Vol. 68, No. 1 (2016) pp. 425–440 doi: 10.2969/jmsj/06810425

Generalized coderivations of bicomodules

By Hiroaki Komatsu

(Received May 2, 2014)

Abstract. We introduce a generalized coderivation from a bicomodule to a bicomodule over corings, which is a generalization of a coderivation. For each $(\mathcal{D}, \mathcal{C})$ -bicomodule N over corings \mathcal{C} and \mathcal{D} , we construct the universal generalized coderivation $v_N: \mathcal{U}(N) \to N$ such that every generalized coderivation from a $(\mathcal{D}, \mathcal{C})$ -bicomodule M to N is uniquely expressed as $v_N \circ f$ with some $(\mathcal{D}, \mathcal{C})$ -bicomodule map $f: M \to \mathcal{U}(N)$. $\mathcal{U}(N)$ is isomorphic to the cotensor product of N and $\mathcal{U}(\mathcal{D} \otimes_R \mathcal{C})$. We show that a coring \mathcal{C} is coseparable if and only if, for any coring \mathcal{D} , all generalized coderivations from a $(\mathcal{D}, \mathcal{C})$ -bicomodule to a $(\mathcal{D}, \mathcal{C})$ -bicomodule are inner.

1. Introduction.

A coderivation of a coalgebra was introduced by Doi [3] and Nakajima [8]. This notion was extended by Guzman [5] to a cointegration from a bicomodule to another bicomodule over corings. Recently, a generalized coderivation of a coalgebra was introduced by Nakajima [10], which is a dual notion of a generalized derivation of an algebra defined by Nakajima [9]. In [6] the author of this paper extended a generalized derivation to a map from a bimodule to a bimodule. Dualizing this notion, we can extend the definition of a generalized coderivation to a map from a bicomodule to a bicomodule over corings.

In this paper, we investigate this new generalized coderivation. The definition is given in Section 2. In Section 3, we construct a universal generalized coderivation. For each $(\mathcal{D}, \mathcal{C})$ -bicomodule N over corings \mathcal{C} and \mathcal{D} , there exists a $(\mathcal{D}, \mathcal{C})$ -bicomodule $\mathcal{U}(N)$ and a generalized coderivation $v_N : \mathcal{U}(N) \to N$ such that every generalized coderivation from a $(\mathcal{D}, \mathcal{C})$ -bicomodule M to N is uniquely expressed as $v_N \circ f$ with some $(\mathcal{D}, \mathcal{C})$ -bicomodule map $f: M \to \mathcal{U}(N)$. Moreover, in Section 4, we show that $\mathcal{U}(N)$ is isomorphic to $N \square_{\mathcal{D}^{\text{cop}} \otimes_R \mathcal{C}} \mathcal{U}(\mathcal{D} \otimes_R \mathcal{C})$ as $(\mathcal{D}, \mathcal{C})$ -bicomodule. Finally, in Section 5, we characterize a coseparable coring. A coderivation was introduced in the context of cohomology theory of coalgebras in [3], and it was proved that a coalgebra is coseparable if and only if all coderivations are inner. This result was extended in [5] for cointegrations. We prove a corresponding result for our generalized coderivations.

Throughout this paper, R denotes a commutative ring with an identity element, every algebra is an associative R-algebra with an identity element, and every module is unitary. Every coring has a counit and every comodule is counitary. Notations are based on [2]. For an R-algebra A, the category of right A-modules is denoted by \mathbf{M}_A . For R-algebras A and B, the category of (B, A)-bimodules on which right and left actions

 $^{2010\} Mathematics\ Subject\ Classification.\ \ Primary\ 16T15.$

Key Words and Phrases. coring, generalized coderivation, coseparable coring.

of R coincide is denoted by ${}_{B}\mathbf{M}_{A}$. If $X, Y \in {}_{B}\mathbf{M}_{A}$, then the set of all (B, A)-bimodule maps from X to Y is denoted by ${}_{B}\mathbf{Hom}_{A}(X,Y)$. For a coring \mathcal{C} , its coproduct is denoted by $\Delta_{\mathcal{C}}$, its counit is denoted by $\varepsilon_{\mathcal{C}}$, and the category of right \mathcal{C} -comodules is denoted by $\mathbf{M}^{\mathcal{C}}$. For corings \mathcal{C} and \mathcal{D} , the category of $(\mathcal{D},\mathcal{C})$ -bicomodules is denoted by ${}^{\mathcal{D}}\mathbf{M}^{\mathcal{C}}$. For $M \in {}^{\mathcal{D}}\mathbf{M}^{\mathcal{C}}$, the right and left coactions on M are denoted by ρ^{M} and ${}^{M}\rho$, respectively, and we set ${}^{M}\rho^{M} = ({}^{M}\rho \otimes I_{\mathcal{C}}) \circ \rho^{M}$. If \mathcal{C} is an A-coring and \mathcal{D} is a B-coring, then, for $M, N \in {}^{\mathcal{D}}\mathbf{M}^{\mathcal{C}}$, ${}^{\mathcal{D}}\mathbf{Hom}^{\mathcal{C}}(M, N)$, ${}_{B}\mathbf{Hom}^{\mathcal{C}}(M, N)$, and ${}^{\mathcal{D}}\mathbf{Hom}_{A}(M, N)$ denote the set of all $(\mathcal{D}, \mathcal{C})$ -bicomodule maps, the set of all right \mathcal{C} -comodule left B-module maps, and the set of all left \mathcal{D} -comodule right A-module maps from M to N, respectively. The identity map of a set X is denoted by I_{X} .

2. Definition of generalized coderivations.

In this section, A and B will represent R-algebras, C an A-coring, and D a B-coring.

