0 l

′
i(l
′
i+1)℘(x+ωi) is called the Treibich–Verdier potential. Subse-

quently several other researchers have produced results on this subject (see [2], [15], [16],

[17], [18], [19], [20]). If l′0 = l′1 = 0, ω1 ∈ R 6=0 and ω3 ∈
√
−1R 6=0, then the potential is

real-valued and holomorphic on R, and we have the following corollary:

Corollary 7.2. If ω1 ∈ R 6=0, ω3 ∈
√
−1R 6=0 and l′2, l

′
3 ∈ Z, then the potential

l′2(l′2 + 1)℘(x+ ω2) + l′3(l′3 + 1)℘(x+ ω3) is a finite-gap potential.

We review a method for calculating the monodromy for the elliptical representation

of Heun’s equation for the case l′0, l
′
1, l
′
2, l
′
3 ∈ Z. Note that (6.6) is invariant under the

change l′i ↔ −l′i − 1 for each i ∈ {0, 1, 2, 3}.
Let h(x) be the product of any pair of solutions of the elliptical representation of

Heun’s equation. Then the function h(x) satisfies the following third-order differential

equation:(
d3

dx3
− 4

(
3∑
i=0

l′i(l
′
i + 1)℘(x+ ωi)− E

)
d

dx
− 2

(
3∑
i=0

l′i(l
′
i + 1)℘′(x+ ωi)

))
h(x) = 0.

(7.2)

It is known that if l′0, l
′
1, l
′
2, l
′
3 ∈ Z then (7.2) has a non-zero doubly periodic solution for

all E.
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Proposition 7.3 ([16, Proposition 3.5]). If l′0, l
′
1, l
′
2, l
′
3 ∈ Z, then (7.2) has a non-

zero doubly periodic solution Ξ(x,E), which has the expansion

Ξ(x,E) = c0(E) +

3∑
i=0

max(l′i,−l
′
i−1)−1∑

j=0

b
(i)
j (E)℘(x+ ωi)

max(l′i,−l
′
i−1)−j , (7.3)

where the coefficients c0(E) and b
(i)
j (E) are polynomials in E, they do not have common

divisors and the polynomial c0(E) is monic. We set g = degE c0(E). Then the coefficients

satisfy degE b
(i)
j (E) < g for all i and j.

Set

Q(E) = Ξ(x,E)2

(
E−

3∑
i=0

l′i(l
′
i + 1)℘(x+ωi)

)
+

1

2
Ξ(x,E)

d2Ξ(x,E)

dx2
− 1

4

(
dΞ(x,E)

dx

)2

.

(7.4)

Then Q(E) is independent of x and it is a monic polynomial in E of degree 2g + 1 (see

[16]). Solutions of Heun’s equations can be written using Ξ(x,E) and Q(E).

Proposition 7.4 ([16, Proposition 3.7]). The functions

Λ(x,E) =
√

Ξ(x,E) exp

∫ √
−Q(E)dx

Ξ(x,E)
(7.5)

and Λ(−x,E) are solutions of (6.6).

Write

Ξ(x,E) = c(E) +

3∑
i=0

max(l′i,−l
′
i−1)−1∑

j=0

a
(i)
j (E)

(
d

dx

)2j

℘(x+ ωi), (7.6)

and set

a(E) =

3∑
i=0

a
(i)
0 (E). (7.7)

Then the monodromy with respect to the shift of a period can be written in terms of a

hyperelliptic integral.

Proposition 7.5 ([18], [19]). Assume l′0, l
′
1, l
′
2, l
′
3 ∈ Z.

(i) If Q(E0) = 0, then there exists qk ∈ {0, 1} such that Λ(x+ 2ωk, E0) = (−1)qkΛ(x,E0)

for each k ∈ {1, 3}.
(ii) If Q(E) 6= 0, then the functions Λ(x,E) and Λ(−x,E) are linearly independent and

we have
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Λ(±(x+ 2ωk), E) = (−1)qkΛ(±x,E) exp

∓∫ E

E0

ωkc(Ẽ)− ηka(Ẽ)√
−Q(Ẽ)

dẼ

 . (7.8)

We introduce another expression of monodromy arising from the Hermite–Krichever

Ansatz [19]. Set

Φi(x, α) =
σ(x+ ωi − α)

σ(x+ ωi)
exp(ζ(α)x), (i = 0, 1, 2, 3), (7.9)

where σ(x) (resp. ζ(x)) is the Weierstrass sigma (resp. zeta) function.

Proposition 7.6 ([19]). Assume l′0, l
′
1, l
′
2, l
′
3 ∈ Z. There exist polynomials

P1(E), . . . , P6(E) such that, if the eigenvalue E satisfies P2(E) 6= 0, then the function

Λ(x,E) in (7.5) can be written as

Λ(x,E) = exp (κx)

 3∑
i=0

|l′i+1/2|−3/2∑
j=0

b̃
(i)
j

(
d

dx

)j
Φi(x, α)

 , (7.10)

and the values α and κ can be expressed as

℘(α) =
P1(E)

P2(E)
, ℘′(α) =

P3(E)

P4(E)

√
−Q(E), κ =

P5(E)

P6(E)

√
−Q(E). (7.11)

The periodicity of the function Λ(±x,E) in (7.10) is described as

Λ(±(x+ 2ωk), E) = exp(±(2ωk(ζ(α) + 2κ)− 2ηkα))Λ(±x,E), (k = 1, 3). (7.12)

If P2(E) = 0, then the function Λ(x,E) in (7.5) can be expressed as a product of an

exponential function and a doubly periodic function.

We review a relationship between the polynomial Q(E) and finite-dimensional in-

variant subspaces. We define a vector space V by

V =


U−l′0,−l′1,−l′2,−l′3 ⊕ U−l′0,−l′1,l′2+1,l′3+1 ⊕ U−l′0,l′1+1,−l′2,l′3+1 ⊕ U−l′0,l′1+1,l′2+1,−l′3

(l′0 + l′1 + l′2 + l′3 : even);

U−l′0,−l′1,−l′2,l′3+1 ⊕ U−l′0,−l′1,l′2+1,−l′3 ⊕ U−l′0,l′1+1,−l′2,−l′3 ⊕ Ul′0+1,−l′1,−l′2,−l′3
(l′0 + l′1 + l′2 + l′3 : odd),

(7.13)

where Uα0,α1,α2,α3
are defined by

Uα0,α1,α2,α3
=


Vα0,α1,α2,α3

,
∑3
i=0 αi/2 ∈ Z≤0;

V1−α0,1−α1,1−α2,1−α3
,
∑3
i=0 αi/2 ∈ Z≥2;

{0}, otherwise.

(7.14)

Then H(l′0,l
′
1,l
′
2,l
′
3) ·V ⊂ V and it can be shown that if l′0, l

′
1, l
′
2, l
′
3 ∈ Z then V is the maxi-
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mum finite-dimensional H-invariant subspace of the space spanned by the function f(x)

such that f(x+2ωk)/f(x) ∈ {±1} for k = 1, 3. Let P (E) be the monic characteristic poly-

nomial of the operator H(l′0,l
′
1,l
′
2,l
′
3) on the space V , i.e. P (E) = detV (E ·1−H(l′0,l

′
1,l
′
2,l
′
3)).

Proposition 7.7 ([20]). We have P (E) = Q(E).

The curve Γ : ν2 = −Q(E) is called the spectral curve, which plays an important

role in (7.5) and (7.8). It follows from Proposition 7.7 that edges of the hyperelliptic

curve Γ are eigenvalues of the operator H(l′0,l
′
1,l
′
2,l
′
3) on the invariant space V . The genus

of the curve Γ is g, where g is defined in Proposition 7.3.

Let us consider the case Q(E) = 0. Let E0 be a zero of Q(E). Then we have

P (E0) = 0, Λ(x,E0) =
√

Ξ(x,E0) ∈ V and the functions Λ(x,E0) and Λ(−x,E0) are

linearly dependent. Another solution of (6.6) can be derived as
√

Ξ(x,E0)
∫

dx
Ξ(x,E0) (=

Λ2(x,E0)). The monodromy with respect to the shift of a period was calculated in [21]

and it can be written as

(Λ(x+ 2ωk, E0),Λ2(x+ 2ωk, E0))

= (−1)qk(Λ(x,E0),Λ2(x,E0))

(
1 2ωkc(E)−2ηka(E)

d
dEQ(E)

∣∣∣
E→E0

0 1

)
. (7.15)

Example 3. The case l′0 = 2, l′1 = l′2 = l′3 = 0. The doubly periodic function

Ξ(x,E) which satisfies (7.2) and the polynomial Q(E) are evaluated as

Ξ(x,E) = 9℘(x)2 + 3E℘(x) + E2 − 9g2/4, (7.16)

Q(E) = (E2 − 3g2)

3∏
i=1

(E − 3ei). (7.17)

The function Λ(x,E) defined by (7.5) is a solution of (6.6). For the monodromy with

respect to the shift x→ x+2ωk (k = 1, 3), we have a formula described by a hyperelliptic

integral of genus two;

Λ(x+ 2ωk, E) = Λ(x,E) exp

−1

2

∫ E

√
3g2

ωk(2Ẽ2 − 3g2)− 6ηkẼ√
−(Ẽ2 − 3g2)

∏3
i=1(Ẽ − 3ei)

dẼ

 . (7.18)

The function Λ(x,E) can be expressed in the form of the Hermite–Krichever Ansatz

Λ(x,E) = exp (κx)

(
b̃
(0)
0 Φ0(x, α) + b̃

(0)
1

(
d

dx

)
Φ0(x, α)

)
, (7.19)

and α, κ satisfy

℘(α) = e1 −
(E − 3e1)(E + 6e1)2

9(E2 − 3g2)
, κ =

2

3(E2 − 3g2)

√
−Q(E). (7.20)

Set
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V = V−2,0,0,0 ⊕ V0,−1,−1,0 ⊕ V0,−1,0,−1 ⊕ V0,0,−1,−1. (7.21)

Then dimV = 2 + 1 + 1 + 1 = 5 and Q(E) is the characteristic polynomial of H(2,0,0,0)

on the space V . The characteristic polynomial of H(2,0,0,0) on V−2,0,0,0 (resp. V0,−1,−1,0,

V0,−1,0,−1, V0,0,−1,−1) is E2 − 3g2 (resp. E − 3e3, E − 3e2, E − 3e1).

