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Abstract. Given a torsion pair t = (T ,F) in a module category R-Mod
we give necessary and sufficient conditions for the associated Happel–Reiten–
Smalø t-structure in D(R) to have a heart Ht which is a module category. We
also study when such a pair is given by a 2-term complex of projective mod-
ules in the way described by Hoshino–Kato–Miyachi ([HKM]). Among other
consequences, we completely identify the hereditary torsion pairs t for which
Ht is a module category in the following cases: i) when t is the left constituent
of a TTF triple, showing that t need not be HKM; ii) when t is faithful; iii)
when t is arbitrary and the ring R is either commutative, semi-hereditary,
local, perfect or Artinian. We also give a systematic way of constructing non-
tilting torsion pairs for which the heart is a module category generated by a
stalk complex at zero.

1. Introduction.

Beilinson, Bernstein and Deligne [BBD] introduced the notion of t-structure in a
triangulated category in their study of perverse sheaves on an algebraic or analytic variety.
If D is such a triangulated category, a t-structure in D is a pair of full subcategories
satisfying suitable axioms (see the precise definition in next section) which guarantee
that their intersection is an abelian category H, called the heart of the t-structure. This
category comes with a cohomological functor D −→ H. Roughly speaking, a t-structure
allows to develop an intrinsic (co)homology theory, where the homology ‘spaces’ are again
objects of D itself.

In the context of bounded derived categories, Happel, Reiten and Smalø [HRS]
associated to each torsion pair t in an abelian category A, a t-structure in the bounded
derived category Db(A). This t-structure is actually the restriction of a t-structure in the
unbounded derived category D(A), when this later category is defined. Several authors
(see [CGM], [CMT], [MT], [CG]) have dealt with the problem of deciding when its
heart Ht is a Grothendieck or module category. When A = G is a Grothendieck category,
after recent work by the authors (see [PS] and [PS1]), the condition that Ht be a
Grothendieck category is well understood. Indeed, Ht is a Grothendieck category if, and
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only if, the torsionfree class of the pair is closed under taking direct limits in G (see [PS,
Theorem 4.9] and [PS1, Theorem 1.2]).

The situation when Ht is a module category is far less understood, even in the case
when A = R-Mod is a module category. The problem has been tackled, from different
perspectives, in [HKM], [CGM], [CMT] and [MT]. In the second of these references,
the authors show that an abelian category with a classical 1-tilting object is equivalent to
Ht, for some faithful torsion pair t in a module category. Since a classical tilting object
defines an equivalence between the derived categories of the ambient abelian category
and of the endomorphism ring of the object, faithful torsion pairs in module categories
became natural candidates to study when the heart is a module category. In [CMT]
the authors pursued this line and gave necessary and sufficient conditions for a faithful
torsion pair in a module category to have a modular heart. In the earlier paper [HKM],
the authors had associated a pair of subcategories (X (P •),Y(P •)) of R-Mod to a 2-term
complex P • of finitely generated projective modules. Then they gave necessary and
sufficient conditions for the pair to be a torsion pair, in which case the corresponding
heart was a module category. In [MT], for a given torsion pair t in R-Mod, the authors
compared the conditions that the heart be a module category with the condition that t

be a torsion pair as in [HKM]. In particular, they proved that if t is faithful then both
conditions were equivalent.

In the present paper, given any torsion pair t in a module category R-Mod, we
give necessary and sufficient conditions for the heart Ht to be a module category and,
simultaneously, compare this property with that of t being an HKM torsion pair (see next
section for all the pertinent definitions of the terms that we use in this introduction).
When tackled in full generality, the conditions that appear tend to be rather technical,
but a deeper look in particular cases gives more precise information on the torsion pair.
Roughly speaking, when one assumes that t is hereditary one falls into the world of TTF
triples, while if one assumes that the torsion class is closed under taking products in
R-Mod, then one enters the world of classical tilting torsion pairs.

The following is a list of the main results, all of them given for a torsion pair
t = (T ,F) in R-Mod:

1. (Part of Theorem 4.1) If t is hereditary and Ht is a module category, then t′ = (T ∩
R/t(R)-Mod,F) is the right constituent torsion pair of a TTF triple in R/t(R)-Mod.
When t is bounded, it is itself the right constituent pair of a TTF triple in R-Mod.

2. (Corollary 5.2) Ht has a progenerator which is a stalk complex V [0] if, and only if,
t is the torsion pair associated to a finitely presented quasi-tilted R-module V such
that Ext2R(V, ?)|F = 0 and T cogenerates F . There is a systematic way (see Theorem
6.2) of constructing non-tilting modules V satisfying this property.

3. (Part of Proposition 5.7) If t is hereditary and the left constituent pair of a TTF triple,
then Ht is a module category if, and only if, there is a finitely generated projective
module P such that T = Gen(P ). In general, t need not be HKM.

4. (Part of Theorem 6.1) If T is closed under taking products in R-Mod and Ht is a
module category, then there is a finitely presented module V such that T = Gen(V )
and V is classical 1-tilting over R/a, where a = annR(V ). Moreover, the torsion pair
t′ = (Gen(V ),F ∩R/a-Mod) in R/a-Mod has a heart which is a module category and
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embeds faithfully in Ht.
5. (Theorem 7.1) Suppose that t is the right constituent pair of the TTF triple (C, T ,F)

in R-Mod defined by the idempotent ideal a. Under fairly general hypotheses, the
heart Ht is a module category if, and only if, a is finitely generated on the left and
there is a finitely generated projective R-module P such that:
(a) P/aP is a progenerator of R/a-Mod;
(b) There is an exact sequence 0 → F −→ C −→ aP → 0, with C finitely generated

module in C, such that Ext1R(C, ?)|F = 0 and C generates C ∩ F .
6. If t is the right constituent of the TTF triple defined by a finitely generated projective

module whose trace in R is finitely generated, then Ht is a module category (Corollary
7.2). Under fairly general hypotheses, the converse is also true for arbitrary faithful
hereditary torsion pairs (Corollary 7.7).

7. For the following classes of rings, all hereditary torsion pairs whose heart is a module
category are identified: commutative (Corollary 4.3), semihereditary (Proposition 5.9),
local, perfect and Artinian (Corollary 7.5).

The organization of the paper goes as follows. Section 2 gives the preliminaries that
are needed and the terminology which is used in the paper. Section 3 is devoted to giving
necessary and sufficient conditions on an arbitrary torsion pair t in R-Mod for its heart
to be a module category and also for it to be an HKM pair. In Section 4 we assume
that t is hereditary and show how TTF triples appear naturally. In Section 5, we give
necessary and sufficient conditions for Ht to have a progenerator which is a sum of stalk
complexes. In Section 6 we assume that the torsion class is closed under taking products
and show that the modular condition on Ht naturally leads to classical tilting torsion
pairs. In Section 7, we assume that t is the right constituent torsion pair of a TTF triple,
and give necessary and sufficient conditions for Ht to be a module category and for t to
be an HKM pair. We end the paper with a final section of illustrative examples.

2. Terminology and preliminaries.

In this paper all rings are supposed to be associative with unit and their modules
will be always unital modules. Unless otherwise stated, ‘module’ will mean ‘left module’
and if R is a ring, we shall denote by R-Mod and Mod-R (=Rop-Mod) its categories of
left and right modules, respectively. A module category is any one which is equivalent to
R-Mod, for some ring R.

The concepts that we shall introduce in this section are mainly applied to the case
of module categories, but sometimes we will use them in the most general context of
Grothendieck categories and is in this context that we introduce them. Let then G be a
Grothendieck category all throughout this section.

A torsion pair in G is a pair t = (T ,F) of full subcategories satisfying the following
two conditions:

- HomG(T, F ) = 0, for all T ∈ T and F ∈ F ;
- For each object X of G there is an exact sequence 0 → TX −→ X −→ FX → 0, where

TX ∈ T and FX ∈ F .

In such case the objects TX and FX are uniquely determined, up to isomorphism, and
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the assignment X Ã TX (resp. X Ã FX) underlies a functor t : G −→ T (resp.
(1 : t) : G −→ F) which is right (resp. left) adjoint to the inclusion functor T ↪→ G
(resp. F ↪→ G). We will frequently write X/t(X) to denote (1 : t)(X). The composition
G t−→ T ↪→ G, which we will still denote by t, is called the torsion radical associated to
t. We call T and F the torsion class and torsionfree class of the pair, respectively. For
each class X of objects, we will put X⊥ = {M ∈ G : HomG(X, M) = 0, for all X ∈ X}
and ⊥X = {M ∈ G : HomG(M, X) = 0, for all X ∈ X}. If t is a torsion pair as above,
then T = ⊥F and F = T ⊥. The torsion pair is called hereditary when T is closed under
taking subobjects in G. It is called split when t(X) is a direct summand of X, for each
object X of G. If R is a ring and G = R-Mod, we will say that t is faithful when R ∈ F .

A class T ⊆ G is a TTF (=torsion-torsionfree) class when it is both a torsion and
a torsionfree class in G. Each triple of the form (C, T ,F) = (⊥T , T , T ⊥), for some
TTF class T , will be called a TTF triple and the two torsion pairs (C, T ) and (T ,F)
will be called the left constituent pair and right constituent pair of the TTF triple.
The TTF triple is called left (resp. right) split when its left (resp. right) constituent
torsion pair is split. It is called centrally split when both constituent torsion pairs are
split. When G = R-Mod, it is well-known (see [S, Chapter VI]) that T is a TTF
class if, and only if, there is a (unique) idempotent two-sided ideal a of R such that T
consists of the R-modules T such that aT = 0. Moreover, the torsion radical c with
respect to (C, T ) assigns to each module M the submodule c(M) = aM . In particular,
we have C = Gen(a) = {C ∈ R-Mod : aC = C}. When P is projective R-module,
T = Ker(HomR(P, ?)) is a TTF class and Gen(P ) = ⊥T . The corresponding idempotent
ideal is the trace of P in R.

Given any additive category A with coproducts, an object X of A is called compact
when the functor HomA(X, ?) : A −→ Ab preserves coproducts. Recall that if R is a
ring, then the compact objects of its derived category D(R) are the complexes which
are quasi-isomorphic to bounded complexes of finitely generated projective modules (see
[R]).

Let X and V be objects of G. We say that X is V -generated (resp. V -presented)
when there is an epimorphism V (I) ³ X (resp. an exact sequence V (J) −→ V (I) −→
X → 0), for some sets I and J . We will denote by Gen(V ) and Pres(V ) the classes
of V -generated and V -presented objects, respectively. The object X always contains
a largest V -generated subobject, namely, trV (X) =

∑
f∈HomG(V,X) Im(f). It is called

the trace of V in X. As a sort of dual concept, given a class S of objects of G, the
reject of S in X is RejS(X) =

⋂
S∈S,f∈HomG(X,S) Ker(f) (note that, even though S

is a class, the intersection ranges over a set of subobjects of X). We say that X is
V -subgenerated when it is isomorphic to a subobject of a V -generated object. The
class of V -subgenerated objects will be denoted by Gen(V ). This subcategory is itself
a Grothendieck category and the inclusion Gen(V ) ↪→ G is an exact functor. We will
denote by Add(V ) (resp. add(V )) the class of objects X of G which are isomorphic to
direct summands of coproducts (resp. finite coproducts) of copies of V .

Given any category C, an object G is called a generator of C when the functor
HomC(G, ?) : C −→ Sets is faithful. When C = A is cocomplete abelian, G is a generator
exactly when Gen(G) = A (note that the definition of Gen(V ) is also valid in this
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context). An object G of A is called a progenerator when it is a compact projective
generator. It is a well-known result of Gabriel and Mitchell (see [Po, Corollary 3.6.4])
that A is a module category if, and only if, it has a progenerator. We will frequently use
this characterization of module categories in the paper.

Slightly diverting from the terminology of [CDT1] and [CDT2], an object V of G
will be called quasi-tilting when Gen(V ) = Gen(V )∩Ker(Ext1G(V, ?)). When, in addition,
we have that Gen(V ) = G, we will say that V is a 1-tilting object. That is, V is 1-tilting
if, and only if, Gen(V ) = Ker(Ext1G(V, ?)). When G = R-Mod, a module V is 1-tilting if,
and only if, it satisfies the following three properties: i) the projective dimension of V ,
denoted pd(RV ), is ≤ 1; ii) Ext1R(T, T (I)) = 0, for each set I; iii) there exists and exact
sequence 0 → R −→ T 0 −→ T 1 → 0 in R-Mod, where T i ∈ Add(T ) for i = 0, 1 (see
[CT, Proposition 1.3]).

When V is a quasi-tilting object of G, we have that Gen(V ) = Pres(V ) and that
(Gen(V ),Ker(HomA(V, ?))) is a torsion pair in G. In the particular case when V is
1-tilting, this pair is called the tilting torsion pair associated to V . A classical quasi-
tilting (resp. classical 1-tilting) object is a quasi-tilting (resp. 1-tilting) object V such
that the canonical morphism HomG(V, V )(I) −→ HomG(V, V (I)) is an isomorphism, for
all sets I. By [CDT1, Proposition 2.1], we know that if G = R-Mod, then a classical
quasi-tilting R-module is just a finitely generated quasi-tilting module. Even more (see
[CT, Proposition 1.3]), a classical 1-tilting R-module is just a finitely presented 1-tilting
R-module.

On what concerns triangulated categories, we will follow [N] and [V] as basic texts,
but if D is a triangulated category, we will denote by ?[1] : D −→ D the suspension
functor and we will write triangles in the form X −→ Y −→ Z

+−→. A triangulated
functor between triangulated categories is a functor which preserves triangles. Given a
triangulated category D, a t-structure in D is a pair (U ,W) of full subcategories, closed
under taking direct summands in D, which satisfy the following properties:

i) HomD(U,W [−1]) = 0, for all U ∈ U and W ∈ W;
ii) U [1] ⊆ U ;
iii) For each X ∈ Ob(D), there is a triangle U −→ X −→ V

+−→ in D, where U ∈ U and
V ∈ W[−1].

It is easy to see that in such case W = U⊥[1] and U = ⊥(W[−1]) = ⊥(U⊥). For this
reason, we will write a t-structure as (U ,U⊥[1]). The full subcategory H = U ∩ W =
U ∩ U⊥[1] is called the heart of the t-structure and it is an abelian category, where the
short exact sequences ‘are’ the triangles in D with their three terms in H. In particular,
one has Ext1H(M, N) = HomD(M, N [1]), for all objects M and N in H (see [BBD]).