DEFINITION 2.1. For each $M, N \in {}^{\mathcal{D}}\mathbf{M}^{\mathcal{C}}$, we shall define an R-linear map

$$Q_{M,N}: {}_{B}\mathrm{Hom}_{A}(M,N) \to {}_{B}\mathrm{Hom}_{A}(M, \mathcal{D} \otimes_{B} N \otimes_{A} \mathcal{C}).$$

For $f \in {}_{B}\mathrm{Hom}_{A}(M,N)$, we can consider the following diagram:

Using maps appeared in this diagram, we set

$$Q_{M,N}(f) = (I_{\mathcal{D}} \otimes \rho^{N}) \circ {}^{N}\!\rho \circ f - (I_{\mathcal{D}} \otimes \rho^{N}) \circ (I_{\mathcal{D}} \otimes f) \circ {}^{M}\!\rho$$
$$- ({}^{N}\!\rho \otimes I_{\mathcal{C}}) \circ (f \otimes I_{\mathcal{C}}) \circ \rho^{M} + (I_{\mathcal{D}} \otimes f \otimes I_{\mathcal{C}}) \circ ({}^{M}\!\rho \otimes I_{\mathcal{C}}) \circ \rho^{M}.$$

In other words, using the maps $M \to \mathcal{D} \otimes_B N \otimes_A \mathcal{C}$ appeared in the above diagram, we set

$$Q_{M,N}(f) = (\text{a map through } f) - (\text{a map through } I_{\mathcal{D}} \otimes f)$$

- (a map through $f \otimes I_{\mathcal{C}}$) + (a map through $I_{\mathcal{D}} \otimes f \otimes I_{\mathcal{C}}$).

If f is a $(\mathcal{D}, \mathcal{C})$ -bicomodule map, then the above diagram is commutative. Hence we get the next

LEMMA 2.2. Let A and B be R-algebras, C an A-coring, D a B-coring, L, M, $N \in {}^{\mathcal{D}}\mathbf{M}^{\mathcal{C}}$, and $f \in {}_{\mathcal{B}}\mathrm{Hom}_{\Delta}(M,N)$. Then

- (1) $Q_{L,N}(f \circ g) = Q_{M,N}(f) \circ g \text{ for all } g \in {}^{\mathcal{D}}\mathrm{Hom}^{\mathcal{C}}(L,M).$
- (2) $Q_{M,L}(h \circ f) = (I_{\mathcal{D}} \otimes h \otimes I_{\mathcal{C}}) \circ Q_{M,N}(f)$ for all $h \in {}^{\mathcal{D}}\mathrm{Hom}^{\mathcal{C}}(N,L)$.

The next is an immediate consequence of Lemma 2.2.

COROLLARY 2.3. Q is a natural transformation.

DEFINITION 2.4. We define the functor

$${}^{\mathcal{D}}\mathrm{GCoder}^{\mathcal{C}}:\left({}^{\mathcal{D}}\mathbf{M}^{\mathcal{C}}\right)^{op}\times{}^{\mathcal{D}}\mathbf{M}^{\mathcal{C}}\rightarrow\mathbf{M}_{R}$$

as the kernel of the natural transformation Q, i.e., ${}^{\mathcal{D}}GCoder^{\mathcal{C}}$ is the subfunctor of ${}_{B}Hom_{A}: ({}^{\mathcal{D}}\mathbf{M}^{\mathcal{C}})^{op} \times {}^{\mathcal{D}}\mathbf{M}^{\mathcal{C}} \to \mathbf{M}_{R}$ determined by ${}^{\mathcal{D}}GCoder^{\mathcal{C}}(M, N) = \operatorname{Ker} Q_{M,N}$ for M, $N \in {}^{\mathcal{D}}\mathbf{M}^{\mathcal{C}}$. An element of ${}^{\mathcal{D}}GCoder^{\mathcal{C}}(M, N)$ is called a *generalized coderivation*.

THEOREM 2.5. Let A and B be R-algebras, C an A-coring, and D a B-coring. Let $M = \coprod_{i \in I} M_i$ be a coproduct in ${}^{\mathcal{D}}\mathbf{M}^{\mathcal{C}}$ with the structure maps $\iota_i : M_i \to M$ $(i \in I)$ and $N = \prod_{j \in J} N_j$ a finite product in ${}^{\mathcal{D}}\mathbf{M}^{\mathcal{C}}$ with the structure maps $\pi_j : N \to N_j$ $(j \in J)$. Then, the R-linear map

$${}^{\mathcal{D}}\mathrm{GCoder}^{\mathcal{C}}(M,N)\ni f\mapsto (\pi_j\circ f\circ\iota_i)\in\prod_{(i,j)\in I\times J}{}^{\mathcal{D}}\mathrm{GCoder}^{\mathcal{C}}(M_i,\,N_j)$$

is an isomorphism.

PROOF. It is well-known that the R-linear map

$${}_{B}\mathrm{Hom}_{A}(M,N)\ni f\mapsto (\pi_{j}\circ f\circ \iota_{i})\in \prod_{(i,j)\in I\times J}{}_{B}\mathrm{Hom}_{A}(M_{i},\,N_{j})$$

is an isomorphism. Let $f \in {}_{B}\mathrm{Hom}_{A}(M,N)$. Then, by Lemma 2.2, we have

$$Q_{M_i,N_j}(\pi_j \circ f \circ \iota_i) = (I_{\mathcal{D}} \otimes \pi_j \otimes I_{\mathcal{C}}) \circ Q_{M,N}(f) \circ \iota_i$$

for all $i \in I$ and $j \in J$. Since $I_{\mathcal{D}} \otimes \pi_j \otimes I_{\mathcal{C}}$ $(j \in J)$ are the structure maps of the finite product $\mathcal{D} \otimes_B N \otimes_A \mathcal{C} = \prod_{j \in J} \mathcal{D} \otimes_B N_j \otimes_A \mathcal{C}$, $Q_{M,N}(f) = 0$ is equivalent to $Q_{M_i,N_j}(\pi_j \circ f \circ \iota_i) = 0$ for all $i \in I$ and $j \in J$. Hence, we get the assertion.

DEFINITION 2.6. For each $M, N \in {}^{\mathcal{D}}\mathbf{M}^{\mathcal{C}}$, we set

$${}^{\mathcal{D}}\mathrm{GInCoder}^{\mathcal{C}}(M,N) = {}_{B}\mathrm{Hom}^{\mathcal{C}}(M,N) + {}^{\mathcal{D}}\mathrm{Hom}_{A}(M,N).$$

An element of ${}^{\mathcal{D}}$ GInCoder ${}^{\mathcal{C}}(M,N)$ is called a generalized inner coderivation.