By applying integral transformation to the case of a finite-gap potential (i.e. ap-

plying Theorem 6.1 for the case l′0, l
′
1, l
′
2, l
′
3 ∈ Z while choosing α′0 ∈ {−l′0, l′0 + 1} to

be η ∈ 1/2 + Z), we obtain Heun’s equation for the case l0, l1, l2, l3 ∈ Z + 1/2 and

l0 + l1 + l2 + l3 ∈ 2Z + 1. Conversely we can express solutions and monodromy for the

case l0, l1, l2, l3 ∈ Z+1/2 and l0 + l1 + l2 + l3 ∈ 2Z+1 by using solutions and monodromy

calculated by the finite-gap potential method for the case l′0, l
′
1, l
′
2, l
′
3 ∈ Z. The following

proposition is obtained by combining Proposition 6.2, Corollary 6.5, Propositions 7.5 and

7.6.

Proposition 7.8. Let α0 ∈ {−l0, l0 + 1} and set

η =
−α0 − l1 − l2 − l3 + 1

2
, l′0 =

−α0 + l1 + l2 + l3 + 1

2
, (7.22)

l′1 =
−α0 + l1 − l2 − l3 − 1

2
, l′2 =

−α0 − l1 + l2 − l3 − 1

2
, l′3 =

−α0 − l1 − l2 + l3 − 1

2
.

If l0, l1, l2, l3 ∈ Z + 1/2 and l0 + l1 + l2 + l3 ∈ 2Z + 1, then we have η ∈ Z + 1/2 and

l′0, l
′
1, l
′
2, l
′
3 ∈ Z. Let M2ωk

(k = 1, 3) be a monodromy matrix of solutions of (1.14) with

respect to the shift x→ x+ 2ωk for the parameters l0, l1, l2, l3, E. Then we have

trM2ωk
= 2(−1)qk cos

∫ E

E0

ωkc(Ẽ)− ηka(Ẽ)√
Q(Ẽ)

dẼ

 , (7.23)

where c(E) and a(E) are defined in (7.6), (7.7) and E0 is a zero of Q(E) for the param-

eters l′0, l
′
1, l
′
2, l
′
3, E such that Λ(x + 2ωk, E0) = (−1)qkΛ(x,E0) for each k ∈ {1, 3}. We

also have

trM2ωk
= 2 cos

(√
−1(2ωk(ζ(α) + κ)− 2ηkα)

)
, (7.24)

where α and κ are determined by (7.11) for the parameters l′0, l
′
1, l
′
2, l
′
3, E.

Note that Heun’s equation in Proposition 7.8 for the parameter l′0, l′1, l′2, l′3 for the

case α0 = −l0 is isomonodromic to the one for the parameter l′0, l′1, l′2, l′3 for the case

α0 = l0 + 1, and they are linked by the generalized Darboux transformation described in

[20]. If we replace the definition of the set σb(H) by the following; E ∈ σb(H) ⇔ −2 ≤
trM2ω1 ≤ 2, then the set R\σb(H) for the case l0, l1, l2, l3 ∈ Z+1/2, l0+l1+l2+l3 ∈ 2Z+1

and ω1,
√
−1ω3 ∈ R 6=0 has finite gaps, which coincides with the one for the case l′0,

l′1, l′2, l′3 in Proposition 7.8. But the potential for the case l0, l1, l2, l3 ∈ Z + 1/2 and

l0 + l1 + l2 + l3 ∈ 2Z + 1 is not an algebro-geometric finite-gap potential.

It follows from Propositions 6.9 and 6.10 that the eigenvalues of the four spaces

for l′0, l′1, l′2, l′3 in (7.13) corresponds to eigenvalues such that one of the singularities
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{0, ω1, ω2, ω3} is apparent. By combining these remarks with Proposition 7.7, we have

the following proposition:

Proposition 7.9. Let α0 ∈ {−l0, l0 + 1} and define the numbers l′0, l
′
1, l
′
2, l
′
3 by

(7.22). Assume l0, l1, l2, l3 ∈ Z + 1/2, l0 + l1 + l2 + l3 ∈ 2Z + 1 and let Q(E) be the

polynomial in (7.4) for the parameters l′0, l
′
1, l
′
2, l
′
3(∈ Z).

(i) The condition Q(E0) = 0 is equivalent to the condition that there exists i ∈ {0, 1, 2, 3}
such that the singularity x = ωi is apparent in (6.12) for the parameters l0, l1, l2, l3.

(ii) If l′0+l′1+l′2+l′3 is even, then the characteristic polynomial of the operator H(l′0,l
′
1,l
′
2,l
′
3)

on the space U−l′0,−l′1,−l′2,−l′3 (resp. U−l′0,−l′1,l′2+1,l′3+1, U−l′0,l′1+1,−l′2,l′3+1, U−l′0,l′1+1,l′2+1,−l′3)

coincides with the polynomial P (0)(E) (resp. P (1)(E), P (2)(E), P (3)(E)) for the param-

eters l0, l1, l2, l3 which are defined between (6.19) and Proposition 6.10.

(iii) If l′0 +l′1 +l′2 +l′3 is odd, then the characteristic polynomial of the operator H(l′0,l
′
1,l
′
2,l
′
3)

on the space U−l′0,−l′1,−l′2,l′3+1 (resp. U−l′0,−l′1,l′2+1,−l′3 , U−l′0,l′1+1,−l′2,−l′3 , Ul′0+1,−l′1,−l′2,−l′3)

coincides with the polynomial P (3)(E) (resp. P (2)(E), P (1)(E), P (0)(E)) for the param-

eters l0, l1, l2, l3.

(iv) We have Q(E) = P (0)(E)P (1)(E)P (2)(E)P (3)(E).

It was shown in [16] that if l′0, l
′
1, l
′
2, l
′
3 ∈ Z, then any two spaces of the four spaces

in (7.13) have no eigenvalues in common. Hence we have

Proposition 7.10. Assume l0, l1, l2, l3 ∈ Z + 1/2 and l0 + l1 + l2 + l3 ∈ 2Z + 1.

Then any two of the four equations P (0)(E) = 0, P (1)(E) = 0, P (2)(E) = 0, P (3)(E) = 0

have no common solutions. In other words, if one of the singularities {0, ω1, ω2, ω3} is

apparent, then the other three singularities are non-apparent.

Under the assumptions and notations in Proposition 7.9, we have degE Q(E) =

degE P
(0)(E) + degE P

(1)(E) + degE P
(2)(E) + degE P

(3)(E) = |l0 + 1/2|+ |l1 + 1/2|+
|l2 + 1/2|+ |l3 + 1/2|. Hence the genus of the curve Γ: ν2 = −Q(E) for l′0, l

′
1, l
′
2, l
′
3(∈ Z)

is obtained by applying Proposition 6.9 and by setting α′0 = −l′0 (resp. α′0 = l′0 + 1) for

the case that l′0 + l′1 + l′2 + l′3 is even (resp. odd).

Proposition 7.11. Assume l′0, l
′
1, l
′
2, l
′
3 ∈ Z. Let g be the genus of the curve Γ :

ν2 = −Q(E).

(i) If l′0 + l′1 + l′2 + l′3 is even, then

g =
1

2

(∣∣∣∣ l′0 + l′1 + l′2 + l′3
2

∣∣∣∣+

∣∣∣∣ l′0 + l′1 − l′2 − l′3
2

∣∣∣∣
+

∣∣∣∣ l′0 − l′1 + l′2 − l′3
2

∣∣∣∣+

∣∣∣∣ l′0 − l′1 − l′2 + l′3
2

∣∣∣∣) . (7.25)

(ii) If l′0 + l′1 + l′2 + l′3 is odd, then

g =
1

2

(∣∣∣∣−l′0 + l′1 + l′2 + l′3 + 1

2

∣∣∣∣+

∣∣∣∣ l′0 − l′1 + l′2 + l′3 + 1

2

∣∣∣∣
+

∣∣∣∣ l′0 + l′1 − l′2 + l′3 + 1

2

∣∣∣∣+

∣∣∣∣ l′0 + l′1 + l′2 − l′3 + 1

2

∣∣∣∣− 1

)
. (7.26)
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Note that the expression in Proposition 7.11 is different from the one in [18, Propo-

sition 3.3].

Example 4. For the case l′0 = l′1 = l′2 = l′3 = 0, (6.6) is written as (d2/dx2 +

E)f(x) = 0 and a basis of solutions can be written as eκx, e−κx for the case E 6= 0 by

writing E = −κ2. Hence we have trM ′2ωk
= e2κωk + e−2κωk (k = 1, 3), where M ′2ωk

is

a monodromy matrix of solutions of (6.6) for the case l′0 = l′1 = l′2 = l′3 = 0. There

exists a non-zero periodic (resp. anti-periodic) solution with respect to the period 2ω1,

if and only if E can be written as E = π2n2/ω2
1 (resp. E = π2(2n+ 1)2/(2ω1)2) for some

n ∈ Z≥0.