We will denote by C(G), K(G) and D(G) the category of chain complexes of objects
of G, the homotopy category of G and the derived category of G, respectively. In the par-
ticular case when G = R-Mod, we will write C(R) := C(R-Mod), K(R) := K(R-Mod) and
D(R) := D(R-Mod). Given a torsion pair t = (T ,F) in G, extending to the unbounded
context a construction due to Happel–Reiten–Smalø (see [HRS]), one gets a t-structure
(Ut,U⊥t [1]) = (Ut,Wt) in D(G) by defining:
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Ut =
{
X ∈ D≤0(G) : H0(X) ∈ T }

Wt =
{
Y ∈ D≥−1(G) : H−1(Y ) ∈ F}

.

In this case, the heart Ht consists of the complexes M such that H−1(M) ∈ F , H0(M) ∈
T and Hk(M) = 0, for all k 6= −1, 0. We will say that Ht is the heart of the torsion pair
t.

When G = R-Mod, we will frequently deal with complexes · · · −→ 0 −→ X
j−→

Q
d−→ P −→ 0 −→ · · · , concentrated in degrees−2,−1, 0, such that j is a monomorphism

and P, Q are projective modules. All throughout the paper such a complex will be said
to be a complex in standard form and, without loss of generality, we will assume that
X is a submodule of Q and j is the inclusion. If t is a torsion pair in R-Mod, then
each object of Ht is quasi-isomorphic to a complex in standard form. Moreover, if M

and N are two complexes in standard form and they represent objects of Ht, then the
canonical map HomK(R)(M, N) −→ HomD(R)(M, N) = HomHt

(M, N) is bijective. We
will frequently use this fact throughout the paper.

An object T of a triangulated category with coproducts D will be called classical
tilting when satisfies the following conditions: i) T is compact inD; ii) HomD(T, T [i]) = 0,
for all i 6= 0; and iii) if X ∈ D is an object such that HomD(T [i], X) = 0, for all i ∈ Z,
then X = 0. For instance, if T is a classical 1-tilting R-module, then T [0] is a classical
tilting object of D(R). By a well-known result of Rickard (see [R] and [R2]), two rings R

and S are derived equivalent, i.e., have equivalent derived categories, if and only if there
exists a classical tilting object T in D(R) such that S ∼= EndD(R)(T )op.

Let P • : · · · −→ 0 −→ Q
d−→ P −→ 0 −→ · · · be a complex of finitely generated

projective R-modules concentrated in degrees −1 and 0. In [HKM], the authors associ-
ated to such a complex a pair (X (P •),Y(P •)) of full subcategories of R-Mod defined as
follows, where M is an R-module:

M ∈ X (P •) ⇐⇒ HomD(R)(P •,M [1]) = 0

M ∈ Y(P •) ⇐⇒ HomD(R)(P •,M [0]) = 0.

Under some precise conditions (see [HKM, Theorem 2.10]), the pair (X (P •),Y(P •)) is
a torsion pair in R-Mod. When this is the case, we shall say that P • is an HKM complex
and that t = (X (P •),Y(P •)) is the associated HKM torsion pair.

For any ring R, we shall denote by V (R) the additive monoid whose elements are
the isoclasses of finitely generated projective R-modules, where [P ] + [Q] = [P ⊕Q]. For
each two-sided ideal a of the ring R, we have an obvious morphism of monoids V (R) −→
V (R/a) taking [P ] Ã [P/aP ]. This morphism need not be surjective. However, the class
of rings R for which it is surjective, independently of a, is very large and includes the
so-called exchange rings (see [A, Lemma 3.2, Theorem 3.3]). This class of rings includes
all rings which are Von Neumann regular modulo the Jacobson radical and which have
the lifting of idempotents property with respect to this radical. In particular, it includes
all semiperfect rings, i.e., those rings R such that R/J(R) is semisimple and idempotents
lift modulo J(R), where J(R) denotes the Jacobson radical of R. All local and all (left
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or right) Artinian rings, in particular all Artin algebras, are semiperfect rings.
For concepts not explicitly defined in the paper, the reader is referred to [P] or [Po]

for those concerning arbitrary and abelian categories, to [K] and [S] for those concerning
rings and their module categories and to [N] and [V] for those concerning triangulated
categories.

3. When is the heart of a torsion pair a module category?

All throughout the paper, R will be a ring and t = (T ,F) will be a torsion pair in
R-Mod. Unless otherwise stated, the letter G will denote a complex in standard form.
Frequently, such a complex will satisfy some or all of the following conditions with respect
to t, to which we will refer as the standard conditions (here V = H0(G)):

1. T = Pres(V ) ⊆ Ker(Ext1R(V, ?));
2. Q and P are finitely generated projective R-modules;
3. H−1(G) ∈ F and H−1(G) ⊆ RejT (Q/X);
4. Ext1R(Q/X, ?) vanishes on F ;
5. there is a morphism h : (Q/X)(I) // R/t(R), for some set I, such that the cokernel

of its restriction to (H−1(G))(I) is in Gen(V ).

Lemma 3.1. Let G be a complex in standard form and let M be any R-module.
The following assertions hold :

1. There is an isomorphism HomR(H0(G),M) ∼ // HomD(R)(G,M [0]), which is nat-
ural in M ;

2. When we view X as a submodule of Q and j as the inclusion, there are natural in M

exact sequences of abelian groups:
(a) HomR(P, M) // HomR(Q/X, M) // HomD(R)(G,M [1]) // 0.
(b) HomR(Q,M) // HomR(X, M) // HomD(R)(G,M [2]) // 0.

Proof. We have triangles in D(R):

H−1(G)[1] // G // H0(G)[0]
+ //

and

Q/X[0] // P [0] // G
+ // .

Applying the cohomological functor HomD(R)(?,M [0]) and looking at the corresponding
long exact sequences, we obtain assertions 1 and 2.a. On the other hand, one easily
sees that a morphism G // M [2] in D(R) is represented by an R-homomorphism
f : X // M . The former morphism is the zero morphism in D(R) precisely when f

factors through j. Then the exact sequence in 2.b follows immediately. ¤

Lemma 3.2. If G is a progenerator of Ht, then the following assertions hold, where
V := H0(G):



1428 C. E. Parra and M. Saoŕın

1. T = Gen(V ) = Pres(V ), and hence F = Ker(HomR(V, ?));
2. V is a finitely presented R-module;
3. V is a classical quasi-tilting R-module.

Proof. By hypothesis Ht is a module category, in particular Ht is an AB5 cate-
gory, so that F is closed under taking direct limits in R-Mod (see [PS, Theorem 4.8]).
On the other hand, by [PS, Lemma 4.1], the functor H0 : Ht

// R-Mod is right
exact and preserves coproducts. When applied to an exact sequence G(I) // G(J)

// T [0] // 0 in Ht, we get that T ∈ Pres(V ), for each T ∈ T . We then get that
T = Pres(V ), and assertion 1 follows from [MT, Proposition 2.2].

Without loss of generality we can assume that G is in standard form. If (Ti)i∈I is
a direct system in T , then lim−→Ht

(Ti[0]) ∼= (lim−→Ti)[0] (see [PS, Proposition 4.2]). We
then get that HomR(V, ?) preserves direct limits of objects in T since G is a compact
object of Ht. Let now (Mi)i∈I be any direct system in R-Mod. We then get that
lim−→ t(Mi) ∼= t(lim−→Mi) since lim−→F = F . We now have isomorphisms

lim−→HomR(V, Mi) lim−→HomR(V, t(Mi))
∼ //∼oo HomR(V, lim−→ t(Mi))

= HomR(V, t(lim−→Mi))
∼ // HomR(V, lim−→Mi) .

Then assertion 2 follows. Finally, assertion 3 follows from [MT, Proposition 2.4],
from assertions 1 and 2 and from [CDT1, Proposition 2.1]. ¤

The following result is inspired by [CMT, Proposition 5.9].

Lemma 3.3. Let G be a complex in standard form. If G is a projective object of
Ht such that T = Gen(V ) = Pres(V ), where V := H0(G), then the following assertions
hold :

1. (M/t(M))[1] ∈ GenHt
(G), for each M ∈ Gen(V );

2. (R/t(R))[1] ∈ GenHt(G) if, and only if, G satisfies the standard condition 5.

Proof. With an easy adaptation, assertion 1 follows from [CMT, Lemma 5.8
and Proposition 5.9].

We now prove assertion 2. For the only if part, by hypothesis, there are a set I and
an exact sequence

0 // K // G(I)
p // // R

t(R)
[1] // 0

in Ht. It is easy to see that p is represented by an R-homomorphism p−1 :
(Q/X)(I) // R/t(R). Moreover, we have that H−1(p) coincides with the restric-
tion of p−1 to (H−1(G))(I). Now, we consider the long exact sequence associated to the
above triangle:
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0 // H−1(K) // H−1(G)(I)
H−1(p) // R

t(R)
// H0(K) // V (I) // 0

The result follows by putting h = p−1 since H0(K) ∈ T .
For the if part, assume that the standard condition 5 holds and let Z be the cokernel

of the restriction of h to (H−1(G))(I). Clearly, we can extend h to a morphism from G(I)

to (R/t(R))[1] in D(R), which we denote by h̄. We now complete h̄ to a triangle in D(R),
we get:

M // G(I)
h̄ // R

t(R)
[1] + //

Using the long exact sequence of homologies, we then obtain an exact sequence in
R-Mod of the form:

0 // Z // H0(M) // V (α) // 0

By [CMT, Lemma 5.6], we get that H0(M) ∈ Gen(V ) and then, by assertion 1, we
also get that (H0(M)/t(H0(M)))[1] ∈ GenHt(G). Consider now the following diagram
commutative

t(H0(M))[1]

²²

+

99ssssssssss

N

44jjjjjjjjjjjjjjjjjj

!!DD
DD

DD
DD

H−1(M)[2] //

::tttttttttt
M [1] //

%%JJJ
JJJ

JJJ
J H0(M)[1]

+ //

²²
H0(M)

t(H0(M)) [1]
+

$$JJJJJJJJJ

Note that N ∈ Ht[1]. By [BBD], we get that CokerHt
(h̄) ∼= (H0(M)/t(H0(M)))[1].

Then we have the following diagram with exact row in Ht:

G(J)

p
²²²²

p′

yys
s

s
s

s

G(I)
h̄ // R

t(R) [1] // H0(M)
t(H0(M)) [1] // 0
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where p is an epimorphism and p′ is obtained by the projectivity of G(J) in Ht. It follows
that (h̄ p′) : G(I)

∐
G(J) // (R/t(R))[1] is also an epimorphism in Ht. ¤

We are now able to give a general criterion for Ht to be a module category.

Theorem 3.4. Let R be a ring and t be a torsion pair in R-Mod. A complex
G is a progenerator of the heart Ht if, and only if, it is quasi-isomorphic to a complex
in standard form satisfying the standard conditions 1–5. In particular Ht is a module
category if, and only if, this latter complex exists.

Proof. Let us assume that G is a complex in standard form which is in Ht. By
Lemma 3.2, if G is a progenerator of Ht, then V := H0(G) is finitely presented. This
allows us, for both implications in the proof, to assume that P is a finitely generated
projective R-module.

We claim that G is a projective object in Ht if, and only if, T ⊆ Ker(Ext1R(V, ?))
and the standard conditions 3 and 4 hold. Indeed each object M ∈ Ht fits into an exact
sequence in this category

0 // H−1(M)[1] // M // H0(M)[0] // 0 (∗)

Then G is projective in Ht if, and only if, 0 = Ext1Ht
(G,T [0]) = HomD(R)(G,T [1])

and 0 = Ext1Ht
(G,F [1]) = HomD(R)(G,F [2]), for all T ∈ T and F ∈ F (see [BBD,

Rémarque 3.1.17(ii)]). By Lemma 3.1, the first equality holds if, and only if, the map

HomR(P, T ) d̄∗ // HomR(Q/X, T ) is surjective, where d̄ : Q/X // P is the obvious
R-homomorphism. But, in turn, this last condition is equivalent to the sum of the
following two conditions, for each T ∈ T :

i) Each R-homomorphism f : Q/X // T vanishes on H−1(G) = Ker(d)/X;
ii) Each morphism g : Im(d̄) = Im(d) // T extends to P .

Condition i) is equivalent to the standard condition 3. On the other hand, condition
ii) above is equivalent to saying that Ext1R(H0(G), T ) = 0, for all T ∈ T . Now, by
Lemma 3.1, the equality HomD(R)(G,F [2]) = 0 holds when each R-homomorphism g :
X // F extends to Q, for all F ∈ F . This is clearly equivalent to the standard
condition 4.

Suppose that G is projective in Ht or its equivalent conditions mentioned in the
previous paragraph. Recall from [PS, Section 4] that Ht is AB4. Applying this fact to
any family of exact sequences as (∗), we see that G is a compact object of Ht if, and
only if, the canonical morphisms

∐

i∈I

HomD(R)(G,Ti[0]) // HomD(R)

(
G,

(∐

i∈I

Ti

)
[0]

)

and
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∐

i∈I

HomD(R)(G,Fi[1]) // HomD(R)

(
G,

(∐

i∈I

Fi

)
[1]

)

are isomorphisms, for all families (Ti) in T and (Fi) in F . By Lemma 3.1, we easily
get that the first of these morphisms is an isomorphism precisely when V is a compact
object of T . On the other hand, by Lemma 3.1(2), the second centered homomorphism
is an isomorphism whenever P and Q/X are finitely generated modules. Therefore, if G

satisfies the standard conditions 1–4, then G is a compact projective object of Ht.
Suppose now that these last conditions hold. Then, due to the canonical sequence

(∗), we know that G is a generator if, and only if, each M ∈ T [0] ∪ F [1] is generated
by G. Note that we have an epimorphism q : G // // V [0] in Ht, which implies that
GenHt(V [0]) ⊆ GenHt(G). But the equality T = Gen(V ) = Pres(V ) easily gives that
T [0] ⊆ GenHt(V [0]). On the other hand, each F ∈ F gives rise to an exact sequence
0 // F ′ � � // (R/t(R))(I) // // F // 0 in R-Mod which, in turn, yields an ex-
act sequence in Ht:

0 // F ′[1] //
(

R

t(R)

)(I)

[1] // F [1] // 0 .