We can easily see the next

LEMMA 2.7. ${}^{\mathcal{D}}$ GInCoder $^{\mathcal{C}}(M,N)$'s determine a subfunctor of ${}^{\mathcal{D}}$ GCoder $^{\mathcal{C}}$.

We shall show that our generalized coderivation is a generalization of a generalized coderivation introduced in Nakajima [10].

Let $M \in {}^{\mathcal{C}}\mathbf{M}^{\mathcal{C}}$. According to [5], a map f in ${}_{A}\mathrm{Hom}_{A}(M,\mathcal{C})$ is called a coderivation if $\Delta_{\mathcal{C}} \circ f = (f \otimes I_{\mathcal{C}}) \circ \rho^{M} + (I_{\mathcal{C}} \otimes f) \circ {}^{M}\rho$. A map f in ${}_{A}\mathrm{Hom}_{A}(M,\mathcal{C})$ is called a Nakajima's generalized coderivation if $\Delta_{\mathcal{C}} \circ f - (f \otimes I_{\mathcal{C}}) \circ \rho^{M} - (I_{\mathcal{C}} \otimes f) \circ {}^{M}\rho$ is a $(\mathcal{C},\mathcal{C})$ -bicomodule map.

THEOREM 2.8. Let A be an R-algebra, C an A-coring, $M \in {}^{\mathcal{C}}\mathbf{M}^{\mathcal{C}}$, and $f \in {}_{A}\mathrm{Hom}_{A}(M,\mathcal{C})$. Then $f \in {}^{\mathcal{C}}\mathrm{GCoder}^{\mathcal{C}}(M,\mathcal{C})$ if and only if f is a Nakajima's generalized coderivation.

Proof. We set

$$h = \Delta_{\mathcal{C}} \circ f - (f \otimes I_{\mathcal{C}}) \circ \rho^{M} - (I_{\mathcal{C}} \otimes f) \circ {}^{M}\rho.$$

Then we see that

$$(I_{\mathcal{C}} \otimes \Delta_{\mathcal{C}}) \circ h = (I_{\mathcal{C}} \otimes \Delta_{\mathcal{C}}) \circ \Delta_{\mathcal{C}} \circ f - (I_{\mathcal{C}} \otimes \Delta_{\mathcal{C}}) \circ (f \otimes I_{\mathcal{C}}) \circ \rho^{M}$$
$$- (I_{\mathcal{C}} \otimes \Delta_{\mathcal{C}}) \circ (I_{\mathcal{C}} \otimes f) \circ {}^{M}\!\rho$$
(2.1)

and

$$(h \otimes I_{\mathcal{C}}) \circ \rho^{M}$$

$$= (\Delta_{\mathcal{C}} \otimes I_{\mathcal{C}}) \circ (f \otimes I_{\mathcal{C}}) \circ \rho^{M} - (f \otimes I_{\mathcal{C}} \otimes I_{\mathcal{C}}) \circ (\rho^{M} \otimes I_{\mathcal{C}}) \circ \rho^{M}$$

$$- (I_{\mathcal{C}} \otimes f \otimes I_{\mathcal{C}}) \circ ({}^{M}\rho \otimes I_{\mathcal{C}}) \circ \rho^{M}. \tag{2.2}$$

By definition we have

$$Q_{M,\mathcal{C}}(f) = (I_{\mathcal{C}} \otimes \Delta_{\mathcal{C}}) \circ \Delta_{\mathcal{C}} \circ f - (I_{\mathcal{C}} \otimes \Delta_{\mathcal{C}}) \circ (I_{\mathcal{C}} \otimes f) \circ {}^{M}\rho$$
$$- (\Delta_{\mathcal{C}} \otimes I_{\mathcal{C}}) \circ (f \otimes I_{\mathcal{C}}) \circ \rho^{M} + (I_{\mathcal{C}} \otimes f \otimes I_{\mathcal{C}}) \circ ({}^{M}\rho \otimes I_{\mathcal{C}}) \circ \rho^{M}. \tag{2.3}$$

The commutative diagram

$$M \xrightarrow{\rho^{M}} M \otimes_{A} C \xrightarrow{f \otimes I_{C}} C \otimes_{A} C$$

$$\downarrow^{I_{M} \otimes \Delta_{C}} \bigvee^{I_{C} \otimes \Delta_{C}} M \otimes_{A} C \otimes_{A} C \xrightarrow{f \otimes I_{C} \otimes I_{C}} C \otimes_{A} C \otimes_{A} C$$

shows that

$$(I_{\mathcal{C}} \otimes \Delta_{\mathcal{C}}) \circ (f \otimes I_{\mathcal{C}}) \circ \rho^{M} = (f \otimes I_{\mathcal{C}} \otimes I_{\mathcal{C}}) \circ (\rho^{M} \otimes I_{\mathcal{C}}) \circ \rho^{M}. \tag{2.4}$$

Combining the equations (2.1), (2.2), (2.3), and (2.4), we get

$$Q_{M,\mathcal{C}}(f) = (I_{\mathcal{C}} \otimes \Delta_{\mathcal{C}}) \circ h - (h \otimes I_{\mathcal{C}}) \circ \rho^{M}.$$

Hence $f \in {}^{\mathcal{C}}GCoder^{\mathcal{C}}(M,\mathcal{C})$ if and only if h is a right \mathcal{C} -comodule map. Similarly $f \in {}^{\mathcal{C}}GCoder^{\mathcal{C}}(M,\mathcal{C})$ if and only if h is a left \mathcal{C} -comodule map.