We apply an integral transformation of Theorem 6.1 for the case α′0 = 1, α′1 = α′2 =

α′3 = 0. By replacing the contour integral Ii by twice of the integral from −x+ 2ωi to x

and setting E = −κ2, it follows from (6.11) that the function

f(x) =

(
3∏
i=1

(℘(x)− ei)

)1/4 ∫ x

−x+2ωi

eκ̃ξσ(x)σ(ξ)√
σ(x− ξ)σ(x+ ξ)

dξ (7.27)

is a solution of (6.12) for the case l0 = 1/2, l1 = l2 = l3 = −1/2 for i ∈ {0, 1, 2, 3}, which

reproduces the result in [22]. By Corollary 6.5 we have trM2ωk
= e2κωk + e−2κωk (k =

1, 3), where M2ωk
is a monodromy matrix of solutions of (6.6) for the case l0 = 1/2, l1 =

l2 = l3 = −1/2. It follows from Corollary 6.7 that there exists a non-zero periodic (resp.

anti-periodic) solution with respect to the period 2ω1, if and only of E can be written as

E = π2n2/ω2
1 (resp. E = π2(2n+1)2/(2ω1)2) for some n ∈ Z≥0. As a sequel, if ω1 ∈ R>0

and ω3 ∈
√
−1R 6=0, then the spectrum of the operator H(1/2,−1/2,−1/2,−1/2) (see (6.1))

with respect to the interval [0, ω1] can be expressed as L2([0, ω1]) = {π2n2/(2ω1)2 | n ∈
Z≥0}, which reproduces the result by Ruijsenaars which was presented at the Bonn

conference in 2008 (see [13]). Note that Heun’s equation for the case l0 = 1/2, l1 = l2 =

l3 = −1/2 was previously studied by Valent [26] to understand an eigenvalue problem

related to certain birth and death processes.

Example 5. We apply Proposition 7.8 to the case l0 = 3/2, l1 = l2 = l3 = 1/2.

By setting α0 = 5/2, we have l′0 = −3, l′1 = l′2 = l′3 = 0 and η = 1/2 in Proposition 6.2.

Let M2ωk
(k = 1, 3) be a monodromy matrix of solutions of (1.14) with respect to the

shift x→ x+ 2ωk for the case l0 = 3/2, l1 = l2 = l3 = 1/2. Since H(−3,0,0,0) = H(2,0,0,0),

it follows from (7.18) and (7.23) that

trM2ωk
= 2 cos

−1

2

∫ E

√
3g2

ωk(2Ẽ2 − 3g2)− 6ηkẼ√
(Ẽ2 − 3g2)

∏3
i=1(Ẽ − 3ei)

dẼ

 , (7.28)

and it follows from Corollary 6.7 that for each k ∈ {1, 3} there exists a non-zero solution

fk(x,E) of (6.12) for the case l0 = 3/2, l1 = l2 = l3 = 1/2 such that

fk(x+ 2ωk, E) = fk(x,E) exp

−1

2

∫ E

√
3g2

ωk(2Ẽ2 − 3g2)− 6ηkẼ√
−(Ẽ2 − 3g2)

∏3
i=1(Ẽ − 3ei)

dẼ

 . (7.29)
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We also have

trM2ωk
= 2 cos

(√
−1(2ωk(ζ(α) + κ)− 2ηkα)

)
, (7.30)

where α and κ are defined by

℘(α) = e1 −
(E − 3e1)(E + 6e1)2

9(E2 − 3g2)
, κ =

2

3

√
−
∏3
i=1(Ẽ − 3ei)

E2 − 3g2
. (7.31)

It follows from Proposition 7.9 that the singularity x = 0 (resp. x = ω1, ω2, ω3) for (1.14)

on the case l0 = 3/2, l1 = l2 = l3 = 1/2 is apparent if and only if E = ±
√

3g2 (resp.

E = 3e1, 3e2, 3e3).

By setting α0 = −3/2, we have l′0 = −1, l′1 = l′2 = l′3 = −2, which can be replaced

by l′0 = 0, l′1 = l′2 = l′3 = 1. The case (l′0, l
′
1, l
′
2, l
′
3) = (0, 1, 1, 1) is isomonodromic to the

case (l′0, l
′
1, l
′
2, l
′
3) = (2, 0, 0, 0), and the two cases are linked by the generalized Darboux

transformation in [20].

8. Summary and concluding remarks.

In this paper, we investigated correspondences of special solutions of

Heun’s differential equation (1.2) and the second-order linear differential equa-

tion Dy1(θ0, θ1, θt, θ∞;λ, µ) (see (1.5)) by Euler’s integral transformation. Namely,

polynomial-type solutions are connected to the solutions such that one of the regular

singularities is apparent. On the monodromy, the trace of a product of the local mon-

odromy matrices is essentially preserved by the Euler’s transformation (see Theorem

3.4), and it is written more clearly on the elliptical representation of Heun’s equation

(see Theorem 6.1). The monodromy of the elliptical representation of Heun’s equation

(1.14) in the case l0, l1, l2, l3 ∈ Z + 1/2 and l0 + l1 + l2 + l3 ∈ 2Z + 1 can be calculated

by using the results on finite-gap integration.

The results of this paper would also be valid for confluent families of Heun’s equation

(see [12]) and the linear differential equation related with the other Painlevé equations.

They should be presented clearly in a near future.

Acknowledgments. The author thanks Professor S. N. M. Ruijsenaars for dis-

cussions and for sending a draft of his paper.

Appendix. Local expansions and the proof of Propositions 3.2, 3.3 and

Theorems 4.2, 4.3.

We investigate local expansions of solutions of a second-order linear differential equa-

tion about a regular singularity and the image of the expansion mapped by an integral

transformation.

We assume that the function y(w) is a solution of a second-order linear differential

equation about a regular singularity w = p( 6=∞), and the exponents of the second-order

linear differential equation at w = p are 0 and θp.

Then the function y(w) can be expanded as
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y(w) = C〈p〉f 〈p〉(w) +D〈p〉g〈p〉(w), (C〈p〉, D〈p〉 ∈ C), (A.1)

such that

f 〈p〉(w) =



∞∑
j=0

c
(p)
j (w − p)j , θp 6∈ Z≥0,

(w − p)θp
∞∑
j=0

c
(p)
j (w − p)j , θp ∈ Z≥0,

(A.2)

g〈p〉(w) =



(w − p)θp
∞∑
j=0

c̃
(p)
j (w − p)j , θp 6∈ Z,

(w − p)θp
 ∞∑
j=0

c̃
(p)
j (w − p)j

+A〈p〉f 〈p〉(w) log(w − p), θp ∈ Z≤−1,

 ∞∑
j=0

c̃
(p)
j (w − p)j

+A〈p〉f 〈p〉(w) log(w − p), θp ∈ Z≥0,

where c
(p)
0 = c̃

(p)
0 = 1. The function f 〈p〉(w) is holomorphic about w = p. The function

g〈p〉(w) is branching about w = p, if θp 6∈ Z6=0 or A〈p〉 6= 0. If θp ∈ Z6=0 and A〈p〉 = 0,

the singularity w = p is apparent

We now describe a criterion that the singularity w = p is apparent for the case

θp ∈ Z6=0. We denote the differential equation which the function y(w) satisfies by

d2y

dw2
+

( ∞∑
i=0

ri(w − p)i−1

)
dy

dw
+

( ∞∑
i=0

si(w − p)i−2

)
y = 0. (A.3)

Let F (ξ) = ξ2 + (p0− 1)ξ+ q0 = ξ(ξ− θp) be the characteristic polynomial about w = p.

If the function y = wρ(
∑∞
i=0 ciz

i) (c0 = 1) satisfies (A.3), then we have F (ρ) = 0 and

F (ρ+ n)cn +

n∑
i=1

{(n− i+ ρ)ri + si}cn−i = 0. (A.4)

If F (ρ + n) 6= 0 for all n ∈ Z≥1, then the coefficients cn are determined recursively. In

particular, the coefficients cn are determined recursively for the case θp 6∈ Z. We consider

the case θp ∈ Z≥1. Set ρ = 0. The coefficients c1, . . . cθp−1 are determined recursively.

We substitute n = θp in (A.4). Then

θp∑
i=1

{(θp − i)ri + si}cθp−i = 0, (A.5)

and it gives an equivalent condition to that the singularity w = p is apparent (i.e. A〈p〉

= 0). A condition of apparency of the singularity w = p for the case θp ∈ Z≤−1 is given

by (A.4) for the case ρ = θp and n = −θp.
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We investigate the local expansion of the function
∫

[γz,γp]
y(w)(z − w)κdw about

w = p for the case κ 6∈ Z. Set

dα,β =



(e2π
√
−1α − 1)(e2π

√
−1β − 1)

Γ(α)Γ(β)

Γ(α+ β)
, α 6∈ Z,

2π
√
−1(e2π

√
−1β − 1)

(−1)αΓ(β)

(−α)! Γ(α+ β)
, α ∈ Z≤0,

2π
√
−1(e2π

√
−1β − 1)

Γ(α)Γ(β)

Γ(α+ β)
, α ∈ Z≥1.

(A.6)

If β 6∈ Z, then dα,β 6= 0⇔ α+ β 6∈ Z≤0 and we have∫
[γ1,γ0]

sα−1(1− s)β−1ds =

{
dα,β , α 6∈ Z≥1,

0, α ∈ Z≥1,
(A.7)∫

[γ1,γ0]

sn−1(1− s)β−1(log s)ds = dn,β ,

for n ∈ Z≥1. For the function y(w) in (A.1), we have

〈[γz, γp], y〉 =

∫
[γz,γp]

y(w)(z − w)κdw (A.8)

=



D〈p〉(z − p)θp+κ+1
∞∑
j=0

c̃
(p)
j dj+θp+1,κ+1(z − p)j , θp 6∈ Z,

θp + κ 6∈ Z≤−2,

D〈p〉
∞∑
j=0

c̃
(p)
j−κ−θp−1dj−κ,κ+1(z − p)j , θp 6∈ Z,

θp + κ ∈ Z≤−2,

D〈p〉(z − p)θp+κ+1



−θp−1∑
j=0

c̃
(p)
j dj+θp+1,κ+1(z − p)j

+A〈p〉
∞∑

j=−θp

c
(p)
j+θp

dj+θp+1,κ+1(z − p)j


,

θp ∈ Z≤−1,
θp + κ 6∈ Z≤−2,

D〈p〉A〈p〉(z − p)θp+κ+1
∞∑
j=0

c
(p)
j dj+θp+1,κ+1(z − p)j , θp ∈ Z≥0,

θp + κ 6∈ Z≤−2,

by applying the transformation w = p+ (z − p)s. Hence

〈[γz, γp], y〉γp = e2π
√
−1(θp+κ)〈[γz, γp], y〉. (A.9)

If θp + κ ∈ Z, then the function 〈[γz, γp], y〉 is holomorphic about z = p. Under the

assumption κ 6∈ Z, the function 〈[γz, γp], y〉 is identically zero for any function y(w)

written as (A.1), if and only if θp ∈ Z≥0 and the singularity w = p is apparent (i.e.