Thus, G generates Ht if, and only if, it generates (R/t(R))[1]. By Lemma 3.3, this is
equivalent to the standard condition 5.

Note that the ‘if ’ part of the proof follows from the previous paragraphs. By Lemma
3.2 and Lemma 3.3, in order to prove the ‘only if ’ part, we only need to prove that if
G is a complex in standard form, with P finitely generated, and it is a progenerator of
Ht, then G is quasi-isomorphic to a complex satisfying the standard conditions 1–5. But
Lemma 3.5 below shows that Q/X is finitely generated, which allows us to replace Q by
a finitely generated projective module Q′ and get a complex

· · · // 0 // X ′ // Q′ d′ // P // 0 // · · ·

which is quasi-isomorphic to G and satisfies all the standard conditions. ¤

Lemma 3.5. Let G be a complex in standard form with P finitely generated. Sup-
pose that G is a progenerator of Ht. Then Q/X is a finitely generated R-module.

Proof. We identify G with the complex

· · · // 0 // Q/X
d̄ // P // 0 // · · ·

By Lemma 3.2, we know that V := H0(G) is a finitely presented R-module, thus Im(d) =
Im(d̄) is a finitely generated submodule of P , we can select a finitely generated submodule
A′ < Q/X such that d̄(A′) = Im(d). We fix a direct system (Aλ)λ∈Λ of finitely generated
submodules of Q/X, such that A′ < Aλ and lim−→Aλ = Q/X. For each λ ∈ Λ, we denote
by Gλ the following complex:
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Gλ : · · · // 0 // Aλ

d̄|Aλ // P // 0 // · · ·

It is clear that (Gλ)λ∈Λ is a direct system in C(R) and in Ht, and that we have
lim−→C(R)

Gλ
∼= G. By Lemma 3.2 and [PS, Lemma 4.4], we have that lim−→Ht

Gλ
∼=

lim−→C(R)
Gλ = G. But, since G is a finitely presented object of Ht, the identify map

1G : G −→ G factors in this category in the form G
f−→ Gµ

iµ−→ G, for some µ ∈ Λ. It
follows that H−1(ιµ) is an epimorphism and, therefore, it is an isomorphism. We then
get a commutative diagram with exact rows:

0 // H−1(Gµ) //

oH−1(iµ)

²²

Aµ //
� _

i−1
µ

²²

d̄(Aµ) // 0

0 // H−1(G) // Q

X

d̄ // Im(d) // 0

Therefore, Aµ
∼= Q/X is a finitely generated R-module. ¤

Remark 3.6. If G is a complex in standard form satisfying the standard condition
2 (i.e. P and Q are finitely generated), the proof of Theorem 3.4 shows that G is a
progenerator of Ht if, and only if, G itself satisfies all standard conditions 1–5.

Our next result in this section gives a criterion for a torsion pair to be HKM:

Proposition 3.7. Let P • := · · · // 0 // Q
d // P // 0 // · · · be

a complex of finitely generated projective modules concentrated in degrees −1 and 0, put
V = H0(P •), and let t = (T ,F) be a torsion pair in R-Mod. The following assertions
are equivalent :

1. P • is an HKM complex such that t is its associated HKM torsion pair ;

2. V ∈ X (P •) and the complex G := · · · // 0 // t(Ker(d)) � � j // Q
d // P

// 0 // · · · , concentrated in degrees −2,−1, 0, is a progenerator of Ht;
3. P • satisfies the standard conditions 1 and 5, Ker(d) ⊆ RejT (Q) and X (P •) ⊆ T .

Proof. Note that the standard conditions 2 and 4 are automatically satisfied by
P •. Note also that we have an exact sequence 0 // t(Ker(d))[1] // P • //

G′ // 0 in C(R), where G′ is quasi-isomorphic to G. We then get a triangle in D(R):

t(Ker(d))[1] // P • // G
+ //

In particular, we get a natural isomorphism HomD(R)(G, ?[0]) ∼ // HomD(R)(P •, ?[0])
and an exact sequence of functors R-Mod // Ab:
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0 // HomD(R)(G, ?[1]) // HomD(R)(P •, ?[1]) //

HomR(t(Ker(d)), ?) // HomD(R)(G, ?[2]) // 0

1) =⇒ 2) We have an isomorphism HomHt(G, ?) = HomD(R)(G, ?)|Ht

∼ //

HomD(R)(P •, ?)|Ht
of functors Ht

// Ab since HomD(R)(t(Ker(d))[k], ?) vanishes on
Ht, for k = 1, 2. It follows that the functor HomHt

(G, ?) : Ht
// Ab is faithful since

the induced functor HomD(R)(P •, ?)|Ht
: Ht

// EndD(R)(P •)-Mod is an equivalence
of categories (see [HKM, Theorem 2.15]). Then G is a generator of Ht. But the functor
HomHt

(G, ?) ∼= HomD(R)(P •, ?)|Ht
: Ht

// Ab preserves coproducts since P • is a
compact object of D(R). It follows that G is a compact object of Ht.

From the initial comments of this proof and the fact that T =
X (P •) = Ker(HomD(R)(P •, ?[1])|R-Mod), we get a monomorphism Ext1Ht

(G,T [0]) =
HomD(R)(G,T [1]) � � // HomD(R)(P •, T [1]) = 0, for each T ∈ T . On the other hand,
Ext1Ht

(G,F [1]) = HomD(R)(G,F [2]) is a homomorphic image of HomR(t(Ker(d)), F ) =
0, for all F ∈ F . We conclude that G is a projective object, and hence a progenerator,
of Ht since Ext1Ht

(G, ?) vanishes on T [0] and on F [1].
2) =⇒ 1) The mentioned initial comments show that Y(P •) consists of the modules

F such that HomR(H0(P •), F ) ∼= HomD(R)(G,F [0]) = 0. But Theorem 3.4 and its proof
tell us that H0(G) = V generates T , so that we have Y(P •) = F . On the other hand, if
F ∈ X (P •) ∩ Y(P •) = X (P •) ∩ F then, again, our initial comments in this proof show
that HomD(R)(G,F [1]) = 0. But this implies that F = 0 since G is a generator of Ht.
Assertion 1 follows now from [HKM, Theorem 2.10] and the fact that Y(P •) = F .

1), 2) =⇒ 3) From Theorem 3.4 and Remark 3.6 we know that the complex G

satisfies all the standard conditions. It immediately follows that P • satisfies the standard
condition 1. As for standard condition 5, note that we have isomorphisms of functors:

HomR(Q(J), ?)|F
∼ // HomR((Q/X)(J), ?)|F

HomR(Ker(d)(J), ?)|F
∼ // HomR(H−1(G)(J), ?)|F ,

where X = t(Ker(d)). Then the standard condition 5 holds for P • because it holds
for G. Finally, any homomorphism f : Q // T , with T ∈ T , gives a morphism
P • // T [1] in D(R). But this is the zero morphism since T = X (P •). This implies
that f factors through d, so that f(Ker(d)) = 0 and, hence, that Ker(d) ⊆ RejT (Q).

3) =⇒ 1) By Lemma 3.1, we know that Y(P •) consists of the modules Y such that
HomR(V, Y ) = 0. Standard condition 1 gives then that Y(P •) = F , which implies that
X (P •) ∩ Y(P •) = 0 since X (P •) ⊆ T . On the other hand, the standard condition 3
says that each homomorphism f : Q // V vanishes on Ker(d). It then induces an R-
homomorphism f̄ : Im(d) // V , which necessarily extends to P since Ext1R(V, V ) = 0.
This proves that HomD(R)(P •, V [1]) = 0, thus showing that H0(P •) = V ∈ X (P •).
Then, by [HKM, Theorem 2.10], the pair (X (P •),Y(P •)) is a torsion pair, which is
necessarily equal to t. ¤



1434 C. E. Parra and M. Saoŕın

Corollary 3.8. Let t = (T ,F) be a torsion pair in R-Mod and let

P • := · · · // 0 // Q
d // P // 0 // · · ·

be a complex of finitely generated projective R-modules concentrated in degrees −1 and
0. The following assertions are equivalent :

1. P • is a classical tilting complex and t is the associated HKM torsion pair.
2. P • is a progenerator of Ht;
3. The complex P • satisfies the standard conditions (1, 3 and 5).

Proof. 1) =⇒ 2) It follows directly from [HKM, Remark 3.9 and Theorem 3.8].
2) =⇒ 1) Let M be an R-module and let us apply the cohomological functor

HomD(R)(P •, ?) to the canonical triangle

t(M)[0] // M [0] // M/t(M)[0]
+ //

Using the fact that P • is a progenerator of Ht, that HomD(R)(P •, ?[0]) vanish on F and
that HomD(R)(P •, ?[1]) vanish on T , we get that

M ∈ X (P •) ⇐⇒ HomD(R)(P •,M/t(M)[1]) = 0 ⇐⇒ M/t(M) = 0 ⇐⇒ M ∈ T ,

and also that

M ∈ Y(P •) ⇐⇒ HomD(R)(P •, t(M)[0]) = 0 ⇐⇒ t(M) = 0 ⇐⇒ M ∈ F .

We then have that t = (X (P •),Y(P •)) and, by [HKM, Remark 3.9], the complex P • is
classical tilting.

2) ⇐⇒ 3) is a direct consequence of Theorem 3.4 (see Remark 3.6). ¤

Definition 1. We shall say that Ht has a progenerator which is a classical tilting
complex when it has a progenerator P • as in Corollary 3.8.

4. The case of a hereditary torsion pair.

Suppose now that t = (T ,F) is hereditary. We will show that the condition that
its heart be a module category gives more precise information than in the general case.
Recall that t is called bounded when its associated Gabriel topology has a basis consisting
of two-sided ideals (see [S, Chapter VI]). Equivalently, when R/annR(T ) ∈ T , for each
finitely generated module T ∈ T .

Theorem 4.1. Let t = (T ,F) be a hereditary torsion pair in R-Mod and let G be
a complex in the standard form, where P and Q are finitely generated projective modules
and V = H0(G). The following assertions are equivalent :

1. G is a progenerator of Ht;
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2. The following conditions are satisfied :
(a) G satisfies the standard conditions 1, 3 and 4;
(b) If b = annR(V/t(R)V ), then b/t(R) is an idempotent ideal of R/t(R) (which is

finitely generated on the left) and R/b is in T ;
(c) There is a morphism h : (Q/X)(J) // b/t(R), for some set J , such that

h|H−1(G)(J) : H−1(G)(J) // b/t(R) is an epimorphism.
When t is bounded, the assertions are also equivalent to:
3. There is an idempotent ideal a of R, which is finitely generated on the left, such that :

(a) add(V ) = add(R/a) and t is the right constituent torsion pair of the TTF triple
defined by a;

(b) Ker(d) ⊆ X + aQ;
(c) Ext1R(Q/X, ?) vanishes on F ;
(d) There is a morphism h : (Q/X)(J) // a/t(a), for some set J , such that

h|H−1(G)(J) : H−1(G)(J) // a/t(a) is an epimorphism.

Proof. 1) =⇒ 2) By Theorem 3.4 and Remark 3.6, we may assume that G

satisfies the standard conditions 1–5. So we only need to check properties 2.b and 2.c.
We proceed in several steps. All throughout the proof we put R̄ = R/t(R).

Step 1: (T ∩ R̄-Mod,F) is the right constituent torsion pair of a TTF triple in
-Mod: By the standard condition 5, there is a morphism h : (Q/X)(I) // R̄ such
that if h′ = h|H−1(G)(I) , then Coker(h′) ∈ Gen(V ), where V = H0(G). But in this case
Gen(V ) = Gen(V ) = T since t is hereditary.

Put b̄ = b/t(R) = Im(h′), so that R/b ∈ T . We claim that a R̄-module T is in T if,
and only if, HomR(b̄, T ) = 0. This will imply that T ∩ R̄-Mod is also a torsionfree class
in R̄-Mod. For the ‘only if’ part of our claim, let f : b̄ // T be any morphism, where
T ∈ T . We then get a pushout commutative diagram

0 // b̄
� � j //

f

²²

R̄ //

g′

²²

R/b // 0

0 // T
λ // T ′ // R/b // 0

Then T ′ ∈ T and so g′ ◦ h|H−1(G)(I) = 0 since H−1(G) ⊆ RejT (Q/X). But g′ ◦
h|H−1(G)(I) is equal to the composition H−1(G)(I) h′ // b̄

f // T
λ // T ′, which is

then the zero map. This implies that f = 0 since h′ is an epimorphism and λ is a
monomorphism. For the ‘if’ part, suppose that HomR(b̄, T ) = 0 and fix an epimorphism
q : R̄(J) // // T . Then q(b̄(J)) = 0, which gives an induced epimorphism q̄ : R̄(J)/b̄(J) ∼=
(R/b)(J) // // T . It follows that T ∈ T , which settles our claim.

Step 2: The idempotent ideal of R̄-Mod which defines the TTF triple in -Mod is
b̄′ = b′/t(R), where b′ = annR(V/t(R)V ): Let b̄′ = b′/t(R) be the idempotent ideal
of R̄ which defines the TTF triple mentioned above. We then know (see [S, VI.8])
that Gen(b̄′) = {C ∈ R̄-Mod : b̄′C = C} = {C ∈ R̄-Mod : HomR(C, T ) = 0, for all
T ∈ T ∩ R̄-Mod} and T ∩ R̄-Mod = {T ∈ R̄-Mod : b̄′T = 0} = Gen(R/b′). In particular,
for the ideal b of R given in the first step, we have that b̄′b̄ = b̄ and b̄′(R/b) = 0. It
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follows that b̄′ = b̄. We then get that Gen(V/t(R)V ) = T ∩ R̄-Mod = Gen(R/b), from
which we deduce that b′ = b = annR(V/t(R)V ).