Let $M \in {}^{\mathcal{C}}\mathbf{M}^{\mathcal{C}}$. We consider well-known R-isomorphisms

$$\mathfrak{R}_M: {}_A\mathrm{Hom}_A(M,A) \to {}_A\mathrm{Hom}^{\mathcal{C}}(M,\mathcal{C})$$
 and
$$\mathfrak{L}_M: {}_A\mathrm{Hom}_A(M,A) \to {}^{\mathcal{C}}\mathrm{Hom}_A(M,\mathcal{C}).$$

For $\xi \in {}_{A}\mathrm{Hom}_{A}(M,A),\,\mathfrak{R}_{M}(\xi)$ is the composition map

$$M \xrightarrow{\rho^M} M \otimes_A \mathcal{C} \xrightarrow{\xi \otimes I_{\mathcal{C}}} A \otimes_A \mathcal{C} \xrightarrow{\text{canonical isom.}} \mathcal{C}$$

and $\mathfrak{L}_M(\xi)$ is the composition map

$$M \xrightarrow{M_{\rho}} \mathcal{C} \otimes_A M \xrightarrow{I_C \otimes \xi} \mathcal{C} \otimes_A A \xrightarrow{\text{canonical isom.}} \mathcal{C}.$$

Usually $\mathfrak{R}_M(\xi)$ and $\mathfrak{L}_M(\xi)$ are represented by $(\xi \otimes I_{\mathcal{C}}) \circ \rho^M$ and $(I_{\mathcal{C}} \otimes \xi) \circ {}^M\!\rho$, respectively. According to [5], a map of the form $\mathfrak{R}_M(\xi) - \mathfrak{L}_M(\xi)$ with some $\xi \in {}_A\mathrm{Hom}_A(M,A)$ is called an *inner coderivation*. Obviously every inner coderivation is a generalized inner coderivation.

3. Universal generalized coderivation.

In this section, we construct the universal coderivations. We will use the following notations. Let A and B be R-algebras, C an A-coring, D a B-coring, and $M \in {}^{\mathcal{D}}\mathbf{M}^{\mathcal{C}}$. We denote by ε^M the composition map

$$M \otimes_{\mathcal{A}} \mathcal{C} \xrightarrow{I_M \otimes_{\mathcal{E}_{\mathcal{C}}}} M \otimes_{\mathcal{A}} A \xrightarrow{\text{canonical isom.}} M.$$

Similarly, we denote by ${}^{M}\varepsilon$ the composition map

$$\mathcal{D} \otimes_B M \xrightarrow{\varepsilon_{\mathcal{D}} \otimes I_M} B \otimes_B M \xrightarrow{\text{canonical isom.}} M.$$

We denote by ${}^{M}\varepsilon^{M}$ the composition map

$$\mathcal{D} \otimes_{\mathcal{B}} M \otimes_{\mathcal{A}} \mathcal{C} \xrightarrow{\varepsilon_{\mathcal{D}} \otimes I_{M} \otimes \varepsilon_{\mathcal{C}}} B \otimes_{\mathcal{B}} M \otimes_{\mathcal{A}} A \xrightarrow{\text{canonical isom.}} M.$$

Usually, ε^M , ${}^M \varepsilon$, and ${}^M \varepsilon^M$ are represented by $I_M \otimes \varepsilon_C$, $\varepsilon_D \otimes I_M$, and $\varepsilon_D \otimes I_M \otimes \varepsilon_C$, respectively. We set

$$e^M = \rho^M \circ \varepsilon^M$$
, $Me = M\rho \circ M\varepsilon$, and $Me^M = M\rho^M \circ M\varepsilon^M$.

DEFINITION 3.1. Let A and B be R-algebras, \mathcal{C} an A-coring, and \mathcal{D} a B-coring. We define the natural transformation $E: \mathcal{D} \otimes_B (\) \otimes_A \mathcal{C} \to \mathcal{D} \otimes_B (\) \otimes_A \mathcal{C}$ of (B,A)-bimodule maps by setting

$$E_M = I_{\mathcal{D} \otimes_{\mathcal{B}} M \otimes_{\mathcal{A}} \mathcal{C}} - I_{\mathcal{D}} \otimes e^M - {}^M e \otimes I_{\mathcal{C}} + {}^M e^M$$

for every $M \in {}^{\mathcal{D}}\mathbf{M}^{\mathcal{C}}$. We define the functor $\mathcal{U} : {}^{\mathcal{D}}\mathbf{M}^{\mathcal{C}} \to {}_{B}\mathbf{M}_{A}$ as the kernel of the natural transformation E. For each $M \in {}^{\mathcal{D}}\mathbf{M}^{\mathcal{C}}$, let

$$v_M:\mathcal{U}(M)\to M$$

denote the restriction map of ${}^{M}\varepsilon^{M}$ to $\mathcal{U}(M)$.

By definition, for any $M, N \in {}^{\mathcal{D}}\mathbf{M}^{\mathcal{C}}$ and $f \in {}^{\mathcal{D}}\mathrm{Hom}^{\mathcal{C}}(M, N)$, the diagram of (B, A)-bimodule maps

$$0 \longrightarrow \mathcal{U}(M) \xrightarrow{\text{inclusion}} \mathcal{D} \otimes_{B} M \otimes_{A} \mathcal{C} \xrightarrow{E_{M}} \mathcal{D} \otimes_{B} M \otimes_{A} \mathcal{C}$$

$$\downarrow I_{\mathcal{D}} \otimes f \otimes I_{\mathcal{C}} \downarrow \qquad \qquad \downarrow I_{\mathcal{D}} \otimes f \otimes I_{\mathcal{C}}$$

$$0 \longrightarrow \mathcal{U}(N) \xrightarrow{\text{inclusion}} \mathcal{D} \otimes_{B} N \otimes_{A} \mathcal{C} \xrightarrow{E_{N}} \mathcal{D} \otimes_{B} N \otimes_{A} \mathcal{C}$$

is commutative and two rows are exact.

LEMMA 3.2. Let A and B be R-algebras, C an A-coring, and D a B-coring. For every $M \in {}^{\mathcal{D}}\mathbf{M}^{\mathcal{C}}$, there hold the following.