A〈p〉 = 0), or θp+κ ∈ Z≤−2 and the function g〈p〉(w) in (A.2) is a product of (w−p)θp and

a non-zero polynomial of degree no more than −θp−κ−2 (i.e. c̃
(p)
j = 0 for j ≥ −θp−κ−1).

By putting κ = κ2 − 1, (resp. θp = 1 − ε′p (p = 0, 1, t), κ = −η), we obtain Proposition

3.2 (i). If θp ∈ Z≤−1, κ 6∈ Z and the singularity w = p is apparent, then A〈p〉 = 0 and the
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function 〈[γz, γp], y〉 is a product of (z − p)θp+κ+1 and a polynomial of degree no more

than −θp − 1.

Let us consider the local expansion about w = ∞. We assume that the function

y(w) is a solution of a second-order linear differential equation about a regular singularity

w =∞, and that the exponents of the second-order linear differential equation at w =∞
are θ

(1)
∞ and θ

(2)
∞ . Then any solution y(w) can be written as

y(w) = C〈∞〉f 〈∞〉(w) +D〈∞〉g〈∞〉(w), (C〈∞〉, D〈∞〉 ∈ C), (A.10)

such that

f 〈∞〉(w) =



(
1

w

)θ(2)∞ ∞∑
j=0

c
(∞)
j

(
1

w

)j
, θ

(1)
∞ − θ(2)

∞ 6∈ Z≥0,

(
1

w

)θ(1)∞ ∞∑
j=0

c
(∞)
j

(
1

w

)j
, θ

(1)
∞ − θ(2)

∞ ∈ Z≥0,

(A.11)

g〈∞〉(w) =



(
1

w

)θ(1)∞ ∞∑
j=0

c̃
(∞)
j

(
1

w

)j
, θ

(1)
∞ − θ(2)

∞ 6∈ Z,

(
1

w

)θ(1)∞  ∞∑
j=0

c̃
(∞)
j

(
1

w

)j+A〈p〉f 〈p〉(w) log

(
1

w

)
, θ

(1)
∞ − θ(2)

∞ ∈ Z≤−1,

(
1

w

)θ(2)∞  ∞∑
j=0

c̃
(∞)
j

(
1

w

)j+A〈p〉f 〈p〉(w) log

(
1

w

)
, θ

(1)
∞ − θ(2)

∞ ∈ Z≥0,

where c
(∞)
0 = c̃

(∞)
0 = 1.

We investigate the local expansion of the function
∫

[γz,γ∞]
y(w)(z−w)θ

(2)
∞ −2dw about

w =∞ for the case θ
(2)
∞ 6∈ Z. Since∫

[γz,γ∞]

(1/w)θ
(2)
∞ −1+α(z − w)θ

(2)
∞ −2dw = eπ

√
−1(θ(2)∞ −1)(1/z)αd

α,θ
(2)
∞ −1

, (A.12)∫
[γz,γ∞]

(1/w)θ
(2)
∞ −1+n(z − w)θ

(2)
∞ −2(log(1/w))dw = eπ

√
−1(θ(2)∞ −1)(1/z)nd

n,θ
(2)
∞ −1

,

for n ∈ Z≥1, we have

eπ
√
−1(1−θ(2)∞ )〈[γz, γ∞], y〉
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=



D〈∞〉
(

1

z

)θ(1)∞ −θ(2)∞ +1 ∞∑
j=0

c̃
(∞)
j d

j+θ
(1)
∞ −θ(2)∞ +1,θ

(2)
∞ −1

(
1

z

)j
,

θ(1)
∞ − θ(2)

∞ 6∈ Z,
θ(1)
∞ 6∈ Z≤0,

D〈∞〉
(

1

z

)−θ(2)∞ +2 ∞∑
j=0

c̃
(∞)

j−θ(1)∞ +1
d
j−θ(2)∞ +2,θ

(2)
∞ −1

(
1

z

)j
,

θ(1)
∞ − θ(2)

∞ 6∈ Z,
θ(1)
∞ ∈ Z≤0,

D〈∞〉
(

1

z

)θ(1)∞ −θ(2)∞ +1



−θ(1)∞ +θ(2)∞ −1∑
j=0

c̃
(∞)
j d

j+θ
(1)
∞ −θ(2)∞ +1,θ

(2)
∞ −1

(
1

z

)j
+A〈∞〉

∞∑
j=−θ(1)∞ +θ

(2)
∞

c
(∞)

j+θ
(1)
∞ −θ(2)∞

d
j+θ

(1)
∞ −θ(2)∞ +1,θ

(2)
∞ −1

(
1

z

)j

,

θ(1)
∞ − θ(2)

∞ ∈ Z≤−1,

θ(1)
∞ 6∈ Z≤0,

D〈∞〉A〈∞〉
(

1

z

)θ(1)∞ −θ(2)∞ +1 ∞∑
j=0

c
(∞)
j d

j+θ
(1)
∞ −θ(2)∞ +1,θ

(2)
∞ −1

(
1

z

)j
,

θ(1)
∞ − θ(2)

∞ ∈ Z≥0,

θ(1)
∞ 6∈ Z≤0.

(A.13)

Hence

〈[γz, γ∞], y〉γ∞ = e2π
√
−1(θ(1)∞ −θ

(2)
∞ )〈[γz, γ∞], y〉. (A.14)

Under the assumption θ
(2)
∞ 6∈ Z, the function 〈[γz, γ∞], y〉 is identically zero for any

function y(w) written as in (A.10), if and only if θ
(1)
∞ − θ(2)

∞ ∈ Z≥0 and the singularity

w =∞ is apparent (i.e. A〈∞〉 = 0), or θ
(1)
∞ ∈ Z≤0 and the function g〈∞〉(w) in (A.11) is

a non-zero polynomial in the variable w of degree −θ(1)
∞ (i.e. c̃

(∞)
j = 0 for j ≥ 1− θ(1)

∞ ).

By putting θ
(1)
∞ = κ1, θ

(2)
∞ = κ2 + 1 (resp. θ

(1)
∞ = α+ β − 2η+ 1, θ

(2)
∞ = 2− η), we obtain

Proposition 3.2 (ii). If θ
(1)
∞ − θ(2)

∞ + 1 ∈ Z≤0 and the singularity w = ∞ is apparent,

then A〈∞〉 = 0 and the function 〈[γz, γ∞], y〉 is a polynomial in the variable z of degree

−θ(1)
∞ + θ

(2)
∞ − 1.

We investigate a sufficient condition that the functions 〈[γz, γ0], y〉, 〈[γz, γ1], y〉,
〈[γz, γt], y〉 span the two-dimensional space of solutions of Dy1(θ̃0, θ̃1, θ̃t, θ̃∞; λ̃, µ̃) (resp.

(1.12)) for some solution y(w) of Dy1(θ0, θ1, θt, θ∞;λ, µ) (resp. (1.10)) for the case κ2 6∈ Z
(resp. η 6∈ Z).

Proposition A.1. Assume that κ2 6∈ Z (resp. η 6∈ Z), there exists a branch-

ing solution of Dy1(θ0, θ1, θt, θ∞;λ, µ) (resp. (1.10)) for each singularity w = 0, 1, t

(i.e. θp 6∈ Z (resp. ε′p 6∈ Z) or A〈p〉 6= 0 for p = 0, 1, t), the differential equation

Dy1(θ0, θ1, θt, θ∞;λ, µ) (resp. (1.10)) does not have a solution written as a product of

(w − p)θp (resp. (w − p)1−ε′p ) and a non-zero polynomial on the case κ2 + θp ∈ Z≤−1

(resp. 2−η−ε′p = 1−εp ∈ Z≤−1, εp ∈ Z≥2) for each p ∈ {0, 1, t}, and the differential equa-

tion Dy1(θ̃0, θ̃1, θ̃t, θ̃∞; λ̃, µ̃) (resp. (1.12)) does not have a solution written as a product of

zκ2+θ0(z− 1)κ2+θ1(z− t)κ2+θt (resp. z1−ε0(z− 1)1−ε1(z− t)1−εt) and a non-zero polyno-

mial. Then there exists a solution y(w) of the differential equation Dy1(θ0, θ1, θt, θ∞;λ, µ)

(resp. (1.10)) such that the functions 〈[γz, γ0], y〉, 〈[γz, γ1], y〉, 〈[γz, γt], y〉 span the two-
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dimensional space of solutions of the differential equation Dy1(θ̃0, θ̃1, θ̃t, θ̃∞; λ̃, µ̃) (resp.

(1.12)), 〈[γz, γ0], y〉 6= 0, 〈[γz, γ1], y〉 6= 0 and 〈[γz, γt], y〉 6= 0.

Proof. Set κ = κ2 − 1 (resp. κ = −η and ε′p = 1 − θp (p = 0, 1, t)). If

〈[γz, γp], y〉 = 0 (p ∈ {0, 1, t}) for all solutions of Dy1(θ0, θ1, θt, θ∞;λ, µ) (resp. (1.10)).