Step 3: Verification of properties 2.b and 2.c: Except for the finite generation of
b̄, property 2.b follows immediately from the previous steps. But R/b is finitely gener-
ated and we have an epimorphism V̄ n // // R/b. This epimorphism splits since both
its domain and codomain are annihilated by b and R/b is projective in R/b-Mod. But
V̄ = V/t(R)V is clearly a finitely presented R̄-module. It follows that R/b is finitely
presented as a left R̄-module, which is equivalent to saying that b̄ is finitely gener-
ated as a left ideal of R̄ = R/t(R). Let us fix an epimorphism π : R̄(n) // // b̄.
Using the canonical map h : (Q/X)(I) // R̄ (see step 1), we obtain a morphism

g : [(Q/X)(I)](n) h(n)
// R̄(n) π // // b̄. If Y := H−1(G) then we have

g[(Y (I))(n)] = π(Im(h′)(n)) = π(b̄(n)) = π(b̄R̄(n)) = b̄b̄ = b̄,

which proves 2.c.
2) =⇒ 1) It remains to prove that G satisfies the standard property 5. If h :

(Q/X)(J) // b̄ is the homomorphism given in 2.c, then h is an epimorphism and
the composition g : (Q/X)(J) // b̄ � � // R̄ = R/t(R) has R/b as its cokernel. By
property 2.b, this cokernel is in T = Gen(V ).

We assume in the rest of the proof that t is bounded.
1), 2) =⇒ 3) We know that T = Gen(V ) ⊆ Ker(Ext1R(V, ?)) and that RV is finitely

presented. The bounded condition of t implies that R/annR(V ) ∈ T , so that a :=
annR(V ) annihilates all modules in T . By [S, Proposition VI.6.12], we know that a

is idempotent, so that t is the right constituent torsion pair of the TTF triple defined
by a. This allows to identify T with R/a-Mod and, using that also T = Gen(V ) ⊆
Ker(Ext1R(V, ?)), we conclude that add(V ) = add(R/a). We then get condition 3.a. We
also get that R/a is a finitely presented R-module, and so a is finitely generated on the
left.

The fact that G satisfies the standard conditions and that RejT (M) = aM , for each
R-module M , automatically imply that conditions 3.b and 3.c hold. Finally, following
the proof of the implication 1) =⇒ 2), we see that the ideal b obtained in assertion 2 is
identified by the properties that b̄ = b/t(R) is idempotent and a R̄-module T is in T if,
and only if, bT = 0. Then we have b = a + t(R) and so condition 3.d follows by using
the isomorphism b/t(R) = (a + t(R))/t(R) ∼= a/(a ∩ t(R)) = a/t(a).

3) =⇒ 1) Since we have RejT (M) = aM , for each R-module M , it is easily verified
that G satisfies all the standard conditions 1-5. ¤

Corollary 4.2. If t = (T ,F) is a faithful hereditary torsion pair such that its
heart Ht is a module category, then t is the right constituent pair of a TTF triple in
R-Mod defined by an idempotent ideal a which is finitely generated on the left.

Corollary 4.3. Let R be a commutative ring and let t = (T ,F) be a hereditary
torsion pair in R-Mod. The heart Ht is a module category if, and only if, t is (left
or right) constituent pair of a centrally split TTF triple in R-Mod. In that case Ht is
equivalent to R-Mod.
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Proof. Since t is bounded, last theorem says that t is the right constituent tor-
sion pair of a TTF triple in R-Mod defined by an idempotent ideal a which is finitely
generated. But each finitely generated idempotent ideal of a commutative ring is gener-
ated by an idempotent element (see the proof of Lemma VI.8.6 in [S]). Then the TTF
triple is centrally split. By Corollary 7.8 below, we have that Ht is equivalent to R-Mod.

¤

5. When the progenerator is a sum of stalk complexes.

Recall that if M and N are R-modules, then Ext1R(M, N) = HomD(R)(M, N [1]) has a
canonical structure of EndR(N)-EndR(M)-bimodule given by composition of morphisms
in D(R). But then it has also a structure of EndR(M)op-EndR(N)op, by defining αo · ε ·
fo = f ◦ ε ◦ α, for all α ∈ EndR(M) and f ∈ EndR(N).

It is natural to expect that the ‘simplest’ case in which the heart is a module category
appears when the progenerator of the heart can be chosen to be a sum of stalk complexes.
Our next result gives criteria for that to happen.

Proposition 5.1. The following assertions are equivalent :

1. Ht has a progenerator of the form V [0]⊕ Y [1], where V ∈ T and Y ∈ F ;
2. There are R-modules V and Y satisfying the following properties:

(a) V is finitely presented and T = Pres(V ) ⊆ Ker(Ext1R(V, ?));
(b) Ext2R(V, ?) vanishes on F ;
(c) Y is a finitely generated projective R/t(R)-module which is in ⊥T ;
(d) For each F ∈ F , the module (F/trY (F ))/t(F/trY (F )) embeds into a module in

T , where trY (F ) denote the trace of Y in F .

In this case Ht is equivalent to S-Mod, where S =
(

EndR(Y )op 0

Ext1R(V,Y ) EndR(V )op

)
, when

viewing Ext1R(V, Y ) as a EndR(V )op-EndR(Y )op-bimodule in the usual way.

Proof. By [PS, Theorem 4.8] and by condition 2.a, all throughout the proof we
can assume that F is closed under taking direct limits in R-Mod.

1) =⇒ 2) Put G = V [0] ⊕ Y [1]. By Lemma 3.2, we get condition 2.a. On the
other hand, the projective condition of V [0] in Ht implies that 0 = Ext1Ht

(V [0], F [1]) =
Ext2R(V, F ), for all F ∈ F . Then condition 2.b also holds.

The projective condition of Y [1] in Ht implies that 0 = Ext1Ht
(Y [1], F [1]) =

Ext1R(Y, F ), for all F ∈ F and that 0 = Ext1Ht
(Y [1], T [0]) = HomD(R)(Y [1], T [1]) ∼=

HomR(Y, T ) = 0, for all T ∈ T . Then we have that Y ∈ ⊥T . Moreover, if
f : (R/t(R))(I) // // Y is any epimorphism, then f is a retraction, which implies that
Y is a projective R/t(R)-module. The fact that Y is finitely generated follows from the
compactness of Y [1] in Ht since then HomR(Y, ?)|F ∼= HomD(R)(Y [1], ?[1])|F preserves
coproducts of modules in F . We then get condition 2.c.

For each F ∈ F , let us consider the canonical morphism g : Y (HomR(Y,F )) // F .

We then get the morphism Y [1](HomHt (Y [1],F [1])) ∼= Y (HomR(Y,F ))[1]
g[1] // F [1] whose

image is the trace of Y [1] in F [1] within the category Ht. The cokernel of g[1] is
precisely the stalk complex (Coker(g)/t(Coker(g)))[1] = ((F/trY (F ))/t(F/trY (F )))[1].
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Due to the projectivity of Y [1] in Ht, we have that HomR(Y,Coker(g)/t(Coker(g))) ∼=
HomHt

(Y [1], (Coker(g)/t(Coker(g)))[1]) = 0. The fact that V [0] ⊕ Y [1] is
a projective generator of Ht implies then that the canonical morphism q :
V [0](HomHt (V [0],(Coker(g)/t(Coker(g)))[1])) // (Coker(g)/t(Coker(g)))[1] is an epimor-
phism in Ht. We necessarily have Ker(q) = T [0], for some T ∈ T . Condition 2.d
follows then from the long exact sequence of homologies associated to the triangle

T [0] // V [0](HomHt (V [0],(Coker(g)/t(Coker(g)))[1]))
q // Coker(g)

t(Coker(g))
[1]

+ //

2) =⇒ 1) From conditions 2.a and 2.b we deduce that Ext1Ht
(V [0], ?) vanishes on

stalk complexes T [0] and F [1], for each T ∈ T and F ∈ F . Similarly, from condition
2.c we deduce that Ext1Ht

(Y [1], ?) vanishes on all those stalk complexes. It follows that
G := V [0]⊕ Y [1] is a projective object of Ht.

Knowing that G is a projective object, in order to prove that G is a genera-
tor of Ht, we just need to prove that it generates all stalk complexes X, with X ∈
T [0] ∪ F [1]. Note that from condition 2.a we get that V [0] generates all stalk com-
plexes T [0] and, hence, that T [0] ⊆ GenHt(G). If now we take F ∈ F , then the
argument in the proof of the other implication shows that the canonical morphism

Y [1](HomHt (Y [1],F [1])) ∼= Y (HomR(Y,F ))[1]
g[1] // F [1] has as cokernel F ′[1], where F ′ =

(F/trY (F ))/t(F/trY (F )). By hypothesis we have a monomorphism F ′ ½ T and, hence,
an exact sequence 0 // F ′ // T // T ′ // 0, where T and T ′ are in T . We
then get an exact sequence in Ht:

0 // T [0] // T ′[0] // F ′[1] // 0

which shows that F ′[1] is generated by V [0] and, hence, that F ′[1] ∈ GenHt
(G). But we

have an exact sequence in Ht

0 // ImHt
(g[1]) // F [1] // F ′[1] // 0

Then we have that ImHt
(g[1]) ∈ GenHt

(Y [1]) ⊆ GenHt
(G) and F ′[1] ∈ GenHt

(V [0]) ⊆
GenHt

(G). The projective condition of G in Ht proves now that also F [1] ∈ GenHt
(G).

Hence G is a generator of Ht.
We finally prove that G is compact in Ht, which is equivalent to proving that V [0]

and Y [1] are compact in this category. For each family (Mi)i∈I of objects in Ht, we have
a family of exact sequences in Ht:

0 // H−1(Mi)[1] // Mi
// H0(Mi)[0] // 0 (i ∈ I)

Using this and the projectivity of V [0] and Y [1], the task is reduced to check the following
facts:

i) HomR(Y, ?) preserves coproducts of modules in F ;
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ii) HomR(V, ?) preserves coproducts of modules in T ;
iii) Ext1R(V, ?) preserves coproducts of modules in F .

Conditions i) and ii) automatically hold since Y and V are finitely generated modules.
Condition iii) follows from the fact that V is finitely presented.

The final statement of the proposition is clear, because the ring S =(
EndR(Y )op 0

Ext1R(V,Y ) EndR(V )op

)
is isomorphic to EndHt(V [0]⊕ Y [1])op. ¤

We have now the following consequences of last proposition.

Corollary 5.2. Let V be an R-module and consider the following conditions

1. V is a classical 1-tilting module;
2. t = (Pres(V ),Ker(HomR(V, ?))) is a torsion pair in R-Mod and V [0] is a progenerator

of Ht;
3. V finitely presented and satisfies the following conditions:

(a) T := Pres(V ) = Gen(V ) ⊆ Ker(Ext1R(V, ?));
(b) Ext2R(V, ?) vanishes on F := Ker(HomR(V, ?));
(c) Each module of F embeds into a module of T .

Then the implications 1) =⇒ 2) ⇐⇒ 3) hold true. Moreover, when conditions 2 or 3
hold, t is also a torsion pair in the Grothendieck category G := Gen(V ), V is a classical
1-tilting object of G and the canonical functor D(G) // D(R) gives by restriction an
equivalence of categories Ht(G) ∼ // Ht, where Ht(G) is the heart of the torsion pair
in G.

Proof. 1) =⇒ 2) is a particular case of [PS, Proposition 5.3].
2) =⇒ 3) is a direct consequence of Proposition 5.1.
3) =⇒ 2) We need to prove that T = Gen(V ) is closed under taking extensions in

R-Mod. In that case t = (Gen(V ),Ker(HomR(V, ?))) is a torsion pair in R-Mod and
the implication will follow from Proposition 5.1. Let 0 → T −→ M −→ T ′ → 0 is
an exact sequence in R-Mod, with T, T ′ ∈ T . We want to prove that M ∈ T . By
pulling back the exact sequence along an epimorphism p : V (I) // // T ′, we can assume
without loss of generality that T ′ = V (I). But in this case the sequence splits since
Ext1R(V (I), T ′) ∼= Ext1R(V, T )I = 0.

Let us prove now the final statement. By Lemma 3.2, we know that V is classical
quasi-tilting. It essentially follows from the arguments in [CDT1, Section 2] that V is
a classical 1-tilting object of G := Gen(V ). But it also follows from something stronger
that we need, namely, that the canonical map ϕ : Ext1G(V, X) // Ext1R(V, X) is an
isomorphism, for each X ∈ G. It is clearly injective. To prove the surjectivity, let
0 // X // M // V // 0 (∗) be an exact sequence in R-Mod. Recall that
the injective objects of G are modules in Gen(V ) = T (see [GG, Introduction]). This
implies that we have a monomorphism u : X � � // T , with T ∈ T . By pushing out the
sequence (∗) along the monomorphism u and using the fact that Ext1R(V, T ) = 0, we get
a monomorphism M � � // T ⊕ V , which implies that M ∈ G. Then the sequence (∗)
lives in G and, hence, ϕ is an isomorphism.

On the other hand, the inclusion functor G � � // R-Mod is exact and, hence, ex-
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tends to a triangulated functor j : D(G) // D(R), which need be neither faithful nor
full, but induces by restriction a functor j̃ : Ht(G) // Ht := Ht(R-Mod). We claim
that, up to natural isomorphism, the following diagram of functors is commutative, where
S = EndR(V )op:

Ht(G)

HomD(G)(V [0],?) $$JJJJJJJJJ
j̃ // Ht

HomD(R)(V [0],?){{ww
ww

ww
ww

w

S-Mod

Due to the projective condition of V [0] both in Ht(G) and Ht, we just need to see
that the maps induced by the functor j:

HomG(V, T ) ∼= HomD(G)(V [0], T [0]) // HomD(R)(V [0], T [0]) ∼= HomR(V, T )

Ext1G(V, F ) ∼= HomD(G)(V [0], F [1]) // HomD(R)(V [0], F [1]) ∼= Ext1R(V, F )

are isomorphisms. The first one is clear and the second one has been proved in the
previous paragraph. By assertion 2, the functor HomHt(V [0], ?) : Ht

// S-Mod is
an equivalence of categories. Since V is a classical 1-tilting object of G, the functor
HomHt(G)(V [0], ?) : Ht(G) // S-Mod is also an equivalence (see [PS, Proposition
5.3]). It follows that j̃ : Ht(G) // Ht is an equivalence of categories. ¤

The following is now very natural.

Question 5.3. Let t = (T ,F) be a torsion pair in R-Mod satisfying the equivalent
conditions 2 and 3 of Corollary 5.2. Is t a classical tilting torsion pair?

Lemma 5.4. Let V be a classical quasi-tilting R-module such that Gen(V ) is closed
under submodules and let t(R) be the trace of V in R. An endomorphism β of V satisfies
that Im(β) ⊆ t(R)V if, and only if, it factors through a (finitely generated) projective
R-module.