- (1) ${}^{M}e \otimes I_{\mathcal{C}}$ and $I_{\mathcal{D}} \otimes e^{M}$ are commuting idempotents in the endomorphism ring ${}_{B}\operatorname{Hom}_{A}(\mathcal{D} \otimes_{B} M \otimes_{A} \mathcal{C}, \ \mathcal{D} \otimes_{B} M \otimes_{A} \mathcal{C})$ and ${}^{M}e^{M} = ({}^{M}e \otimes I_{\mathcal{C}}) \circ (I_{\mathcal{D}} \otimes e^{M})$ holds.
- $(2) E_M = (I_{\mathcal{D} \otimes_B M \otimes_A \mathcal{C}} {}^M e \otimes I_{\mathcal{C}}) \circ (I_{\mathcal{D} \otimes_B M \otimes_A \mathcal{C}} I_{\mathcal{D}} \otimes e^M).$
- (3) $E_M \circ E_M = E_M$.
- (4) $\mathcal{U}(M)$ is a direct summand of $\mathcal{D} \otimes_B M \otimes_A \mathcal{C}$ as a (B, A)-bimodule.
- (5) $E_M = Q_{\mathcal{D} \otimes_B M \otimes_A \mathcal{C}, M}(^M \varepsilon^M).$

PROOF. (1) Since $\varepsilon^M \circ \rho^M = I_M$, ${}^M\!\varepsilon \circ {}^M\!\rho = I_M$, and ${}^M\!\varepsilon^M \circ {}^M\!\rho^M = I_M$, we have $e^M \circ e^M = e^M$, ${}^M\!e \circ {}^M\!e = {}^M\!e$, and ${}^M\!e^M \circ {}^M\!e^M = {}^M\!e^M$. In the commutative diagram

the commutativity of the outer rectangle and the diagonal shows that

$${}^{M}e^{M} = ({}^{M}e \otimes I_{\mathcal{C}}) \circ (I_{\mathcal{D}} \otimes e^{M}) = (I_{\mathcal{D}} \otimes e^{M}) \circ ({}^{M}e \otimes I_{\mathcal{C}}).$$

- (2) is immediate from (1) and the definition of E_M .
- (3) is clear by (1) and (2).
- (4) is clear by (3) and the definition of $\mathcal{U}(M)$.
- (5) We consider the following diagram.

Then we see that

$$(I_{\mathcal{D}} \otimes \rho^{M}) \circ {}^{M}\!\rho \circ {}^{M}\!\varepsilon^{M} = {}^{M}\!\rho^{M} \circ {}^{M}\!\varepsilon^{M} = {}^{M}\!e^{M},$$

$$(I_{\mathcal{D}} \otimes \rho^{M}) \circ (I_{\mathcal{D}} \otimes {}^{M}\!\varepsilon^{M}) \circ (\Delta_{\mathcal{D}} \otimes I_{M} \otimes I_{\mathcal{C}})$$

$$= (I_{\mathcal{D}} \otimes \rho^{M}) \circ (I_{\mathcal{D}} \otimes \varepsilon^{M}) = I_{\mathcal{D}} \otimes e^{M},$$

$$({}^{M}\!\rho \otimes I_{\mathcal{C}}) \circ ({}^{M}\!\varepsilon^{M} \otimes I_{\mathcal{C}}) \circ (I_{\mathcal{D}} \otimes I_{M} \otimes \Delta_{\mathcal{C}})$$

$$= ({}^{M}\!\rho \otimes I_{\mathcal{C}}) \circ ({}^{M}\!\varepsilon \otimes I_{\mathcal{C}}) = {}^{M}\!e \otimes I_{\mathcal{C}}, \text{ and}$$

$$(I_{\mathcal{D}} \otimes {}^{M}\!\varepsilon^{M} \otimes I_{\mathcal{C}}) \circ (\Delta_{\mathcal{D}} \otimes I_{M} \otimes I_{\mathcal{C}} \otimes I_{\mathcal{C}}) \circ (I_{\mathcal{D}} \otimes I_{M} \otimes \Delta_{\mathcal{C}}) = I_{\mathcal{D} \otimes_{\mathcal{B}} M \otimes_{\mathcal{A}} \mathcal{C}}.$$

Combining these equations, we get the assertion.

In Definition 3.1, \mathcal{U} is a functor from ${}^{\mathcal{D}}\mathbf{M}^{\mathcal{C}}$ to ${}_{B}\mathbf{M}_{A}$. The next theorem shows that \mathcal{U} is a functor from ${}^{\mathcal{D}}\mathbf{M}^{\mathcal{C}}$ to ${}^{\mathcal{D}}\mathbf{M}^{\mathcal{C}}$.

THEOREM 3.3. Let A and B be R-algebras, C an A-coring, and D a B-coring. Then U is a subfunctor of the functor $D \otimes_B (\) \otimes_A C : {}^{\mathcal{D}}\mathbf{M}^{\mathcal{C}} \to {}^{\mathcal{D}}\mathbf{M}^{\mathcal{C}}$, and v_M 's determine the natural transformation $v : U \to I_{\mathcal{D}\mathbf{M}^{\mathcal{C}}}$.

To prove Theorem 3.3, we use the well-known fact that every bicomodule can be viewed as a one-sided comodule. Let A and B be R-algebras, C an A-coring, and D a B-coring. Consider the coring $\mathcal{F} = \mathcal{D}^{cop} \otimes_R \mathcal{C}$ over the R-algebra $\Lambda = B^{op} \otimes_R A$, where B^{op} is the opposite algebra of B and D^{cop} is the opposite B^{op} -coring of D defined in [4, Opposite coring 1.7]. Then, by [4, Proposition 1.8], a (D, C)-bicomodule is no other than a right \mathcal{F} -comodule. Actually, for $M \in {}^{\mathcal{D}}\mathbf{M}^{\mathcal{C}}$, the right coaction $\rho_{\mathcal{F}}^{M}$ of \mathcal{F} on M is the composition map

$$M \xrightarrow{M_{\rho^M}} \mathcal{D} \otimes_B M \otimes_A \mathcal{C} \xrightarrow{t} M \otimes_{\Lambda} \mathcal{F},$$

where t is defined by $t(d \otimes m \otimes c) = m \otimes (d \otimes c)$. Similarly, for $N \in {}^{\mathcal{C}}\mathbf{M}^{\mathcal{D}}$, the left coaction ${}^{N}\!\rho_{\mathcal{F}}$ of \mathcal{F} on N is given by the composition map

$$N \xrightarrow{N_{\rho}N} \mathcal{C} \otimes_A N \otimes_B \mathcal{D} \xrightarrow{t'} \mathcal{F} \otimes_{\Lambda} N,$$

where t' is defined by $t'(c \otimes n \otimes d) = (d \otimes c) \otimes n$.