Then it follows from Proposition 3.2 (i) that θp ∈ Z and the singularity w = p is

apparent, or θp + κ + 1 ∈ Z≤−1 and the differential equation Dy1(θ0, θ1, θt, θ∞;λ, µ)

(resp. (1.10)) has a solution of the form which is a product of (w − p)θp and a non-

zero polynomial of degree no more than −θp − κ − 2. Hence it follows from the as-

sumptions of Proposition A.1 that 〈[γz, γp], y(p)〉 6= 0 for some solution y(p)(w) for each

p ∈ {0, 1, t}. By setting y(w) = c0y
(0)(w) + c1y

(1)(w) + cty
(t)(w) and choosing con-

stants c0, c1, ct appropriately, we have 〈[γz, γp], y〉 6= 0 for all p ∈ {0, 1, t}. Assume that

the functions 〈[γz, γ0], y〉, 〈[γz, γ1], y〉, 〈[γz, γt], y〉 do not span the space of solutions of

Dy1(θ̃0, θ̃1, θ̃t, θ̃∞; λ̃, µ̃) (resp. (1.12)). Then 〈[γz, γ0], y〉 = d〈[γz, γ1], y〉 = d′〈[γz, γt], y〉
for some d 6= 0 and d′ 6= 0. Since 〈[γz, γ0], y〉 satisfies the differential equation

Dy1(θ̃0, θ̃1, θ̃t, θ̃∞; λ̃, µ̃) (resp. (1.12)), 〈[γz, γ0], y〉 is locally holomorphic in C\{0, 1, t}, and

it follows from (A.8) that the function z−θ0−κ−1(z− 1)−θ1−κ−1(z− t)−θt−κ−1〈[γz, γ0], y〉
is holomorphic in C, and the singularity z =∞ is regular at most and apparent. Hence

z−θ0−κ−1(z − 1)−θ1−κ−1(z − t)−θt−κ−1〈[γz, γ0], y〉 is a polynomial, and 〈[γz, γ0], y〉 =

zθ0+κ+1(z − 1)θ1+κ+1(z − t)θt+κ+1h(z) for some polynomial h(z). But this contradicts

the assumptions of the proposition. �

Corollary A.2 (Proposition 3.3). There exists a solution y(w) of

Dy1(θ0, θ1, θt, θ∞;λ, µ) (resp. (1.10)) such that 〈[γz, γ0], y〉 6= 0, 〈[γz, γ1], y〉 6= 0,

〈[γz, γt], y〉 6= 0 and the functions 〈[γz, γ0], y〉, 〈[γz, γ1], y〉, 〈[γz, γt], y〉 span the two-

dimensional space of solutions of Dy1(θ̃0, θ̃1, θ̃t, θ̃∞; λ̃, µ̃) (resp. (1.12)), if κ2 6∈ Z and

θp, θ̃p 6∈ Z for all p ∈ {0, 1, t,∞} (resp. η, ε0, ε1, εt, α− β, ε′0, ε′1, ε′t, α′ − β′ 6∈ Z).

Proof. It follows from the fact that θ0, θ1, θt 6∈ Z (resp. ε′0, ε
′
1, ε
′
t 6∈ Z) that there

exists a branching solution of Dy1(θ0, θ1, θt, θ∞;λ, µ) (resp. (1.10)). If there exists a solu-

tion of Dy1(θ̃0, θ̃1, θ̃t, θ̃∞; λ̃, µ̃) (resp. (1.12)) that can be written as zκ2+θ0(z−1)κ2+θ1(z−
t)κ2+θth(z) (resp. z1−ε0(z− 1)1−ε1(z− t)1−εth(z)) for some non-zero polynomial h(z), it

follows from Proposition 3.1 (ii) that θ∞+(κ2 +θ0 +κ2 +θ1 +κ2 +θt) = −deg h(z) ∈ Z≤0

or −κ2 +1+(κ2 +θ0 +κ2 +θ1 +κ2 +θt) = −deg h(z) ∈ Z≤0 (resp. α+(3−ε0−ε1−εt) =

−deg h(z) ∈ Z≤0 or β+(3−ε0−ε1−εt) = −deg h(z) ∈ Z≤0), i.e. κ2 ∈ Z≤0 or θ∞ ∈ Z≥1

(resp. 2 − β ∈ Z≤0 or 2 − α ∈ Z≤0), which contradicts the assumption of the corollary.

The condition θ̃p ∈ Z≤−1 (resp. 1−εp ∈ Z≤−1) for p = 0, 1, t is covered in the assumption

of the corollary. Thus, the assumption of Proposition A.1 follows from the assumption

of the corollary, and the corollary is obtained by applying Proposition A.1. �

We derive the following proposition which is used to prove Theorem 4.2.

Proposition A.3. Let a, b, c be elements of {0, 1, t} such that a 6= b 6= c 6= a and

η, α, β, ε0, ε1, εt, α
′, β′, ε′0, ε

′
1, ε
′
t be the parameters defined in (1.9) or (1.13).

(i) If ε′a ∈ Z≥2, η 6∈ Z and the singularity w = a of (1.10) is apparent, then there exists

a non-zero solution of (1.12) which can be written as (z − a)1−εah(z) where h(z) is a



Integral transformation of Heun’s equation 885

polynomial of degree no more than ε′a−2. Moreover if α′, β′ 6∈ Z, then degE h(z) = ε′a−2.

(ii) If ε′a ∈ Z≤0, η 6∈ Z, the singularity w = a of (1.10) is apparent and there do not

exist any non-zero solutions of (1.10) written in the form (w− b)αb(w− c)αcp(w) where

p(w) is a polynomial and (αb, αc) = (0, 0), (1 − ε′b, 0) or (0, 1 − ε′c), then there exists a

non-zero solution of (1.12) which can be written as (z− b)1−εb(z− c)1−εch(z) where h(z)

is a polynomial. Moreover if α′, β′ 6∈ Z, then deg h(z) = −ε′a.

(iii) If εa ∈ Z≥2, η 6∈ Z, there exists a non-zero solution of (1.10) which can be written as

(w−a)1−ε′ah(w) where h(w) is a polynomial and there do not exist any non-zero solutions

of (1.12) written as polynomials in z, then the singularity z = a of (1.12) is apparent.

(iv) If εa ∈ Z≤0, η, ε′b, ε
′
c 6∈ Z, there exists a non-zero solution of (1.10) written as a

product of (w− b)1−ε′b(w− c)1−ε′c and a polynomial, and there do not exist any non-zero

solutions of (1.12) written as a product of z1−ε0(z − 1)1−ε1(z − t)1−εt and a polynomial,

then the singularity z = a of (1.12) is apparent.

(v) If α + β − η ∈ Z≤0, η 6∈ Z and the singularity w = ∞ of (1.10) is apparent, then

there exists a non-zero solution of (1.12) which can be written as a polynomial of degree

η − α− β.

(vi) If α+ β− η ∈ Z≥2, η 6∈ Z, the singularity w =∞ of (1.10) is apparent and there do

not exist any non-zero solution of (1.10) written as wα0(w−1)α1(w− t)αtp(w) such that

p(w) is a polynomial and (α0, α1, αt) = (1−ε′0, 0, 0), (0, 1−ε′1, 0) or (0, 0, 1−ε′t), then there

exists a non-zero solution of (1.12) which can be written as z1−ε0(z−1)1−ε1(z−t)1−εth(z)

where h(z) is a polynomial of degree α+ β − η − 2.

(vii) If α + β − 2η ∈ Z≤−1, η 6∈ Z, there exists a non-zero solution of (1.10) which is

written as a polynomial and there do not exist any non-zero solutions of (1.12) which are

written as (1/z)ηp(1/z) where p(1/z) is a polynomial in 1/z, then the singularity z =∞
of (1.12) is apparent.

(viii) If α + β − 2η ∈ Z≥1, η, ε′0, ε
′
1, ε
′
t 6∈ Z, there exists a non-zero solution of (1.10)

which can be written as a product of w1−ε′0(w− 1)1−ε′1(w− t)1−ε′t and a polynomial, then

the singularity z =∞ of (1.12) is apparent.

Proof. Set ε′p = 1− θp, εp = 1− θ̃p (p = 0, 1, t). Then θ̃p = θp − η+ 1. We apply

local expansions in this appendix by setting κ = −η.

To prove (i), it follows from Proposition 4.1 that it remains to show that if α′, β′ 6∈ Z,

then degE h(z) = ε′a − 2. If there exists a non-zero solution of (1.12) which is written

as (z − a)1−εah(z) where h(z) is a polynomial, then it follows from Proposition 3.1 (ii)

that degE h(z) = −α − 1 + εa or −β − 1 + εa, i.e. degE h(z) = −η − 1 + εa = ε′a − 2 or

−(α+ β − η)− 1 + εa = 2η − α− β + ε′a − 2. If α′, β′ 6∈ Z, then we have 2η − α− β 6∈ Z
and degE h(z) = ε′a − 2. Hence we obtain (i).

Assume that θa ∈ Z≥1, η 6∈ Z and the singularity w = a of (1.10) is apparent. Then

it follows from Proposition 3.2 (i) that 〈[γz, γa], y〉 = 0 for all solutions y(w) of (1.10).

Combining this result with (2.2) and a similar equality, we have

〈[γz, γb], y〉γa = 〈[γz, γb], y〉, 〈[γz, γc], y〉γa = 〈[γz, γc], y〉. (A.15)

If 〈[γz, γb], y〉, 〈[γz, γc], y〉 are linearly independent for some solution y(w) of (1.10), then it

follows from (A.15) that the monodromy matrix about z = a is a unit and the exponents
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of (1.12) at z = a are integers. Hence θ̃a = θa − η + 1 ∈ Z, and this contradicts

η 6∈ Z. Therefore 〈[γz, γb], y〉, 〈[γz, γc], y〉 are linearly dependent for any solution y(w).