Proof. We put t = (Gen(V ),Ker(HomR(V, ?))), which is a hereditary tor-
sion pair. The ‘if’ part is clear. Conversely, suppose that Im(β) ⊆ t(R)V . Let
q : V (HomR(V,R)) // // t(R) = trV (R), i : t(R) � � // R, π : R(V ) // // V and
j : t(R)V � � // V be the canonical morphisms and let π′ : t(R)(V ) // // t(R)V be
the epimorphism given by the restriction of π to t(R)(V ). We have a commutative dia-
gram

V (HomR(V,R)×V )

ρ

'' ''OOOOOOOOOOOO
q(V )

// // t(R)(V ) i(V )
//

π′
²²²²

R(V )

π

²²
t(R)V � � j // V
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where ρ := π′ ◦q(V ). We have a factorization j ◦ β̃ = β, where β̃ ∈ HomR(V, t(R)V ). Due
to the hereditary condition of t, we know that Ker(ρ) ∈ T ⊆ Ker(Ext1R(V, ?)), which
implies β̃ factors through ρ. Fix a morphism γ : V // V (HomR(V,R)×V ) such that
β̃ = ρ ◦ γ. Then we have:

β = j ◦ β̃ = j ◦ ρ ◦ γ = π ◦ i(V ) ◦ q(V ) ◦ γ,

so that β factors through R(V ). ¤

Corollary 5.5. Let us assume that t = (T ,F) is a hereditary torsion pair in
R-Mod. The following assertions are equivalent :

1. Ht has a progenerator of the form V [0]⊕ Y [1], where V ∈ T and Y ∈ F ;
2. There are R-modules V and Y satisfying the following properties:

(a) V is finitely presented and T = Pres(V ) ⊆ Ker(Ext1R(V, ?));
(b) Ext2R(V, ?) vanishes on F ;
(c) Y is a finitely generated projective R/t(R)-module which is in ⊥T ;
(d) For each F ∈ F , the module F/trY (F ) is in T , where trY (F ) denotes the trace

of Y in F .

In this case, t′ := (T ∩R/t(R)-Mod,F) is a torsion pair in R/t(R)-Mod which is the right
constituent of a TTF triple in this category and has the property that (V/t(R)V )[0]⊕Y [1]
is a progenerator of Ht′ . Moreover, the forgetful functor Ht′ // Ht is faithful.

Proof. All throughout the proof we put I = t(R) and M̄ = M/IM , for each
R-module M . The equivalence of assertions 1 and 2 is a direct consequence of Propo-
sition 5.1. From Theorem 4.1 and its proof, we know that (T ∩ R̄-Mod,F) is the right
constituent torsion pair of a TTF triple (CI , TI ,F) in R̄-Mod. Moreover, by property
2.c, the class Ker(HomR̄(Y, ?)) contains T ∩ R̄-Mod and is closed under taking quotients.
Using property 2.d, it then follows that the inclusion Ker(HomR̄(Y, ?)) ⊆ T ∩ R̄-Mod
also holds, which implies that CI = Gen(Y ). If now a is the two-sided ideal of R given
by the equality ā = a/I = trY (R/I), then ā is the idempotent ideal of R̄ which defines
the TTF triple and, by the proof of Theorem 4.1, we know that a = annR(V̄ ) and that
add(V̄ ) = add(R/a), so that V̄ is a progenerator of R/a-Mod.

Now the R̄-modules V̄ and Y satisfy the conditions 2.a, 2.c and 2.d with respect
to the torsion pair t′ = (TI ,F) of R̄-Mod. On the other hand, t and t′ are hereditary
torsion pairs in R-Mod and R̄-Mod, respectively. Then, for each F ∈ F , the injective
envelope E(F ) in R-Mod is also in F (see [S, Proposition VI.3.2]). In particular, we have
that E(F ) ∈ R̄-Mod, so that E(F ) is also the injective envelope of F as a R̄-module and,
hence, the first cosyzygy Ω−1(F ) is the same in R-Mod and R̄-Mod. In order to check
condition 2.b for V̄ , we need to check that Ext1R̄(V̄ , Ω−1(F )) = 0. But, using condition
2.b for V , our needed goal will follow from something stronger that we will prove. Namely,
that if p = pV : V // // V̄ is the canonical projection, then the composition

ϕ : Ext1R̄(V̄ ,M) can // Ext1R(V̄ ,M)
Ext1R(p,M) // Ext1R(V, M)
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is a monomorphism, for all M ∈ R̄-Mod.

Let 0 // M
j // N

q // V̄ // 0 be an exact sequence in R̄-Mod which
represents an element of Ker(ϕ). Then the projection p : V // // V̄ factors through
q. Fixing a morphism g : V // N such that q ◦ g = p and taking into account that
IN = 0, we get a morphism ḡ : V̄ // N which is a section for q.

In order to prove the final assertion, with the notation of the previous lemma,
consider the following composition of morphisms of abelian groups, where F ∈ F

Ext1R(j ◦ ρ, F ) : Ext1R(V, F )
Ext1R(j,F ) // Ext1R(t(R)V, F )

Ext1R(ρ,F ) // Ext1R(V (HomR(V,R)×V ), F ).

We have that Ext1R(ρ, F ) is a monomorphism, because Ker(ρ) ∈ T and hence
HomR(Ker(ρ), F ) = 0. But Ext1R(j ◦ ρ, F ) = 0 since j ◦ ρ factors through a projec-
tive R-module. We then get that Ext1R(j, F ) is the zero map, for each F ∈ F . By

considering the canonical exact sequence 0 // t(R)V � � j // V // // V̄ // 0 and
applying to it the long exact sequence of Ext(?, F ), we get:

0 = HomR(t(R)V, F ) // Ext1R(V̄ , F ) // Ext1R(V, F )
0 // Ext1R(t(R)V, F )

which proves that Ext1R(V̄ , F ) ∼= Ext1R(V, F ), for each F ∈ F . Moreover, by the two
previous paragraphs, we get that the map Ext1R̄(V̄ , F ) can // Ext1R(V̄ , F ) is a monomor-
phism.

Let us put Ḡ := V̄ [0] ⊕ Y [1]. We claim that the map HomHt′ (Ḡ,M) //

HomHt
(Ḡ,M) is injective, for all M ∈ Ht′ . Bearing in mind that we have isomorphisms

of abelian groups

HomHt′ (Y [1],M) ∼= HomR̄(Y, H−1(M)) = HomR(Y, H−1(M)) ∼= HomHt
(Y [1],M),

our task reduces to check that the canonical map HomHt′ (V̄ [0],M) //

HomHt
(V̄ [0],M) is injective. But we have the following commutative diagram:

0 // Ext1R̄(V̄ , H−1(M)) //
� _

can

²²

HomHt′ (V̄ [0], M)

²²

// HomR̄(V̄ , H0(M)) //

o
²²

Ext2R̄(V̄ , F ) = 0

0 // Ext1R(V̄ , H−1(M)) // HomHt(V̄ [0], M) // HomR(V̄ , H0(M)) // Ext2R(V̄ , F )

The right vertical arrow is an isomorphism since H0(M) is a R̄-module, and the left
vertical arrow is a monomorphism. It then follows that the central vertical arrow is a
monomorphism, as desired.

Let us fix any object M ∈ Ht′ and consider the full subcategory CM of Ht′ consisting
of the objects N such that the canonical map HomHt′ (N, M) // HomHt

(N, M) is a
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monomorphism. This subcategory is closed under taking coproducts and cokernels and,
by the previous paragraph, it contains Ḡ. We then have CM = Ht′ and, since this is true
for any M ∈ Ht′ , we conclude that the forgetful functor Ht′ // Ht is faithful. ¤

Remark 5.6. It can be easily derived from the proof of Corollary 5.5 that the
functor Ht′ // Ht is full if, and only if, each exact sequence 0 // Y //

M // V/IV // 0 in R-Mod satisfies that IM = 0.

Proposition 5.7. Let t = (T ,F) be hereditary and suppose that it is the left
constituent torsion pair of a TTF triple in R-Mod. Then Ht is a module category if,
and only if, there is a finitely generated projective R-module P such that T = Gen(P ).
In such case, the following assertions hold :

1. t is HKM if, and only if, there is a finitely generated projective R-module Q′ such that
HomR(Q′, P ) = 0 and add(Q′/t(Q′)) = add(R/t(R)). In general, t need not be an
HKM torsion pair ;

2. t is the right constituent of a TTF triple in R-Mod if, and only if, P is finitely
generated over its endomorphism ring.

Proof. ‘If’ part: Let P be a finitely generated projective R-module such that
T = Gen(P ). We will check that V = P and Y = R/t(R) satisfy conditions 2.a–d of
Corollary 5.5. All these properties are trivially satisfied, except the fact that Y ∈ ⊥T .
For that, we consider the TTF triple (T ,F ,F⊥). By [S, Lemma VI.8.3], we know that
T ⊆ F⊥. It particular, Y = R/t(R) ∈ F = ⊥(F⊥) ⊆ ⊥T .

‘Only if’ part: Let a be the idempotent ideal which defines the TTF triple, so that
T = {T ∈ R-Mod : aT = T}. By Theorem 3.4, we have a progenerator G := · · · −→
0 −→ X

j−→ Q
d−→ P −→ 0 −→ · · · , where P and Q are finitely generated projective

and T = Gen(V ), where V = H0(G). We then have aM = t(M) = trV (M), for each
R-module M . In particular, we have a = t(R) = trV (R) and, by applying Lemma 5.4 to
the identity 1V : V −→ V , we conclude that V is a finitely generated projective module.

We next prove assertions 1 and 2:

1) If Q′ exists, then the complex P • := · · · −→ 0 −→ Q′ 0−→ P −→ 0 −→ · · · ,
concentrated in degrees −1 and 0, satisfies assertion 2 of Proposition 3.7 since we know
that P [0]⊕ (R/t(R))[1] is a progenerator of Ht.

Conversely, suppose that t is HKM and let P • := · · · −→ 0 −→ Q
d−→ P ′ −→ 0 −→

· · · be an HKM complex whose associated torsion pair is t. Then, by Proposition 3.7,
we know that the complex

G := · · · −→ 0 −→ t(Ker(d)) −→ Q
d−→ P ′ −→ 0 −→ · · · ,

concentrated in degrees −2,−1, 0, is a progenerator of Ht. We then have that
addHt

(G) = addHt
(P [0] ⊕ (R/t(R))[1]). In particular, we get that V := H0(G) is a

projective module and, hence, also Im(d) is projective. It follows that, up to isomor-
phism in the category C(R), we can rewrite G as
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· · · −→ 0 −→ t(Q′)

(
0
ι

)
−−−→ Im(d)⊕Q′

(
1 0
0 0

)
−−−−→ Im(d)⊕H0(G) −→ 0 −→ · · · ,

where ι : t(Q′) ↪→ Q′ is the inclusion. This in turn implies that P • is isomorphic in C(R)
to the complex

· · · −→ 0 −→ Im(d)⊕Q′
(

1 0
0 0

)
−−−−→ Im(d)⊕H0(G) −→ 0 −→ · · · .

The fact that add(V ) = add(H0(G)) = add(H0(P [0] ⊕ (R/t(R))[1])) = add(P ) and
V ∈ X (P •) implies that HomR(Q′, P ) = 0. Moreover, we have add(Q′/t(Q′)) =
add(H−1(G)) = add(H−1(P [0]⊕ (R/t(R))[1])) = add(R/t(R)).

In order to show that, in general, the pair t need not be HKM, we consider a field K,
an infinite dimensional K-vector space P and view it as left module over R = EndK(P ).
It is well-known that P is a faithful simple projective R-module, so that T = Add(RP ) =
Gen(RP ) is closed under taking submodules and, hence, t is hereditary. However the
faithful condition of RP implies that each projective R-module embeds in a direct product
of copies of P . Then it does not exists a finitely generated projective R-module Q′ such
that HomR(Q′, P ) = 0 and add(Q′/t(Q′)) = add(R/t(R)). Hence t is not HKM.

2) t is the right constituent pair of a TTF triple if, and only if, T = Gen(P ) is closed
under taking products in R-Mod. But this is equivalent to saying that each product of
copies of P is in Gen(P ). By [CM, Lemma, Section 1]), this happens exactly when P is
finitely generated over its endomorphism ring. ¤

Recall that a ring is left semihereditary when its finitely generated left ideals are
projective.

Example 5.8. Let a be an idempotent two-sided ideal of R, let (C, T ,F) be the
associated TTF triple in R-Mod and let t = (T ,F) be its right constituent torsion pair.
The following assertions are equivalent:

1. (R/a)[0]⊕ (a/t(a))[1] is a progenerator of Ht;
2. Ht has a progenerator of the form V [0]⊕ Y [1], with V ∈ T and Y ∈ F ;
3. a is finitely generated on the left and Ext2R(R/a, ?) vanishes on F .

In particular, if R is left semi-hereditary and t is the right constituent pair of a TTF
triple in R-Mod, then Ht is a module category if, and only if, the associated idempotent
ideal is finitely generated on the left.

Proof. 1) =⇒ 2) is clear.
2) =⇒ 3) By Lemma 3.2, we know that V is finitely presented and T = Gen(V ) ⊆

Ker(Ext1R(V, ?)). But we also have that T = {T ∈ R-Mod : aT = 0} ∼= R/a-Mod. We
then get that V is a finitely presented generator of R/a-Mod such that Ext1R/a(V, ?) =
0. That is, V a progenerator of R/a-Mod, which implies that addR-Mod(R/a) =
addR-Mod(V ). Then R/a is a finitely presented left R-module and, hence, a is finitely
generated as a left ideal. The fact that Ext2R(R/a, ?) vanishes on F follows from the fact
that, by Corollary 5.5, we know that Ext2R(V, ?) vanishes on F .
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3) =⇒ 1) We take V = R/a and Y = a/t(a). Then conditions 2.a, 2.b and 2.d of
Corollary 5.5 hold since F/trY (F ) is in T , for all F ∈ F . We just need to prove that Y

is a projective R/t(R)-module since it is clearly in ⊥T = C. Let 0 → K ↪→ Q
q−→ a → 0

be an exact sequence, with Q a finitely generated projective R-module. The canonical
projection K ³ K/t(K) extends to Q since Ext1R(a,K/t(K)) ∼= Ext2R(R/a,K/t(K)) =
0. It follows that the canonical monomorphism ι : K/t(K) −→ Q/t(Q) splits. But its
cokernel is Q/(K + t(Q)) ∼= (Q/K)/((K + t(Q))/K) ∼= a/q(t(Q)). It follows that this
latter one is a projective R/t(R)-module, which implies that it is in F when viewed as
an R-module. But then t(a)/q(t(Q)) ∈ T ∩ F = 0. Therefore we have q(t(Q)) = t(a)
and a/t(a) is projective as a left R/t(R)-module. ¤

We are now able to give a second significative class of rings for which we can identify
all hereditary torsion pairs whose heart is a module category.