We prepare an easy lemma.

Lemma 3.4. Let Λ be an R-algebra, \mathcal{F} a Λ -coring, and $h: M \to N$ a morphism in $\mathbf{M}^{\mathcal{F}}$. Let N' be an \mathcal{F} -subcomodule of N with $h(M) \subseteq N'$. If N' is an \mathcal{F} -pure Λ -submodule of N, then the map $h': M \ni x \mapsto h(x) \in N'$ is an \mathcal{F} -comodule map.

PROOF. Let $\iota: N' \to N$ denote the inclusion map. Then, in the diagram

all subdiagrams except the outer rectangle are commutative. Since $\iota \otimes I_{\mathcal{F}}$ is an injective map, the outer rectangle is commutative.

PROOF OF THEOREM 3.3. Let $M \in {}^{\mathcal{D}}\mathbf{M}^{\mathcal{C}}$. As a map $\mathcal{D} \otimes_B M \otimes_A \mathcal{C} \to \mathcal{D} \otimes_B M \otimes_A \mathcal{C} \to \mathcal{D} \otimes_B M \otimes_A \mathcal{C} \otimes_A \mathcal{C}$, we see that

$$(I_{\mathcal{D}} \otimes I_M \otimes \Delta_{\mathcal{C}}) \circ ({}^M e \otimes I_{\mathcal{C}}) = {}^M e \otimes \Delta_{\mathcal{C}} = ({}^M e \otimes I_{\mathcal{C}} \otimes I_{\mathcal{C}}) \circ (I_{\mathcal{D}} \otimes I_M \otimes \Delta_{\mathcal{C}}).$$

Since $E_M \circ ({}^M e \otimes I_C) = 0$ by (1) and (2) of Lemma 3.2, we have

$$(E_M \otimes I_C) \circ (I_D \otimes I_M \otimes \Delta_C) \circ ({}^M e \otimes I_C) = 0. \tag{3.1}$$

By composing (3.1) with $I_{\mathcal{D}} \otimes e^{M}$ on the right, and using Lemma 3.2 (1), we get

$$(E_M \otimes I_C) \circ (I_D \otimes I_M \otimes \Delta_C) \circ {}^M e^M = 0. \tag{3.2}$$

On the other hand, as a map $M \otimes_A \mathcal{C} \to M \otimes_A \mathcal{C} \otimes_A \mathcal{C}$, we see that

$$(e^{M} \otimes I_{\mathcal{C}}) \circ (I_{M} \otimes \Delta_{\mathcal{C}}) = (\rho^{M} \otimes I_{\mathcal{C}}) \circ (\varepsilon^{M} \otimes I_{\mathcal{C}}) \circ (I_{M} \otimes \Delta_{\mathcal{C}}) = \rho^{M} \otimes I_{\mathcal{C}}$$
(3.3)

and

$$(\rho^{M} \otimes I_{\mathcal{C}}) \circ e^{M} = (\rho^{M} \otimes I_{\mathcal{C}}) \circ \rho^{M} \circ \varepsilon^{M} = (I_{M} \otimes \Delta_{\mathcal{C}}) \circ \rho^{M} \circ \varepsilon^{M} = (I_{M} \otimes \Delta_{\mathcal{C}}) \circ e^{M}.$$
(3.4)

Combining the equations (3.3) and (3.4), we have

$$(e^M \otimes I_{\mathcal{C}}) \circ (I_M \otimes \Delta_{\mathcal{C}}) \circ e^M = (I_M \otimes \Delta_{\mathcal{C}}) \circ e^M,$$

and hence

$$(I_{M\otimes_A\mathcal{C}\otimes_A\mathcal{C}} - e^M \otimes I_{\mathcal{C}}) \circ (I_M \otimes \Delta_{\mathcal{C}}) \circ e^M = 0.$$

It follows that

$$((I_{\mathcal{D}\otimes_B M\otimes_A \mathcal{C}} - I_{\mathcal{D}}\otimes e^M)\otimes I_{\mathcal{C}})\circ (I_{\mathcal{D}}\otimes I_M\otimes \Delta_{\mathcal{C}})\circ (I_{\mathcal{D}}\otimes e^M) = 0.$$

By (1) and (2) of Lemma 3.2, we have

$$(E_M \otimes I_{\mathcal{C}}) \circ (I_{\mathcal{D}} \otimes I_M \otimes \Delta_{\mathcal{C}}) \circ (I_{\mathcal{D}} \otimes e^M) = 0. \tag{3.5}$$

By the equations (3.1), (3.2), and (3.5), we have

$$(E_M \otimes I_{\mathcal{C}}) \circ (I_{\mathcal{D}} \otimes I_M \otimes \Delta_{\mathcal{C}}) \circ (I_{\mathcal{D} \otimes_R M \otimes_A \mathcal{C}} - E_M) = 0. \tag{3.6}$$

Noting (3) and (4) of Lemma 3.2, the equation (3.6) means that $(I_{\mathcal{D}} \otimes I_M \otimes \Delta_{\mathcal{C}})(\mathcal{U}(M))$ is contained in $\mathcal{U}(M) \otimes_A \mathcal{C}$. Hence, $\mathcal{U}(M)$ is a right \mathcal{C} -subcomodule of $\mathcal{D} \otimes_B M \otimes_A \mathcal{C}$. Similarly, $\mathcal{U}(M)$ is a left \mathcal{D} -subcomodule.