If 〈[γz, γb], y〉 6= 0 for some solution y(w) and 〈[γz, γc], y〉 6= 0 for some solution y(w),

then there exists a solution y(w) of (1.10) such that 〈[γz, γc], y〉 = d′〈[γz, γb], y〉 6= 0 for

some constant d′ 6= 0. It follows from local expansions (A.8) for the case p = b, c, (A.15)

and the condition θ̃a 6∈ Z that the function h(z) = (z − b)−θ̃b(z − c)−θ̃c〈[γz, γb], y〉 is

holomorphic in C. Hence h(z) is a non-branching function in C ∪ {∞} which may have

a pole at z = ∞, and (1.12) has a non-zero solution (z − b)θ̃b(z − c)θ̃ch(z), where h(z)

is a polynomial. Let k be the degree of h(z). It follows from Proposition 3.1 (ii) that

−k− θ̃b− θ̃c = η or −η+α+β, and by applying the relation θ̃a + θ̃b + θ̃b +α+β = 2 we

have k = θ̃a + α+ β − η − 2 = θa − 2η + α+ β − 1 or k = θ̃a + η − 2 = θa − 1. Hence, if

α′, β′ 6∈ Z, then −2η+α+β 6∈ Z and we have deg h(z) = θa−1 = −ε′a. If 〈[γz, γb], y〉 = 0

for all solutions y(w), then it follows from Proposition 3.2 (i) that θb ∈ Z≥0 and the

singularity w = b is apparent or εb ∈ Z≥2 and the (1.10) has a solution of the form

which is a product of (w− b)θb and a non-zero polynomial of degree no more than εb− 2.

For the case θb ∈ Z≥0 and the singularity w = b is apparent, by taking a solution

y(w) of (1.10) which is holomorphic at w = c, the function y(w) is holomorphic on the

points w = a, b, c and it is a polynomial in w, because the point w = ∞ is an apparent

singularity. Hence we have a polynomial solution y(w) of (1.10). By combining this result

with a similar statement for the case 〈[γz, γc], y〉 = 0 for all solutions y(w), it follows that

if θa ∈ Z≥0, the singularity w = a is apparent and 〈[γz, γb], y〉 = 0 or 〈[γz, γc], y〉 = 0 for

all solutions y(w), then there exists a non-zero solution of (1.10) which can be written

as (w − b)αb(w − c)αcp(w) where p(w) is a polynomial and (αb, αc) = (0, 0), (θb, 0) or

(0, θc). Therefore we obtain (ii).

We show that if θa(= 1 − ε′a) ∈ Z≤0, η 6∈ Z, there exists a logarithmic solution of

(1.10) about w = a and there do not exist any non-zero solutions of (1.10) written

as a polynomial, then there do not exist any non-zero solution of (1.12) written as

(z− a)1−εap(z) such that p(z) is a polynomial. We write a logarithmic solution of (1.10)

as in (A.1), (A.2). Then D〈a〉 6= 0, A〈a〉 6= 0 and it follows from the absence of a non-zero

polynomial solution of (1.10) that ∀K ∈ Z, ∃j ∈ Z≥K such that c
(a)
j 6= 0. A solution

〈[γz, γa], y〉 of (1.12) can be written as (A.8) for the case θa ∈ Z≤0, θa+κ+1 6∈ Z≤−1, and

it cannot be written as (z−a)θa−η+1p(z) such that p(z) is a polynomial because A〈a〉 6= 0

and ∀K ∈ Z, ∃j ∈ Z≥K such that c
(a)
j 6= 0. Since (1−εa =)θ̃a = θa−η+1 6∈ Z, the space

of solutions of (1.12) that are written as (z − a)θ̃ah(z) such that h(z) is holomorphic

about z = a is one-dimensional. Hence there does not exist a non-zero solution of (1.12)

written as (z − a)1−εap(z) such that p(z) is a polynomial. It follows from the duality of

the parameters (ε0, ε1, εt, η) and (ε′0, ε
′
1, ε
′
t, η
′) in (1.9) and (1.13) that we obtain (iii) for

the case 1− εa ∈ Z≤0 by contraposition.

We show that if η 6∈ Z, θ̃a ∈ Z≥1, θb, θc 6∈ Z, there exists a logarithmic solution of

(1.12) about z = a, there exists a non-zero solution of (1.10) written as (w − b)θb(w −
c)θch(w) such that h(w) is a polynomial, and there do not exist any non-zero solutions

of (1.12) written as (z − a)θ̃a(z − b)θ̃b(z − c)θ̃c p̃0(z) where p̃0(z) is a polynomial, then

we have a contradiction. Assume that there exists a non-zero solution of (1.10) written

as y(w) = (w − b)θb(w − c)θch(w) such that h(w) is a polynomial. Then the functions
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〈[γz, γb], y〉 and 〈[γz, γc], y〉 are solutions of (1.12) and they are non-zero, which follows

from θb, θc 6∈ Z and (A.8). Since it has been shown that yγb = e2π
√
−1θby, yγc = e2π

√
−1θcy

and 〈[γz, γa], y〉 = 0, we have 〈[γz, γb], y〉γa = 〈[γz, γb], y〉 and 〈[γz, γc], y〉γa = 〈[γz, γc], y〉.
If 〈[γz, γb], y〉, 〈[γz, γc], y〉 are linearly independent, the monodromy matrix about z = a is

a unit, and this contradicts the existence of a logarithmic solution. Hence 〈[γz, γb], y〉 and

〈[γz, γc], y〉 are linearly dependent. It follows from a similar argument to the proof of (ii)

that there exists a non-zero solution ỹ(z) of (1.12) written as ỹ(z) = (z−b)θ̃b(z−c)θ̃c p̃(z)
such that p̃(z) is a polynomial. Since θ̃a ∈ Z≥0 and there exists a logarithmic solution

of (1.12) about z = a, it follows from (A.2) that y(z) can be expressed as y(z) =

(z−a)θ̃a(z−b)θ̃b(z−c)θ̃c p̃0(z) such that p̃0(z) is a polynomial, and we have a contradiction.

Hence we obtain that if η 6∈ Z, θ̃a ∈ Z≥0, θb, θc 6∈ Z, there exists a non-zero solution of

(1.10) written as (w−b)θb(w−c)θch(w) such that h(w) is a polynomial, and there do not

exist any non-zero solutions of (1.12) written in the form (z−a)θ̃a(z− b)θ̃b(z− c)θ̃c p̃0(z),

where p̃0(z) is a polynomial, then the singularity z = a of (1.12) is apparent. Therefore

we have (iv).

We show (v) and (vi). We apply the expansions in (A.11), (A.13) by setting θ
(1)
∞ =

α + β − 2η + 1 and θ
(2)
∞ = 2 − η. If α + β − η = θ

(1)
∞ − θ(2)

∞ + 1 ∈ Z≤0, η 6∈ Z and the

singularity w = ∞ of (1.10) is apparent, then θ
(1)
∞ 6∈ Z≤0 and the function 〈[γz, γ∞], y〉

in (A.13) is a product of (1/z)α+β−η and a polynomial in the variable 1/z of degree no

more than η−α−β, and it satisfies (1.12). Hence there exists a solution of (1.12) which

is a polynomial in z of degree no more than η−α−β. If there exists a solution of (1.12)

which is a polynomial in z, then the degree of the polynomial is −α or −β, i.e., −η( 6∈ Z)

or η − α− β(∈ Z). Therefore we have (v).

If −η + α + β = θ
(1)
∞ − θ

(2)
∞ ∈ Z≥0, η 6∈ Z and the singularity w = ∞ of (1.10)

is apparent, then it follows from Proposition 3.2 (ii) and a similar argument to obtain

(A.15) that 〈[γz, γ∞], y〉 = 0 for all solutions y(w) of (1.10) and

〈[γz, γp], y〉γ∞ = e2π
√
−1η〈[γz, γp], y〉, p = 0, 1, t. (A.16)

If 〈[γz, γa], y〉 and 〈[γz, γb], y〉 (a, b ∈ {0, 1, t}, a 6= b) are linearly independent for some

solution y(w) of (1.10), it follows from (A.16) that the monodromy matrix of (1.12)

about z = ∞ is scalar, the difference between the exponents of (1.12) at z = ∞ (i.e.

θ
(1)
∞ − θ

(2)
∞ + 1 and 2 − θ

(2)
∞ ) is an integer, and this contradicts θ

(1)
∞ − θ

(2)
∞ ∈ Z and

η = 2 − θ(2)
∞ 6∈ Z. Therefore 〈[γz, γa], y〉 and 〈[γz, γb], y〉 are linearly dependent for any

solution y(w) of (1.10) and a, b ∈ {0, 1, t} such that a 6= b. If there exists a solution

y(p)(w) of (1.10) such that 〈[γz, γp], y(p)〉 6= 0 for each p ∈ {0, 1, t}, then there exists

a solution y(w) of (1.10) such that 〈[γz, γp], y〉 6= 0 for any p ∈ {0, 1, t} by setting

y(w) = c0y
(0)(w) + c1y

(1)(w) + cty
(t)(w) and choosing c0, c1, ct appropriately. Then we

have 〈[γz, γ0], y〉 = d〈[γz, γ1], y〉 = d′〈[γz, γt], y〉 6= 0 for some constants d, d′ 6= 0. It is

shown that the function z−θ̃0(z − 1)−θ̃1(z − t)−θ̃t〈[γz, γ0], y〉 is holomorphic in C, and

(1.12) has a non-zero solution zθ̃0(z − 1)θ̃1(z − t)θ̃th(z) where h(z) is a polynomial. Let

k be the degree of h(z). It follows from Proposition 3.1 (ii) that −k + α+ β − 2 = η or