Proposition 5.9. Let R be a left semihereditary ring and let V be a
finitely presented quasi-tilting R-module whose associated torsion pair t = (Gen(V ),
Ker(HomR(V, ?))) is hereditary. The following assertions are equivalent :

1. If a = annR(V/t(R)V ) then a/t(R) is an idempotent ideal of R/t(R), which is finitely
generated on the left, and there is a monomorphism R/a � � // (V/t(R)V )(n), for
some natural number n.

2. The heart Ht is a module category.

In this case Ht is equivalent to S-Mod, where S =
(

EndR(a/t(R))op 0

Ext1R(V,a/t(R)) EndR(V )op

)
.

Proof. 1) =⇒ 2) Put M̄ = M/t(R)M , for each R-module M . Note that T ∩
R̄-Mod = Gen(V̄ ) and that annR̄(V̄ ) = ā. We then get that HomR(ā, T ) = 0, for each
T ∈ T . Indeed if f : ā // T is any R-homomorphism, then Im(f) ∈ T ∩ R̄-Mod and
the induced morphism f̄ : ā // Im(f) is a morphism in R̄-Mod such that f̄(ā) =
f̄(ā2) = āIm(f) = 0. We then have that ā is in ⊥T .

On the other hand, since ā is finitely generated on the left, we have a finitely
generated left ideal a′ of R contained in a such that the canonical composition
a′ � � // a // // ā is an epimorphism. We then get that a′/t(a′) = a′/(a′ ∩ t(R)) ∼= ā

and, since a′ is projective, we conclude that ā is a finitely generated projective left
R̄-module.

Note now that V and Y := ā satisfy all conditions 2.a–c of Corollary 5.5. Moreover
if F ∈ F then F/aF is generated by R/a and, due to our hypotheses, we know that
F/aF is in T , so that also property 2.d of that corollary holds. Then Ht is a module
category, actually equivalent to S-Mod (see Proposition 5.1).

2) =⇒ 1) Let G be a complex as in Theorem 4.1, which is then a progenerator of
Ht. The fact that Im(d) is projective easily implies that G is isomorphic to H0(G)[0]⊕
H−1(G)[1] in Ht. Putting V = H0(G) and Y = H−1(G) for simplicity, Corollary 5.5
and its proof show that t′ = (T ∩ R̄-Mod,F) is the right constituent torsion pair of a
TTF triple in R̄-Mod defined by the idempotent ideal ā = annR̄(V̄ ), which is finitely
generated on the left. Then we have ā = a/t(R), where a = annR(V/t(R)V ). Moreover,
we have R/a-Mod = T ∩ R̄-Mod = Gen(V̄ ), so that R/a ∈ add(V̄ ). ¤
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6. When the torsion class is closed under taking products.

Our next result shows that if the torsion class is closed under taking products in
R-Mod, then classical tilting theory appears quite naturally.

Theorem 6.1. Let t = (T ,F) be a torsion pair in R-Mod. The following asser-
tions are equivalent :

1. T is closed under taking products in R-Mod and the heart Ht is a module category ;
2. T = Gen(V ), where V is a module which is classical 1-tilting over R/annR(V ) and

admits a finitely generated projective presentation Q
d // P // V // 0 in

R-Mod and a submodule X ⊆ Ker(d) such that :
(a) Ker(d)/X ∈ F and Ker(d) ⊆ X + aQ, where a := annR(V );
(b) Ext1R(Q/X, ?) vanishes on F ;
(c) There is a R-homomorphism h : (Q/X)(I) // R/t(R), for some set I, such

that h((Ker(d)/X)(I)) = (a + t(R))/t(R).

In this case t′ = (Gen(V ),F ∩ R/a-Mod) is a classical tilting torsion pair in R/a-Mod
and the forgetful functor Ht′ −→ Ht is faithful.

Proof. 2) =⇒ 1) The classical 1-tilting condition of V implies that T consists of
the R/a-modules T such that Ext1R/a(V, T ) = 0. This class is clearly closed under taking
products. We next consider the complex

G := · · · // 0 // X
� � // Q

d // P // 0 // · · ·

concentrated in degrees −2,−1, 0. By condition 2.a and by the equality T = Gen(V ),
we have that G ∈ Ht. We shall check that G satisfies the standard conditions 1–5. We
immediately derive the standard conditions 2, 3 and 4. On the other hand, our condition
2.c implies that Coker(h|(Ker(d)/X)(I)) is isomorphic to R/(a + t(R)) and, hence, it is in
R/a-Mod. But we have that R/a-Mod = Gen(V ) since R/a ∈ Gen(V ) due to the 1-
tilting condition of V over R/a. Then the standard condition 5 holds. It remains to
prove that T ⊆ Ker(Ext1R(V, ?)). Let

0 // T // M // V // 0

be any exact sequence in R-Mod, with T ∈ T . Since T = Gen(V ) is closed under
taking extensions in R-Mod, we get that M ∈ T and, hence, the exact sequence lives in
R/a-Mod. But then it splits since we have that T = Ker(Ext1R/a(V, ?)).

1) =⇒ 2) Let G be a complex in standard form satisfying the standard conditions 1–
5, which is then a progenerator of Ht (see Theorem 3.4), and let us put V := H0(G) and
a = annR(V ). There is an obvious monomorphism R/a // V V and, by hypothesis,
we have that V V ∈ T = Gen(V ). We then get that Gen(V ) = R/a-Mod. Moreover,
from Lemma 3.2 and [CMT, Proposition 3.2] we get that V is a classical 1-tilting R/a-
module. On the other hand, the equality Gen(V ) = R/a-Mod implies that RejT (M) =
RejR/a-Mod(M) = aM . Then conditions 2.a and 2.b follow directly.
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It just remains to check condition 2.c. To do that, consider the morphism h :
(Q/X)(I) // R/t(R) in the standard condition 5 and put h′ := h|(Ker(d)/X)(I) . The
fact that Coker(h′) is in Gen(V ) = R/a-Mod is equivalent to saying that a(R/t(R)) ⊆
Im(h′). But, by the already proved condition 2.a, we know that Im(h′) ⊆ h(a(Q/X)(I)) =
aIm(h) ⊆ a(R/t(R)). We then get that Im(h′) = a(R/t(R)) = (a + t(R))/t(R).

Finally, it is clear that t′ = (T ,F ∩ R/a-Mod) is a classical tilting torsion pair
of R/a-Mod. If j : Ht′ // Ht is the forgetful functor then, arguing as in the final
part of the proof of Corollary 5.5, in order to prove that j is faithful, we just need to
check that the canonical map HomHt′ (V [0],M) // HomHt

(V [0],M) is injective, for
all M ∈ Ht′ . Similar as there, this in turn reduces to check that the canonical map

Ext1R/a(V, F ) ∼= HomHt′ (V [0], F [1]) // HomHt
(V [0], F [1]) ∼= Ext1R(V, F )

is injective, for all F ∈ F ∩R/a-Mod. But this is clear. ¤

Let A be any ring. Note that if V is a non-projective classical 1-tilting A-module,
then (see [Mi]) V is also a classical tilting right S-module, where S = End(AV )op, such
that the canonical algebra morphism A −→ End(VS) is an isomorphism. Due to the
tilting theorem, we then know that (Ker(? ⊗A V ),Ker(TorA

1 (?, V ))) is a torsion pair in
Mod-A. If we had Ker(? ⊗A V ) = 0 we would have that TorA

1 (?, V ) = 0, and hence V

would be a flat left A-module, which is a contradiction (see [L, Corollaire 1.3]). Then
there is a right A-module X 6= 0 such that X ⊗A V = 0 6= TorA

1 (X, V ). Considering an
epimorphism X ³ X ′, with X ′

A simple, and replacing X by X ′, we can even choose X

to be a simple right A-module.
Recall that if A is a ring and M is an A-bimodule, then the trivial extension of

A by M , denoted A oM , is the ring whose underlying A-bimodule is A ⊕ M and the
multiplication is given by (a,m) · (a′,m′) = (aa′, am′ + ma′).

We can now give a systematic way of constructing negative answers to Question 5.3.

Theorem 6.2. Let A be a finite dimensional algebra over an algebraically closed
field K, let V be a classical 1-tilting left A-module such that HomA(V, A) = 0, let X be
a simple right A-module such that X ⊗A V = 0 and let us consider the trivial extension
R = AoM , where M = V ⊗K X. Viewing V as a left R-module annihilated by 0oM ,
the pair t = (Gen(V ),Ker(HomR(V, ?))) is a non-tilting torsion pair in R-Mod such that
V [0] is a progenerator of Ht.

Proof. All throughout the proof, for any two-sided ideal a of a ring R, we view
R/a-modules as R-modules annihilated by a. Note that if M is any such module and we
apply ?⊗RM : Mod-R −→ Ab to the canonical exact sequence 0 → a ↪→ R −→ R/a → 0,
then we get an isomorphism R ⊗R M

∼=−→ R/a⊗R M , which implies that the canonical
morphism TorR

1 (R/a,M) −→ a⊗R M is an isomorphism.
Bearing in mind that X is simple in Mod-A, if 0 → Q′ u−→ P ′ −→ V → 0 is the

minimal projective resolution of AV , then the map 1X ⊗u : X ⊗A Q′ −→ X ⊗A P ′ is the
zero map. This implies that we have isomorphisms of vector spaces X⊗AP ′ ∼= X⊗AV = 0
and TorA

1 (X, V ) ∼= X ⊗A Q′.
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Note that we have an isomorphism AM ∼= AV in A-Mod because, due to the alge-
braically closed condition of K, the simple right A-module X is one-dimensional over K.
As a right A-module, MA is in add(XA). Moreover, we have M⊗AV ∼= V ⊗K X⊗AV = 0.
We shall prove the following facts:

i) annR(V ) = 0oM =: a and this ideal is the trace of V in R;
ii) a⊗R V = 0;
iii) T := Gen(V ) is closed under taking extensions, and hence a torsion class, in R-Mod;
iv) Ker(HomA(V, ?)) = Ker(HomR(V, ?)) and, hence, t := (Gen(V ),Ker(HomR(V, ?)))

is a torsion pair in R-Mod which lives in A-Mod;
v) There is a finitely generated projective presentation of RV

Q
d−→ P ³ V → 0

such that Ker(d) is a non-projective R-module in T .

Suppose that all these facts have been proved. Then t is a torsion pair in R-Mod
whose torsion class is closed under taking products. We claim that V satisfies all con-
ditions of assertion 2 in Theorem 6.1, by taking X = Ker(d). The only nontrivial
things to check are conditions 2.b and 2.c in that assertion. Condition 2.b follows by
applying the exact sequence of ExtR(?, F ), with F ∈ F , to the short exact sequence
0 → Ker(d) ↪→ Q

d−→ Imd(d) → 0. On the other hand, t(R) is the trace of V in R and,
by fact i), we know that t(R) = a. Then condition 2.c of assertion 2 in Theorem 6.1 also
holds, simply by taking as h the zero map. Looking at the proof of implication 2) =⇒ 1)
in that theorem, we see that the complex

G := · · · −→ 0 −→ Ker(d) ↪→ Q
d−→ P −→ 0 −→ · · · ,

concentrated in degrees −2,−1, 0, is a progenerator of Ht. But we have an isomorphism
G ∼= V [0] in Ht. Therefore V [0] is a progenerator of Ht. Note that this torsion pair t in
R-Mod is not tilting, because the projective dimension of RV is > 1 (see [C, Section 2]).

We now pass to prove the facts i)–v) in the list above:

i) By definition of the R-module structure on V , we have (a,m)v = av, for each
(a,m) ∈ A oM and each v ∈ V . Then annR(V ) = annA(V ) oM . But annA(V ) = 0
due to the 1-tilting condition of AV . On the other hand, if f : V −→ R is a morphism
in R-Mod, then we have two K-linear maps g : V −→ A and h : V −→ M such that
f(v) = (g(v), h(v)) ∈ A oM = R, for all v ∈ V . Direct computation shows that g is a
morphism in A-Mod, and hence g = 0. Then one immediately sees that h ∈ HomA(V, M)
and, since AM is in Gen(AV ), we conclude that t(R) = 0oM = a.

ii) Since a2 = 0 and aV = 0, we have an equality a ⊗R V = a ⊗R/a V = a ⊗A V .
But, as a right A-module, we have that aA

∼= MA. It follows that a⊗A V ∼= M⊗A V = 0.

iii) Consider any exact sequence 0 → T −→ N −→ T ′ → 0 (∗) in R-Mod, with
T, T ′ ∈ Gen(V ) = T . Taking an epimorphism p : V (I) ³ T ′ and taking the image of
the last exact sequence by the morphism Ext1R(p, T ) : Ext1R(T ′, T ) −→ Ext1R(V (I), T ),
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we easily reduce the problem to the case when T ′ = V (I). We now apply the functor
R/a⊗R? : R-Mod −→ R/a-Mod to the sequence (∗), with T ′ = V (I), and use the fact
that, by the initial paragraph of this proof, we have TorR

1 (R/a, V (I)) ∼= a ⊗R V (I) = 0.
We then get a commutative diagram with exact rows, where the vertical arrows are the
canonical maps:

0 // T //

o
²²

N //

²²

V (I) //

o
²²

0

0 // R

a
⊗R T // R

a
⊗R N // R

a
⊗R V (I) // 0

The central vertical arrow N −→ R/a⊗R N ∼= N/aN is then an isomorphism. This
implies that aN = 0 and, hence, the sequence (∗) above lives in A-Mod and N ∈ T .

iv) If F ∈ Ker(HomR(V, ?)) then t(R)F = trV (R)F = 0. By fact i), we get that
aF = 0. Then F is an A-module, and hence Ker(HomR(V, ?)) ⊆ Ker(HomA(V, ?)). The
converse inclusion is obvious.

v) The multiplication map µ : R ⊗A V −→ V is surjective. Moreover, we have an
isomorphism of K-vector spaces

R⊗A V ∼= (A⊕M)⊗A V ∼= V ⊕ (M ⊗A V ) = V ⊕ 0 ∼= V.