Let $M, N \in {}^{\mathcal{D}}\mathbf{M}^{\mathcal{C}}$ and $f \in {}^{\mathcal{D}}\mathrm{Hom}^{\mathcal{C}}(M, N)$. Let h denote the composition map

$$\mathcal{U}(M) \xrightarrow{\text{inclusion}} D \otimes_B M \otimes_A \mathcal{C} \xrightarrow{I_D \otimes f \otimes I_C} D \otimes_B N \otimes_A \mathcal{C}$$

of $(\mathcal{D}, \mathcal{C})$ -bicomodule maps. We consider the coring $\mathcal{F} = \mathcal{D}^{cop} \otimes_R \mathcal{C}$ over the R-algebra $\Lambda = B^{op} \otimes_R A$. Then, h is an \mathcal{F} -comodule map and $\mathcal{U}(N)$ is a pure Λ -submodule of $\mathcal{D} \otimes_B N \otimes_A \mathcal{C}$ by Lemma 3.2 (4). Therefore, by Lemma 3.4, $\mathcal{U}(f)$ is an \mathcal{F} -comodule map. Hence \mathcal{U} is a functor from ${}^{\mathcal{D}}\mathbf{M}^{\mathcal{C}}$ to ${}^{\mathcal{D}}\mathbf{M}^{\mathcal{C}}$.

THEOREM 3.5. Let A and B be R-algebras, C an A-coring, D a B-coring, and M, $N \in {}^{\mathcal{D}}\mathbf{M}^{\mathcal{C}}$. Then the R-linear map

$$^{\mathcal{D}}\mathrm{Hom}^{\mathcal{C}}(M,\mathcal{U}(N))\ni f\mapsto \upsilon_{N}\circ f\in ^{\mathcal{D}}\mathrm{GCoder}^{\mathcal{C}}(M,N)$$

is a natural isomorphism. In particular, v_N belongs to ${}^{\mathcal{D}}GCoder^{\mathcal{C}}(\mathcal{U}(N), N)$.

PROOF. As is well-known, the R-linear map

$$^{\mathcal{D}}\mathrm{Hom}^{\mathcal{C}}(M, \mathcal{D} \otimes_{B} N \otimes_{A} \mathcal{C}) \ni f \mapsto {}^{N}\varepsilon^{N} \circ f \in {}_{B}\mathrm{Hom}_{A}(M, N)$$

is an isomorphism with the inverse map $g \mapsto (I_{\mathcal{D}} \otimes g \otimes I_{\mathcal{C}}) \circ^{M} \rho^{M}$. Let $f \in {}^{\mathcal{D}} \operatorname{Hom}^{\mathcal{C}}(M, \mathcal{D} \otimes_{B} N \otimes_{A} \mathcal{C})$. By Lemma 2.2 (1) and Lemma 3.2 (5), we have $Q_{M,N}({}^{N} \varepsilon^{N} \circ f) = E_{N} \circ f$. Therefore, ${}^{N} \varepsilon^{N} \circ f \in {}^{\mathcal{D}} \operatorname{GCoder}^{\mathcal{C}}(M, N)$ is equivalent to $f(M) \subseteq \operatorname{Ker} E_{N} = \mathcal{U}(N)$. Noting Lemma 3.4, we get the assertion.

4. A property of the functor \mathcal{U} .

Let A and B be R-algebras, \mathcal{C} an A-coring, and \mathcal{D} a B-coring. Consider the coring $\mathcal{F} = \mathcal{D}^{cop} \otimes_R \mathcal{C}$ over the R-algebra $\Lambda = B^{op} \otimes_R A$. As usual, $V = \mathcal{D} \otimes_B \mathcal{D} \otimes_R \mathcal{C} \otimes_A \mathcal{C}$ is a $(\mathcal{D}, \mathcal{C})$ -bicomodule, and hence V is a right \mathcal{F} -comodule. We can consider V as an (A, B)-bimodule, with left action of A on the first \mathcal{C} factor, and right action of B on the second \mathcal{D} factor. As such, it is (A, B)-isomorphic to $V^o = \mathcal{C} \otimes_A \mathcal{C} \otimes_R \mathcal{D} \otimes_B \mathcal{D}$ via the twist map $V \ni d \otimes d' \otimes c \otimes c' \mapsto c \otimes c' \otimes d \otimes d' \in V^o$. We can transfer the $(\mathcal{C}, \mathcal{D})$ -bicomodule structure of V^o to V, making it into a left \mathcal{F} -comodule. It is clear that V is an $(\mathcal{F}, \mathcal{F})$ -bicomodule. Under these notations, we have the next

LEMMA 4.1. $\mathcal{U}(\mathcal{D} \otimes_{\mathcal{B}} \mathcal{C})$ is an $(\mathcal{F}, \mathcal{F})$ -sub-bicomodule of V.

PROOF. By Theorem 3.3, $\mathcal{U}(\mathcal{D} \otimes_R \mathcal{C})$ is a $(\mathcal{D}, \mathcal{C})$ -sub-bicomodule of V, i.e., $\mathcal{U}(\mathcal{D} \otimes_R \mathcal{C})$ is a right \mathcal{F} -subcomodule of V. We use two maps

$$e^{\mathcal{C}}: \mathcal{C} \otimes_A \mathcal{C} \ni x \otimes y \mapsto \Delta_{\mathcal{C}}(x)\varepsilon_{\mathcal{C}}(y) \in \mathcal{C} \otimes_A \mathcal{C}$$
 and $\mathcal{D}_{\mathcal{C}}: \mathcal{D} \otimes_B \mathcal{D} \ni x \otimes y \mapsto \varepsilon_{\mathcal{D}}(x)\Delta_{\mathcal{D}}(y) \in \mathcal{D} \otimes_B \mathcal{D}$

 $c: \mathcal{D} \otimes_B \mathcal{D} \supset x \otimes y \mapsto c_{\mathcal{D}}(x) \Delta_{\mathcal{D}}(y) \subset \mathcal{D} \otimes_B \mathcal{D}$

$$E_{\mathcal{D}\otimes_{R}\mathcal{C}} = (I_{V} - {}^{\mathcal{D}}e \otimes I_{\mathcal{C}} \otimes I_{\mathcal{C}}) \circ (I_{V} - I_{\mathcal{D}} \otimes I_{\mathcal{D}} \otimes e^{\mathcal{C}}).$$

Since $e^{\mathcal{C}}$ is a left \mathcal{C} -comodule map and \mathcal{D}_e is a right \mathcal{D} -comodule map, $E_{\mathcal{D} \otimes_R \mathcal{C}}$ is a $(\mathcal{C}, \mathcal{D})$ -

bicomodule map. By Lemma 3.2 (4) and [5, Proposition 1.1 2], $\mathcal{U}(\mathcal{D} \otimes_R \mathcal{C})$ is a $(\mathcal{C}, \mathcal{D})$ -sub-bicomodule of V, i.e., $\mathcal{U}(\mathcal{D} \otimes_R \mathcal{C})$ is a left \mathcal{F} -subcomodule of V.