α + β − η. Since η 6∈ Z, we have deg h(z) = α + β − η − 2. If 〈[γz, γp], y〉 = 0 for all

solutions y(w) and some p ∈ {0, 1, t}, then there exists a solution of (1.10) which can
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be expressed as a product of (w − p)θp and a polynomial, or θp ∈ Z≥1 and there are no

logarithmic solutions about w = p. Assume that θp ∈ Z≥1 and there are no logarithmic

solutions about w = p. Let p′ ∈ {0, 1, t} such that p′ 6= p and y(w) be a solution of

(1.10) which is holomorphic at w = p′. Then yγp′ (w) = y(w), yγp(w) = y(w). Since the

singularity w = ∞ is apparent, we have yγ∞(w) = e2π
√
−1θ(2)∞ y(w) = e−2π

√
−1ηy(w) and

it follows that yγp′′ (w) = e2π
√
−1ηy(w) (p′′ ∈ {0, 1, t}, p 6= p′′ 6= p′). Since e2π

√
−1η 6= 1,

we have yγp′′ (w) = e2π
√
−1θp′′ y(w). Hence the function y(w) can be expressed as y(w) =

(w − p′′)θp′′h(w) such that h(w) is a polynomial, which follows from the monodromy of

y(w). Therefore if 〈[γz, γp], y〉 = 0 for all solution y(w) and some p ∈ {0, 1, t} then there

exists a solution y(w) of (1.10) such that y(w) = wα0(w − 1)α1(w − t)αth(w), h(w) is a

polynomial and (α0, α1, αt) = (θ0, 0, 0), (0, θ1, 0) or (0, 0, θt), and we have (vi).

We show (vii) and (viii). We apply the expansions in (A.11), (A.13) by setting

θ
(1)
∞ = α + β − 2η + 1 and θ

(2)
∞ = 2 − η. We show that if η(= 2 − η′ = 2 − θ(2)

∞ ) 6∈ Z,

α + β − η(= α′ + β′ − 2η′ + 1 = θ
(1)
∞ − θ

(2)
∞ + 1) ∈ Z≤0, there exists a logarithmic

solution of (1.10) about w = ∞ and there do not exist any non-zero solutions of (1.10)

written as a product of (1/w)η
′
(= (1/w)θ

(2)
∞ ) and a polynomial in 1/w, then there do

not exist any non-zero solutions of (1.12) written as a polynomial. We write a solution

of (1.10) as in (A.10), (A.11). Then D〈∞〉 6= 0, A〈∞〉 6= 0 and ∀K ∈ Z, ∃j ∈ Z≥K
such that c

(∞)
j 6= 0 in (A.11). It can be shown as in the proof of (iii) that the function

〈[γz, γ∞], y〉 can be written as in (A.13) for the case θ
(1)
∞ − θ(2)

∞ ∈ Z≤−1, θ
(1)
∞ 6∈ Z≤0, and

it is not written as (1/z)θ
(1)
∞ −θ

(2)
∞ +1p(1/z) such that p(z) is a polynomial. It follows from

θ
(1)
∞ − θ(2)

∞ + 1 − (2 − θ(2)
∞ ) 6∈ Z that there do not exist any non-zero solutions of (1.12)

written as (1/z)θ
(1)
∞ −θ

(2)
∞ +1p(1/z) such that p(z) is a polynomial. If there exists a non-zero

solution of (1.12) written as a polynomial h(z), then it follows from Proposition 3.1 (ii)

that deg h(z) = α+β−η or η. Because η 6∈ Z, we have deg h(z) = α+β−η = θ
(1)
∞ −θ(2)

∞ +1

and h(z) can be written as (1/z)θ
(1)
∞ −θ

(2)
∞ +1p(1/z) where p(z) is a polynomial of degree

no more than θ
(1)
∞ − θ(2)

∞ + 1. Therefore we obtain that there do not exist any non-zero

solutions of (1.12) written as a polynomial. It follows from the duality of the parameters

(ε0, ε1, εt, η) and (ε′0, ε
′
1, ε
′
t, η
′) in (1.9) and (1.13) that we obtain (vii) by contraposition.

We show that if η, θ0, θ1, θt 6∈ Z, α + β − 2η(= θ
(1)
∞ − θ(2)

∞ + 1 − (2 − θ(2)
∞ )) ∈ Z≥1,

there exists a logarithmic solution of (1.12) about z = ∞, and there do not exist any

non-zero solutions of (1.10) written as wθ0(w − 1)θ1(w − t)θtp(w) such that p(w) is a

polynomial, then we have a contradiction. Assume that there exists a non-zero solution

y(z) of (1.10) written as y(w) = wθ0(w−1)θ1(w−t)θtp(w) such that p(w) is a polynomial.

Then the exponent of y(w) at w =∞ is θ
(1)
∞ + θ

(2)
∞ − deg p(w)− 2 and the function y(w)

can be expressed as f 〈∞〉(w) in (A.10) for the case θ
(1)
∞ − θ(2)

∞ 6∈ Z. Hence 〈[γz, γ∞], y〉 =

0 and we have 〈[γz, γp], y〉γ∞ = e2π
√
−1η〈[γz, γp], y〉 (p = 0, 1, t). Since there exists a

logarithmic solution about z = ∞, any two of 〈[γz, γ0], y〉, 〈[γz, γ1], y〉, 〈[γz, γt], y〉 are

linearly dependent (see the proof of (iv)) and it follows from θp 6∈ Z (p = 0, 1, t) that

there exists a solution y(z) of (1.12) written as zθ̃0(z − 1)θ̃1(z − t)θ̃tp(z) such that p(z)

is a polynomial. Then we have deg p(z) = η − 2 or α + β − η − 2 and this contradicts

η 6∈ Z and α + β − 2η ∈ Z. Hence if α + β − 2η ∈ Z≥1, η, θ0, θ1, θt 6∈ Z, there exists a

non-zero solution of (1.10) which can be written as a product of wθ0(w − 1)θ1(w − t)θt
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and a polynomial, then the singularity z = ∞ of (1.12) is apparent. Therefore we have

(viii). �

Theorem 4.2 (i), (v), (viii) follows from Proposition A.3 (i), (v), (viii).

We show Theorem 4.2 (ii). Assume that there exists a non-zero solution of (1.10)

which is written as p(w) (resp. (w − p)1−ε′pp(w)) where p(w) is a polynomial. It follows

from Proposition 3.1 (ii) that deg p(w) = −α′ or −β′ (resp. deg p(w) = ε′p − α′ − 1 or

ε′p−β′−1). Thus α′ ∈ Z≤0 or β′ ∈ Z≤0 (resp. ε′p−α′ ∈ Z≥1 or ε′p−β′ ∈ Z≥1). Therefore,

if α′, β′ 6∈ Z (resp. ε′p−α′, ε′p− β′ 6∈ Z), then there do not exist any non-zero solutions of

(1.10) written in the form p(w) (resp. (w − p)1−ε′pp(w)) where p(w) is a polynomial. It

follows from α′, β′ 6∈ Z that η′ 6∈ Z and η 6∈ Z. If ε′a ∈ Z and εb = ε′b − η′ + 1 6∈ Z (resp.

εc 6∈ Z), then ε′c − (α′ + β′ − η′) = −ε′a − ε′b + η′ + 1 6∈ Z (resp. ε′b − (α′ + β′ − η′) 6∈ Z).

By combining with Proposition A.3 (ii), we have Theorem 4.2 (ii).

We show Theorem 4.2 (iii) and (iv). It follows from α, β 6∈ Z that η 6∈ Z. If there

exists a non-zero solution of (1.12) which is written as p(z) (resp. z1−ε0(z − 1)1−ε1(z −
t)1−εtp(z)) where p(z) is a polynomial, then deg p(z) = −α or −β (resp. deg p(z) =

α − 2 or β − 2). Hence if α, β 6∈ Z, then there do not exist any non-zero solutions of

(1.12) written as a polynomial nor as a product of z1−ε0(z − 1)1−ε1(z − t)1−εtp(z) and

a polynomial. By combining with Proposition A.3 (iii), (iv), we have Theorem 4.2 (iii)

and (iv).

If α + β − η = α′ + β′ − 2η′ + 1 ∈ Z and εp 6∈ Z, then ε′p − η′ = εp − 1 6∈ Z and

ε′p − (α′ + β′ − η′) = ε′p − η′ + (α′ + β′ − 2η′) 6∈ Z. Hence ε′p − α′, ε′p − β′ 6∈ Z and there

do not exist any non-zero solutions of (1.10) written in the form (w− p)1−ε′pp(w), where

p(w) is a polynomial. Hence we have Theorem 4.2 (vi) by combining with Proposition

A.3 (vi).

If there exists a non-zero solution of (1.12), written as (1/z)ηp(1/z) where p(1/z) is

a polynomial in 1/z, then the exponent of the function (1/z)ηp(1/z) is −η−deg1/z p(1/z)

and −η − deg1/z p(1/z) = 0 or ε0. Hence if η, ε′0 6∈ Z, then there do not exist any non-

zero solutions of (1.12) written as (1/z)ηp(1/z) where p(1/z) is a polynomial in 1/z. By

combining with Proposition A.3 (vii), we have Theorem 4.2 (vii). Thus Theorem 4.2 is

proved.

The following proposition concerning solutions of Dy1(θ0, θ1, θt, θ∞;λ, µ) and

Dy1(θ̃0, θ̃1, θ̃t, θ̃∞; λ̃, µ̃) is proved similarly to Proposition A.3.

Proposition A.4. Let a, b, c be elements of {0, 1, t} such that a 6= b 6= c 6= a.

Assume that λ, λ̃ 6∈ {0, 1, t,∞}.
(i) If θa ∈ Z≤−1, κ2 6∈ Z and the singularity w = a of the differential equation

Dy1(θ0, θ1, θt, θ∞;λ, µ) in the variable w is apparent, then there exists a non-zero so-

lution ỹ(z) of the differential equation Dy1(θ̃0, θ̃1, θ̃t, θ̃∞; λ̃, µ̃) in the variable z which can

be written as (z − a)θ̃ah(z) where h(z) is a polynomial of degree no more than −θa − 1.