Since V is a finite dimensional K-vector space we get that µ is an isomorphism of left
R-modules.

Let 0 → Q′ d′−→ P ′ −→ V → 0 be a finitely generated projective presentation of
V in A-Mod. Using the previous paragraph, we then get a finitely generated projective
presentation of V in R-Mod:

R⊗A Q′ 1⊗d′−−−→ R⊗A P ′ −→ V → 0.

Then we have isomorphisms of K-vector spaces

Ker(1⊗ d′) = TorA
1 (R, V ) ∼= TorA

1 (A⊕M, V ) ∼= TorA
1 (M, V ).

It is easy to deduce from this that aKer(1⊗ d′) = 0. Then we can view Ker(1⊗ d′) as a
left A-module isomorphic to TorA

1 (M, V ). Since M = V ⊗K X we get that TorA
1 (M, V ) ∼=

V ⊗K TorA
1 (X, V ) which is nonzero and isomorphic to V ⊗K (X ⊗A Q′) ∈ add(AV ) due

to the first paragraph of this proof. It follows that Ker(1⊗d′) is a nonzero left R-module
in add(RV ) = add(AV ).

We finally prove that W := Ker(1 ⊗ d′) is not a projective in R-Mod. If it were
so, we would have that W = trV (R)W . By fact i), we would get that aW = W , which
would imply that W = 0 since a2 = 0. ¤
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7. Torsion pairs which are right constituents of TTF triples.

As shown in Theorem 4.1 and Corollaries 4.2 and 5.5, hereditary torsion pairs which
are the right constituent of a TTF triple appear quite naturally when studying the
modular condition of the heart. In this section we fix an idempotent ideal a of R and
its associated TTF triple (C, T ,F) and want to study when the pair t = (T ,F) has the
property that its heart Ht is a module category. When this is the case, by Theorem 4.1,
we know that a is finitely generated on the left.

Our next result, very important in the sequel, shows that the conditions for Ht

to be a module category get rather simplified if we assume that the monoid morphism
V (R) // V (R/a) (see Section 2) is an epimorphism.

Theorem 7.1. Let a be an idempotent ideal of the ring R which is finitely gener-
ated on the left, and let (C, T ,F) be the associated TTF triple. Consider the following
assertions for t = (T ,F):

1. There is a finitely generated projective R-module P satisfying the following conditions:
(a) P/aP is a (pro)generator of R/a-Mod;

(b) There is an exact sequence 0 // F // C
q // aP // 0 in R-Mod,

where F ∈ F and C is a finitely generated module which is in C∩Ker(Ext1R(?,F))
and generates C ∩ F .

2. The heart Ht is a module category.

Then 1) implies 2) and, in such a case, if j : aP
� � // P is the inclusion, then the

complex concentrated in degrees −1, 0

G′ := · · · // 0 // C ⊕ C

t(C)
( jq 0 ) // P // 0 // · · ·

is a progenerator of Ht.
When the monoid morphism V (R) // V (R/a) is surjective, the implication

2) =⇒ 1) is also true.

Proof. 1) =⇒ 2) Fix an exact sequence 0 // F // C
q // aP // 0

as indicated in condition 1.b. Taking F ′ ∈ F arbitrary, applying the long exact sequence

of Exti
R(?, F ′) (i ≥ 0) to the sequence 0 // t(C) � � // C

pr. // // C/t(C) // 0
and using condition 1.b, we get that Ext1R(C/t(C), ?)|F = 0. But then any epimorphism
(R/t(R))n // // C/t(C) splits, which implies that U := C/t(C) is a finitely generated
projective R/t(R)-module which is in C. Moreover it generates C ∩ F since so does C.

Let πU : QU
// // U and πC : QC

// // C be two epimorphisms from finitely
generated projective modules, whose respective kernels are denoted by KU and KC . We
will prove that the following complex in standard form, which is clearly quasi-isomorphic
to G′, is a progenerator of Ht.

G : · · · // 0 // KU ⊕KC
� � // QU ⊕QC

( 0 jqπC ) // P // 0 // · · · .
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We have that H0(G) = P/aP ∈ T and, by an appropriate use of ker-coker lemma,
we get an exact sequence 0 // KC

� � // Ker(qπC) // F // 0. It then follows
that

H−1(G) =
Ker((0 jqπC))

KU ⊕KC
=

QU ⊕Ker(qπC)
KU ⊕KC

∼= U ⊕ F,

which is in F . This proves that G is an object of Ht. We next check all conditions 3.a–d
of Theorem 4.1. Clearly, condition 3.a in that theorem is a consequence of our condition
1.a. Note next that (KU⊕KC)+a(QU⊕QC) = QU⊕QC because U ∼= QU/KU and C ∼=
QC/KC are both in C = {X ∈ R-Mod : aX = X}. Then condition 3.b of the mentioned
theorem is automatic, as so is condition 3.c since (QU ⊕QC)/(KU ⊕KC) ∼= U ⊕ C.

Put now X = KU ⊕ KC and Q = QU ⊕ QC as in the standard notation. Using
the fact that U generates C ∩ F , fix an epimorphism p : U (J) // a/t(a). Identifying
Q/X = U ⊕ C, we clearly have that (p 0) : (Q/X)(J) = U (J) ⊕ C(J) // a/t(a) is a
homomorphism whose restriction to H−1(G)(J) = U (J) ⊕F (J) is an epimorphism. Then
also condition 3.d of Theorem 4.1 holds.

2) =⇒ 1) (Assuming that the monoid morphism V (R) // V (R/a) is surjective).
Let G be a progenerator of Ht. By Theorem 4.1, we know that add(H0(G)) = add(R/a)
and our extra hypothesis gives a finitely generated projective R-module P such that
P/aP ∼= H0(G), so that condition 1.a holds. Fixing such a P and following the proof of
Theorem 3.4, we see that we can represent G by a chain complex

· · · // 0 // X
j // Q

d // P // 0 // · · ·

where Q is finitely generated projective, j is a monomorphism, Im(d) = aP . Then G

satisfies all conditions 3.a–d of Theorem 4.1. Note that aP = a2P = aIm(d) = d(aQ),
which implies that Q = Ker(d) + aQ and, by condition 3.b of the mentioned theorem,
that Q = X+aQ. That is, the module Q/X is in C and, by condition 3.c of that theorem,
we also have that Q/X ∈ Ker(Ext1R(?,F)). The exact sequence needed for our condition

1.b is then 0 // H−1(G) � � // Q/X
d̄ // aP // 0. ¤

We now give some applications of last theorem.

Corollary 7.2. Let Q be a finitely generated projective R-module and let us
consider the hereditary torsion pair t = (T ,F), where T = Ker(HomR(Q, ?)). If the
trace of Q in R is finitely generated on the left, then t is an HKM torsion pair and Ht

is a module category.

Proof. We will check assertion 1 of Theorem 7.1 for the suitable choices. We have
that T fits into a TTF triple (C, T ,F), where C = Gen(Q) = {T ∈ R-Mod : aT = T},
where a = trQ(R) (see [S, Proposition VI.9.4 and Corollary VI.9.5]). Taking P = R in
Theorem 7.1, we have an obvious epimorphism p : Qn ³ a, for some integer n > 0. We
then take C = Qn/t(Ker(p)) and q : C = Qn/t(Ker(p)) ³ a the epimorphism defined by
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p. The fact that Ext1R(C, ?)|F = 0 follows by taking F ∈ F and applying the long exact
sequence of Exti

R(?, F ) (i ≥ 0) to the short exact sequence 0 → t(Ker(p)) ↪→ Qn ³ C →
0.

On the other hand, the progenerator G of Ht given in Theorem 7.1 is quasi-
isomorphic to the complex

· · · −→ 0 −→ t(Ker(p))⊕ t(Q)(n) ↪→ Q(n) ⊕Q(n) ( jp 0 )−−−−→ R −→ 0 −→ · · · ,

where j : a ↪→ R is the inclusion. One readily proves now that the complex P · : · · · −→
0 −→ Q(n) ⊕Q(n) ( jp 0 )−−−−→ R −→ 0 −→ · · · satisfies condition 2 of Proposition 3.7. ¤

The easy proof of the following auxiliary result is left to the reader.

Lemma 7.3. Let R be a ring and a be an idempotent ideal. The following assertions
hold :

1. If p : P // // M is a projective cover and aM = M , then aP = P ;
2. Suppose that R is semiperfect and let {e1, . . . , en} be a family of primitive orthogonal

idempotents such that
∑

1≤i≤n ei = 1. If a is finitely generated on the left, then there
is an idempotent element e ∈ R (which is a sum of ei’s) such that a = ReR.

For semiperfect rings, we have the following result.

Corollary 7.4. Let R be a semiperfect ring, let {e1, . . . , en} be a complete family
of primitive orthogonal idempotents, and let t = (T ,F) be the right constituent torsion
pair of a TTF triple in R-Mod. The following assertions are equivalent :

1. The heart Ht is a module category ;
2. t is an HKM torsion pair ;
3. There is an idempotent element e ∈ R (which is a sum of ei’s) such that ReR is

finitely generated on the left and ReR is the idempotent ideal which defines the TTF
triple.

Proof. 1) =⇒ 3) By Theorem 4.1, we know that a is finitely generated on the
left. Then assertion 3 follows from Lemma 7.3.

3) =⇒ 2) is a particular case of Corollary 7.2.
2) =⇒ 1) follows from [HKM, Theorem 3.8]. ¤

As a consequence of Theorem 4.1 and Corollary 7.4, we get more significative classes
of rings for which we can identify all the hereditary torsion pairs whose heart is a module
category.

Corollary 7.5. Let t = (T ,F) be a hereditary torsion pair in R-Mod and let Ht

be its heart. The following assertions hold :

1. If R is a local ring and Ht is a module category, then t is either (R-Mod, 0) or
(0, R-Mod);

2. When R is right perfect, Ht is a module category if, and only if, there is an idempotent
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element e ∈ R such that T = {T ∈ R-Mod : eT = 0} and ReR is finitely generated
on the left ;

3. If R is left Artinian (e.g. an Artin algebra), then Ht is always module category.

Proof. 1) By Theorem 3.4, we have a finitely presented R-module V such that
T = Gen(V ) ⊆ Ker(Ext1R(V, ?)). Using Theorem 4.1 and its proof, we get that t′ =
(T ∩ R/t(R)-Mod,F) is the right constituent of a TTF triple in R̄-Mod defined by an
idempotent ideal b̄ = b/t(R) of R̄ := R/t(R) which is finitely generated on the left, where
b = annR(V/t(R)V ). Since R̄ is also a local ring, and hence semiperfect, Lemma 7.3 says
that b̄ = R̄ēR̄, for some idempotent element ē ∈ R̄, which is necessarily equal to 1̄ or 0.
The fact that R̄ ∈ F implies that ē = 1, so that b̄ = R̄ and b = R = annR(V/t(R)V ),
thus V = t(R)V and, by Lemma 5.4, we deduce that V is projective. But all finitely
generated projective modules over a local ring are free. Then we have V = 0 or V = R(n),

for some set n ∈ N, so that either t = (0, R-Mod) or t = (R-Mod, 0).
2) Assume now that R is right perfect and that Ht is a module category. By [S,

Corollary VIII.6.3], we know that t is the right constituent of a TTF triple. By Theorem
4.1, the associated idempotent ideal is finitely generated on the left and, by [S, Corollary
VIII.6.4], we know that it is of the form AeA. Conversely, if e ∈ A is idempotent and
AeA is finitely generated on the left and T = {T ∈ R-Mod : eT = 0}, then Corollary 7.4
says that Ht is a module category.

3) This assertion is a direct consequence of [S, Example VI.8.2] and Corollary 7.4
since all left ideals are finitely generated. ¤

Another consequence of Theorem 7.1 is the following.

Corollary 7.6. Let a be an idempotent ideal of R, which is finitely generated on
the left, let t = (T ,F) be the right constituent torsion pair of the associated TTF triple
in R-Mod and suppose that a ∈ F and that the monoid morphism V (R) −→ V (R/a) is
surjective. Consider the following assertions:

1. Ht is a module category ;
2. There is an epimorphism M // // a, where M is a finitely generated projective

R/t(R)-module which is in C.
3. a is the trace of some finitely generated projective left R-module;
4. t is an HKM torsion pair ;
5. Ht has a progenerator which is a classical tilting complex.

Then the implications 5) =⇒ 4) and 3) =⇒ 4) =⇒ 1) ⇐⇒ 2) hold true. When the
monoid morphism V (R) −→ V (R/t(R)) is also surjective, all assertions are equivalent.

Proof. 3) =⇒ 4) =⇒ 1) and 5) =⇒ 4) follow from Corollaries 7.2 and 3.8.
1) =⇒ 2) Consider the finitely generated projective module P and the exact se-

quence 0 // F // C // aP // 0 given by Theorem 7.1. It follows that
C ∈ F since so do F and aP . But, then, the fact that Ext1R(C, ?)|F = 0 implies that
C is a finitely generated projective R/t(R)-module. Since C generates C ∩ F we get an
epimorphism M := Cn // // a as desired.

2) =⇒ 1) is a direct consequence of Theorem 7.1.
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2) =⇒ 3), 5) (Assuming that the monoid map V (R) // V (R/t(R)) is surjective).
We have a finitely generated projective R-module Q such that M ∼= Q/t(R)Q = Q/t(Q).
But we then get Q = aQ⊕ t(Q) since aM = M and aQ is in F . It follows that M ∼= aQ

is also projective as an R-module. Then we have Gen(M) = Gen(a), so that a = trM (R).
On the other hand, by taking C = M in Theorem 7.1, we know that the complex

G := · · · // 0 // M ⊕M
( jq 0 ) // P // 0 // · · ·

concentrated in degrees −1 and 0, is a progenerator of Ht. ¤

In [MT, Corollary 2.13] (see also [CMT, Lemma 4.1]) the authors proved that a
faithful (not necessarily hereditary) torsion pair in R-Mod has a heart which is a module
category if, and only if, it is an HKM torsion pair. Our next result shows that, for
hereditary torsion pairs, we can be more precise.

Corollary 7.7. Let R be a ring and let t = (T ,F) be a faithful hereditary torsion
pair in R-Mod. Consider the following assertions:

1. There is a finitely generated projective R-module Q such that T = Ker(HomR(Q, ?))
and the trace a of Q in R is finitely generated as a left ideal ;

2. Ht is a module category ;
3. t is an HKM torsion pair ;
4. Ht has a progenerator which is a classical tilting complex ;
5. There is an idempotent ideal a of R which satisfies the following properties:

(a) t is the right constituent torsion pair of the TTF triple defined by a;
(b) there is a progenerator V of R/a-Mod which admits a finitely generated projective

resolution Q
d // P // V // 0 in R-Mod satisfying the following two

properties:
i. Ker(d) ⊆ aQ;

ii. there is a morphism Q(J) h // a, for some set J , such that h|Ker(d)(J) :
Ker(d)(J) // a is an epimorphism.

Then the implications 1) =⇒ 2) ⇐⇒ 3) ⇐⇒ 4) ⇐⇒ 5) hold true. When the monoid
morphism V (R) // V (R/I) is surjective, for all idempotent two-sided ideals I of R,
all assertions are equivalent.

Proof. 1) =⇒ 2) follows from Corollary 7.2.
2) =⇒ 4) follows from [CMT, Lemma 4.1].
4) =⇒ 3) is a consequence of Corollary 3.8.
3) =⇒ 2) follows from [HKM, Theorems 2.10 and 2.15].
2), 4) =⇒ 5) By Corollary 4.2, we know that t is the right constituent of a TTF triple

in R-Mod defined by an idempotent ideal a which is finitely generated on the left. Let now

fix a classical tilting complex G := · · · // 0 // Q
d // P // 0 // · · ·

which is a progenerator of Ht. Assertion 5 follows by taking V = H0(G) and by applying
Theorem 4.1 to G.
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5) =⇒ 3) follows by taking the complex P • = G := · · · // 0 // Q
d //

P // 0 // · · · , concentrated in degrees −1 and 0, and applying Corollary 3.8.
2) =⇒ 1) (Assuming that V (R) // V (R/I) is surjective, for all two-sided ideals

I of R). It is a consequence of Corollary 7.6. ¤

Corollary 7.8. Let a be a two-sided idempotent ideal of R whose associated
TTF triple (C, T ,F) is left split and put t = (T ,F). Then Ht is equivalent to R/t(R)×
R/a-Mod. When the TTF triple is centrally split, then Ht is equivalent to R-Mod.

Proof. In this case a is a direct summand of RR, whence projective, so that
Example 5.8 and Proposition 5.1 apply. Note that then V = R/a is a projective left
R-module, which implies that Ht is equivalent to S-Mod, where S ∼= EndR(R/t(R))op×
EndR(R/a)op ∼= R/t(R)×R/a.

When the TTF triple is centrally split, we have a central idempotent e such that
a = Re and t(R) = R(1 − e), so that R/a ∼= R(1 − e) and R/t(R) ∼= Re. The result in
this case follows immediately since we have a ring isomorphism R ∼= Re×R(1− e). ¤

8. Some examples.

We now give a few examples which illustrate the results obtained in the previous
sections. All of them refer to finite dimensional algebras over a field which are given by
quivers and relations. We refer the reader to [ASS, Chapter II] for the terminology that
we use.

Example 8.1. Let Qn : 1 // 2 // · · · // n (n > 1) be the Dynkin
quiver of type A, let R = KQn the corresponding path algebra, where K is any field,
and let us take a = RenR. If (C, T ,F) is the TTF triple associated to a and t = (T ,F) is
its right constituent torsion pair, then Ht is equivalent to K×KQn−1-Mod. In particular
D(R) and D(Ht) are not equivalent triangulated categories.

Proof. We have that a = Ren and this shows that enR(1 − en) = 0 and that a

is projective and injective as left R-module. Since R is hereditary we conclude that C
consists of injective modules. Therefore (C, T ,F) is a left split TTF triple (see also [NS,
Theorem 3.1]).

On the other hand, we have that t(R) = R(1− en)⊕ Jen, where J is the Jacobson
radical of R. This implies that R/t(R) ∼= K. On the other hand, we clearly have that
R/a is isomorphic to the path algebra KQn−1 of type An−1. Then, by Corollary 7.8, we
have Ht

∼= K ×KQn−1-Mod. Moreover R = KQn and K ×KQn−1 cannot be derived
equivalent algebras because their centers (= 0-th Hochschild cohomology spaces) are not
isomorphic (see [R2, Proposition 2.5]). ¤

Example 8.2. Let K be a field and R be the K-algebra given by the following
quiver and relations:

1
α //

β
// 2

γ //

δ
// 3 αδ, βγ and αγ-βδ



1456 C. E. Parra and M. Saoŕın

Let a be an idempotent ideal of R, let (C, T ,F) be the associated TTF triple in
R-Mod and let t = (T ,F) be its right constituent torsion pair. The following facts are
true:

1. If a = Re1R then Ht has a progenerator which is a sum of stalk complexes and
Ht

∼= KΓ-Mod, where Γ is the quiver 2
//
// 3 // 1. The algebra R is then tilted

of type Γ.
2. If a = Re2R then Ht is equivalent to K ×K ×K-Mod.
3. If a = R(e1 + e2)R then Ht does not have a sum of stalk complexes as a progenerator

and Ht
∼= S-Mod, where S is the algebra given by the following quiver and relations

2
µ2 //

µ1 //

µ3 //
3

π1 //

π2
// 1

µ1π2 = µ3π1 = 0;

µ1π1 = −µ2π2

µ2π1 = µ3π2.

The algebras R and S are derived equivalent and, hence, S is piecewise hereditary
(i.e. derived equivalent to a hereditary algebra).

Proof. Using a classical visualization of modules via diagrams (see, e.g., [F]), the
indecomposable projective left R-modules can be depicted as:

1 2

ÄÄ
ÄÄ

ÄÄ
ÄÄ

??
??

??
??

3

KKKKKKKKKKK

sssssssssss

1α 1β 2γ

JJJJJJJJJJ 2δ

tttttttttt

1(αγ = βδ)

By Corollary 7.7, whenever t is faithful, if Ht is equivalent to S-Mod, then S and
R are derived equivalent. Even more, in that case R[1] is a tilting object of Ht, which
implies that R and S are tilting-equivalent.

1) In this case we have a = Soc(RR) ∼= S
(4)
1

∼= Re
(4)
1 , so that a is projective in R-Mod

and t is a faithful torsion pair. Then we have that Ext2R(R/a, ?) ≡ 0 and, by Example
5.8, we conclude that R/a⊕a[1] is a progenerator of Ht. It follows that G := R/a⊕S1[1]
is also a progenerator of Ht.

We put A := R/a, which is isomorphic to the Kronecker algebra: 2
//
// 3 and

which we also view as a left R module annihilated by a. Then Ht is equivalent to S-Mod,
where S = EndHt

(G)op ∼=
(

EndA(S1)
op 0

Ext1R(A,S1) A

) ∼=
(

K 0
Ext1R(A,S1) A

)
.

Note that A = S2 ⊕ Re3/Rαγ as left R-module, so that we have a vector space
decomposition Ext1R(A,S1) ∼= Ext1R(S2, S1)⊕Ext1R(Re3/Rαγ, S1). Let ε′ be the element
of Ext1R(A,S1) represented by the short exact sequence
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0 // S1
� � // Re3

// Re3

Rαγ
// 0

The assignment a Ã aε′ gives an isomorphism of left A-modules Ae3
∼ // Ext1R(A,S1),

so that the algebra S is isomorphic to
(

K 0
Ae3 A

) ∼= KΓ, where Γ is the quiver
2

//
// 3 // 1.

2) We have that a = Re2R = Re2⊕Je3 is not projective and that R/Re2R ∼= S1⊕S3

in R-Mod. We then get that F = {F ∈ R-Mod : Soc(F ) ∈ Add(S2)}, so that t is not
faithful. The minimal projective resolution of Je3 is of the form 0 // P (3)

1
// P (2)

2
// Je3

// 0, where P1 = S1 is simple projective. It follows that

Ext2R

(
R

a
, F

)
∼= Ext2R(S1 ⊕ S3, F ) ∼= Ext2R(S3, F ) ∼= Ext1R(Je3, F ) = 0,

for each F ∈ F . By Example 5.8, we know that (R/a)[0]⊕ (a/t(a))[1] ∼= (S1 ⊕ S3)[0]⊕
S

(3)
1 [1] is a progenerator of Ht, which implies that G := (S1 ⊕ S3)[0] ⊕ S1[1] is also

a progenerator of Ht. Since we have Ext1R(S1, S1) = 0 = Ext1R(S3, S1), we get from
Proposition 5.1 that Ht is equivalent to S-Mod, where S = EndR(S1)op × EndR(S1 ⊕
S3)op ∼= K ×K ×K.

3) We have isomorphisms a = R(e1 + e2)R ∼= Re1 ⊕ Re2 ⊕ Je3 and R/a ∼= S3 in
R-Mod, and this implies that F = {F ∈ R-Mod : Soc(F ) ∈ Add(S1 ⊕ S2)} and that F
is faithful. Since Ext2R(S3, S1) 6= 0, this time we do not have a sum of stalk complexes
as a progenerator of Ht. Instead, inspired by the proof of Corollary 7.6, we consider the
minimal projective resolution of S3

∼= R/a

0 // P (3)
1

// P (2)
2

d′ // P3
// S3

// 0

and take the complex G′ := · · · // 0 // P (2)
2

d′ // P3
// 0 // · · · , con-

centrated in degrees −1 and 0. Now the complex G := G′ ⊕ P1[1] ⊕ P2[1] satisfies
all conditions in assertion 2 of Corollary 3.8, so that it is a progenerator of Ht and
Ht

∼= S-Mod, where S =
(

EndR(P1⊕P2)
op HomD(R)(P1[1]⊕P2[2],G

′)
HomD(R)(G

′,P1[1]⊕P2[2]) EndD(R)(G
′)op

)
.

We clearly have EndR(P1 ⊕ P2)op ∼=
(

EndR(P2)
op 0

HomR(P1,P2) EndR(P1)
op

) ∼=
(

K 0
K2 K

)
=: A,

which is isomorphic to the Kronecker algebra. Moreover, the 0-homology functor defines
an isomorphism EndD(R)(G′)

∼ // EndR(H0(G′)) ∼= EndR(S3) ∼= K. On the other
hand, HomD(R)(G′, P1[1]⊕P2[1]) is a 2-dimensional vector space, where a basis {π1, π2}
is induced by the two projections P

(2)
2

// // P2. Similarly, HomD(R)(P1[1]⊕P2[2], G′) is
a 3-dimensonal vector space with a basis {µi : i = 1, 2, 3} induced by the monomorphisms
P1 = Re1

� � // P (2)
2 which map e1 onto (β, 0), (α,−β) and (0, α), respectively. Since

the multiplication in S is given by anti-composition of the entries, we easily get that
πiµj = µj ◦ πi = 0, for all i, j. On the other hand, we have:
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µ3π1 = π1 ◦ µ3 = 0 = π2 ◦ µ1 = µ1π2

µ1π1 = π1 ◦ µ1 = −π2 ◦ µ2 = −µ2π2 =
(

0 0
ρβ 0

)
: P1 ⊕ P2

// P1 ⊕ P2

µ2π1 = π1 ◦ µ2 = π3 ◦ µ2 = µ2π3 =
(

0 0
ρα 0

)
: P1 ⊕ P2

// P1 ⊕ P2

where ρx : P1 = Re1
// P2 maps a Ã ax, for each x ∈ P2. It easily follows that S is

given by quivers and relations as claimed in the statement. ¤

Given a finite quiver Q with no oriented cycle, a path p will be called a maximal
path when its origin is a source and its terminus is a sink. We put D = HomK(?,KQ) =
KQ−modop ∼=←→ mod−KQ to denote the usual duality between finitely generated left
and right KQ-modules.

Example 8.3. Let Q be a finite connected quiver with no oriented cycles which
is different from 1 → · · · → n, and let i ∈ Q0 be a source. Let us form a new quiver
Q̂ as follows. We put Q̂0 = Q0 and the arrows of Q̂ are the arrows of Q plus an arrow
αp : t(p) → i, for each maximal path p in Q. Given a field K, we consider the K-algebra
R with quiver Q̂ and relations:

1. αpβ = 0, for each β ∈ Q1 and each maximal path p in Q;
2. p′αp = q′αq, whenever p′ and q′ are paths in Q such that s(p′) = s(q′) and there is a

path π : j → · · · → s(p′) = s(q′) in Q such that πp′ = p and πq′ = q.

We identify KQ-Mod with the full subcategory of R-Mod consisting of the R-modules
annihilated by the two-sided ideal generated by the αp. Then t = (KQ−Inj, (KQ−Inj)⊥)
is a non-tilting torsion pair in R-Mod such that D(KQ)[0] is a progenerator of Ht.

Proof. Let M be the set of maximal path in Q and consider the paths of Q as
the canonical basis B of KQ. Its dual basis is denoted by B∗. Consider the assignment∑

p∈M apαp Ã
( ∑

p∈M app
∗) ⊗ ēi, where ap ∈ KQet(p) for each p ∈ M and ēi =

ei+eiJ ∈ eiKQ/eiJ is the canonical element. Here J = J(KQ) is the Jacobson radical, a
basis of which is given by the paths of length > 0. This assignment defines an isomorphism
of KQ-bimodules

a :=
∑

p∈M
RαpR =

∑

p∈M
Rαp

∼=−→ D(KQ)⊗K
eiKQ

eiJ
=: M.

Moreover, it is the restriction of an algebra isomorphism R
∼=−→ KQ oM which maps

ei Ã (ei, 0), β Ã (β, 0) and αp Ã (0, p∗ ⊗ ēi), for all i ∈ Q0, all β ∈ Q1 and all p ∈M.
Our hypotheses on Q guarantee that there is no projective-injective KQ-module.

Then D(KQ) is a classical 1-tilting KQ-module whose associated torsion pair in
KQ-Mod, namely t = (KQ − Inj, (KQ − Inj)⊥), is faithful. On the other hand, the
fact that i is a source and Q is connected implies that eiKQ/eiJ⊗KQ D(KQ) = 0. Then
Theorem 6.2 applies, with A = KQ, V = D(KQ) and X = eiKQ/eiJ . ¤
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