Moreover if κ1 6∈ Z, then degE h(z) = −θa − 1.

(ii) If θa ∈ Z≥0, κ2 6∈ Z, the singularity w = a of the differential equation

Dy1(θ0, θ1, θt, θ∞;λ, µ) is apparent and there do not exist any non-zero solutions of

Dy1(θ0, θ1, θt, θ∞;λ, µ) written in the form (w− b)αb(w− c)αcp(w) where p(w) is a poly-

nomial and (αb, αc) = (0, 0), (θb, 0) or (0, θc), then there exists a non-zero solution of the
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differential equation Dy1(θ̃0, θ̃1, θ̃t, θ̃∞; λ̃, µ̃) which can be written as (z−b)θ̃b(z−c)θ̃ch(z)

where h(z) is a polynomial. Moreover if κ1 6∈ Z, then we have deg h(z) = θa.

(iii) If θ̃a ∈ Z≤0, κ2 6∈ Z, there exists a non-zero solution of Dy1(θ0, θ1, θt, θ∞;λ, µ) which

can be written as (w − a)θah(w) where h(w) is a polynomial and there do not exist any

non-zero solutions of Dy1(θ̃0, θ̃1, θ̃t, θ̃∞; λ̃, µ̃) written as a polynomial in z, then the sin-

gularity z = a of Dy1(θ̃0, θ̃1, θ̃t, θ̃∞; λ̃, µ̃) is apparent.

(iv) If θ̃a ∈ Z≥1, κ2, θb, θc 6∈ Z, there exists a non-zero solution of Dy1(θ0, θ1, θt, θ∞;λ, µ)

which can be written as a product of (w−b)θb(w−c)θc and a polynomial and there do not

exist any solutions of Dy1(θ̃0, θ̃1, θ̃t, θ̃∞; λ̃, µ̃) written as a product of zθ̃0(z− 1)θ̃1(z− t)θ̃t
and a polynomial, then the singularity z = a of Dy1(θ̃0, θ̃1, θ̃t, θ̃∞; λ̃, µ̃) is apparent.

(v) If θ∞ ∈ Z≤0, κ2 6∈ Z and the singularity w = ∞ of Dy1(θ0, θ1, θt, θ∞;λ, µ) is appar-

ent, then there exists a non-zero solution of Dy1(θ̃0, θ̃1, θ̃t, θ̃∞; λ̃, µ̃) which can be written

as a polynomial of degree −θ∞.

(vi) If θ∞ ∈ Z≥1, κ2 6∈ Z, the singularity w = ∞ of Dy1(θ0, θ1, θt, θ∞;λ, µ) is appar-

ent and there do not exist any non-zero solutions of Dy1(θ0, θ1, θt, θ∞;λ, µ) written as

wα0(w − 1)α1(w − t)αtp(w) such that p(w) is a polynomial and (α0, α1, αt) = (θ0, 0, 0),

(0, θ1, 0) or (0, 0, θt), then there exists a non-zero solution of Dy1(θ̃0, θ̃1, θ̃t, θ̃∞; λ̃, µ̃) which

can be written as zθ̃0(z − 1)θ̃1(z − t)θ̃th(z), where h(z) is a polynomial of degree θ∞ − 1.

(vii) If κ1 ∈ Z≤0, κ2 6∈ Z, there exists a non-zero solution of Dy1(θ0, θ1, θt, θ∞;λ, µ)

written as a polynomial and there do not exist any non-zero solutions of

Dy1(θ̃0, θ̃1, θ̃t, θ̃∞; λ̃, µ̃) written in the form (1/z)−κ2+1p(1/z), where p(1/z) is a poly-

nomial in 1/z, then the singularity z =∞ of Dy1(θ̃0, θ̃1, θ̃t, θ̃∞; λ̃, µ̃) is apparent.

(viii) If κ1 ∈ Z≥1, κ2, θ0, θ1, θt 6∈ Z, there exists a non-zero solution of

Dy1(θ0, θ1, θt, θ∞;λ, µ) written as a product of wθ0(w − 1)θ1(w − t)θt and a polynomial,

then the singularity z =∞ of Dy1(θ̃0, θ̃1, θ̃t, θ̃∞; λ̃, µ̃) is apparent.

Theorem 4.3 follows from Proposition A.4.
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and symmetries of the Painlevé PVI equation, Theoret. and Math. Phys., 155 (2008), 721–732.

[ 9 ] A. Khare and U. Sukhatme, Complex periodic potentials with a finite number of band gaps, J.

Math. Phys., 47 (2006), 062103, 22 pp.

http://dx.doi.org/10.1112/S0024611504015011
http://dx.doi.org/10.1112/S0024611504015011
http://dx.doi.org/10.1007/BF02572375
http://dx.doi.org/10.1155/S1073792804131310
http://dx.doi.org/10.1088/0305-4470/36/5/101
http://dx.doi.org/10.1088/0305-4470/36/5/101
http://dx.doi.org/10.1007/BF02070381
http://dx.doi.org/10.1007/s11232-008-0062-3
http://dx.doi.org/10.1063/1.2204810
http://dx.doi.org/10.1063/1.2204810


Integral transformation of Heun’s equation 891

[10] D. P. Novikov, Integral transformation of solutions of a Fuchs-class equation that corresponds to

the Okamoto transformation of the Painleve VI equation, Theoret. and Math. Phys., 146 (2006),

295–303.

[11] S P. Novikov, A periodic problem for the Korteweg-de Vries equation, Functional Anal. Appl., 8

(1974), 236–246.

[12] A. Ronveaux (ed.), Heun’s differential equations, Oxford Science Publications, Oxford University

Press, Oxford, 1995.

[13] S. N. M. Ruijsenaars, Hilbert–Schmidt operators vs. integrable systems of elliptic Calogero–Moser

type III. The Heun case, SIGMA Symmetry Integrability Geom. Methods Appl., 5 (2009), paper

049, 21 pp.

[14] A. V. Shanin and R. V. Craster, Removing false singular points as a method of solving ordinary

differential equations, Euro. J. Appl. Math., 13 (2002), 617–639.

[15] A. O. Smirnov, Elliptic solitons and Heun’s equation, The Kowalevski property, 287–305, CRM

Proc. Lecture Notes, 32, Amer. Math. Soc., Providence (2002).

[16] K. Takemura, The Heun equation and the Calogero–Moser–Sutherland system I: the Bethe Ansatz

method, Comm. Math. Phys., 235 (2003), 467–494.

[17] K. Takemura, The Heun equation and the Calogero–Moser–Sutherland system II: the perturbation

and the algebraic solution, Electron. J. Differential Equations, 2004 (2004), no. 15, 1–30.

[18] K. Takemura, The Heun equation and the Calogero–Moser–Sutherland system III: the finite gap

property and the monodromy, J. Nonlinear Math. Phys., 11 (2004), 21–46.

[19] K. Takemura, The Heun equation and the Calogero–Moser–Sutherland system IV: the Hermite–

Krichever Ansatz, Comm. Math. Phys., 258 (2005), 367–403.

[20] K. Takemura, The Heun equation and the Calogero–Moser–Sutherland system V: generalized

Darboux transformations, J. Nonlinear Math. Phys., 13 (2006), 584–611.

[21] K. Takemura, On the Heun equation, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.,

366 (2008), no. 1867, 1179–1201.

[22] K. Takemura, Integral representation of solutions to Fuchsian system and Heun’s equation, J.

Math. Anal. Appl., 342 (2008), 52–69.

[23] K. Takemura, Middle convolution and Heun’s equation, SIGMA Symmetry Integrability Geom.

Methods Appl., 5 (2009), paper 040, 22 pp.

[24] K. Takemura, Integral transformation and Darboux transformation of Heun’s differential equation,

Nonlinear and modern mathematical physics, AIP Conference Proceedings, 1212, Amer. Inst.

Phys., New York, 2010, 58–65.

[25] A. Treibich and J.-L. Verdier, Revetements exceptionnels et sommes de 4 nombres triangulaires,

Duke Math. J., 68 (1992), 217–236.

[26] G. Valent, An integral transform involving Heun functions and a related eigenvalue problem,

SIAM J. Math. Anal., 17 (1986), 688–703.

Kouichi Takemura

Department of Mathematics

Faculty of Science and Engineering

Chuo University

1-13-27 Kasuga, Bunkyo-ku

Tokyo 112-8551, Japan

E-mail: takemura@math.chuo-u.ac.jp

http://dx.doi.org/10.1007/s11232-006-0040-6
http://dx.doi.org/10.1007/s11232-006-0040-6
http://dx.doi.org/10.1007/BF01075697
http://dx.doi.org/10.1007/BF01075697
http://dx.doi.org/10.3842/SIGMA.2009.049
http://dx.doi.org/10.3842/SIGMA.2009.049
http://dx.doi.org/10.1017/S0956792502004916
http://dx.doi.org/10.1007/s00220-002-0784-2
http://dx.doi.org/10.2991/jnmp.2004.11.1.4
http://dx.doi.org/10.1007/s00220-005-1359-9
http://dx.doi.org/10.2991/jnmp.2006.13.4.11
http://dx.doi.org/10.1098/rsta.2007.2065
http://dx.doi.org/10.1098/rsta.2007.2065
http://dx.doi.org/10.1016/j.jmaa.2007.11.015
http://dx.doi.org/10.1016/j.jmaa.2007.11.015
http://dx.doi.org/10.3842/SIGMA.2009.040
http://dx.doi.org/10.3842/SIGMA.2009.040
http://dx.doi.org/10.1215/S0012-7094-92-06809-8
http://dx.doi.org/10.1137/0517049