THEOREM 4.2. Let A and B be R-algebras, C an A-coring, and D a B-coring. Consider the coring $\mathcal{F} = \mathcal{D}^{cop} \otimes_R \mathcal{C}$ over the R-algebra $\Lambda = B^{op} \otimes_R A$, where B^{op} is the opposite algebra of B and \mathcal{D}^{cop} is the opposite B^{op} -coring of D. Then, for every $M \in {}^{\mathcal{D}}\mathbf{M}^{\mathcal{C}}$, $\mathcal{U}(M)$ is isomorphic to $M \square_{\mathcal{F}} \mathcal{U}(\mathcal{D} \otimes_R \mathcal{C})$ as a right \mathcal{F} -comodule.

PROOF. We set $M_1 = \mathcal{D} \otimes_B M \otimes_A \mathcal{C}$ and $M_2 = \mathcal{D} \otimes_B \mathcal{D} \otimes_B M \otimes_A \mathcal{C} \otimes_A \mathcal{C}$, and define the $(\mathcal{D}, \mathcal{C})$ -bicomodule map $\omega : M_1 \to M_2$ by setting $\omega = I_{\mathcal{D}} \otimes^M \rho^M \otimes I_{\mathcal{C}} - \Delta_{\mathcal{D}} \otimes I_M \otimes \Delta_{\mathcal{C}}$. We consider the commutative diagram

$$0 \longrightarrow \mathcal{U}(M) \xrightarrow{\iota_{M}} \mathcal{D} \otimes_{B} M \otimes_{A} \mathcal{C} \xrightarrow{E_{M}} \mathcal{D} \otimes_{B} M \otimes_{A} \mathcal{C}$$

$$U(^{M_{\rho}M}) \downarrow \qquad \downarrow I_{\mathcal{D}} \otimes^{M_{\rho}M} \otimes I_{C} \qquad \downarrow I_{\mathcal{D}} \otimes^{M_{\rho}M} \otimes I_{C}$$

$$0 \longrightarrow \mathcal{U}(M_{1}) \xrightarrow{\iota_{M_{1}}} \mathcal{D} \otimes_{B} M_{1} \otimes_{A} \mathcal{C} \xrightarrow{E_{M_{1}}} \mathcal{D} \otimes_{B} M_{1} \otimes_{A} \mathcal{C}$$

$$U(\omega) \downarrow \qquad \downarrow I_{\mathcal{D}} \otimes \omega \otimes I_{C} \qquad \downarrow I_{\mathcal{D}} \otimes \omega \otimes I_{C}$$

$$0 \longrightarrow \mathcal{U}(M_{2}) \xrightarrow{\iota_{M_{2}}} \mathcal{D} \otimes_{B} M_{2} \otimes_{A} \mathcal{C} \xrightarrow{E_{M_{2}}} \mathcal{D} \otimes_{B} M_{2} \otimes_{A} \mathcal{C} \qquad (4.1)$$

of (B,A)-bimodule maps, where ι_M , ι_{M_1} , and ι_{M_2} are inclusion maps. By definition, all rows are exact. Since ${}^M\!\rho^M$ is a section in ${}_B\mathbf{M}_A$, $I_{\mathcal{D}}\otimes{}^M\!\rho^M\otimes I_{\mathcal{C}}$ is also a section. The $(\mathcal{D},\mathcal{C})$ -bicomodule structure of M yields the commutative diagram

$$M \xrightarrow{M_{\rho}M} M_1$$

$$M_1 \xrightarrow{M_{\rho}M} \bigvee_{I_{\mathcal{D}} \otimes M_{\rho}M \otimes I_{\mathcal{C}}} M_2.$$

It follows that $\omega \circ {}^{M}\rho^{M} = 0$. Hence we have

$$\operatorname{Im}\left(I_{\mathcal{D}}\otimes{}^{M}\rho^{M}\otimes I_{\mathcal{C}}\right)\subseteq\operatorname{Ker}\left(I_{\mathcal{D}}\otimes\omega\otimes I_{\mathcal{C}}\right). \tag{4.2}$$

It is easy to see that the diagram

$$M_{1} \xrightarrow{I_{\mathcal{D}} \otimes^{M} \rho^{M} \otimes I_{\mathcal{C}}} M_{2}$$

$$\downarrow^{M_{\varepsilon}M} \downarrow \qquad \qquad \downarrow^{\mathcal{D}_{\varepsilon} \otimes I_{M} \otimes \varepsilon^{\mathcal{C}}}$$

$$M \xrightarrow{M_{\rho}^{M}} M_{1}$$

is commutative. Since $({}^{\mathcal{D}}\varepsilon \otimes I_M \otimes \varepsilon^{\mathcal{C}}) \circ (\Delta_{\mathcal{D}} \otimes I_M \otimes \Delta_{\mathcal{C}}) = I_{M_1}$, we have

$$({}^{\mathcal{D}}\varepsilon \otimes I_M \otimes \varepsilon^{\mathcal{C}}) \circ \omega = {}^{M}\rho^{M} \circ {}^{M}\varepsilon^{M} - I_{M_1}.$$

It follows that

$$(I_{\mathcal{D}} \otimes^{\mathcal{D}} \varepsilon \otimes I_{M} \otimes \varepsilon^{\mathcal{C}} \otimes I_{\mathcal{C}}) \circ (I_{\mathcal{D}} \otimes \omega \otimes I_{\mathcal{C}}) = (I_{\mathcal{D}} \otimes^{M} \rho^{M} \otimes I_{\mathcal{C}}) \circ (I_{\mathcal{D}} \otimes^{M} \varepsilon^{M} \otimes I_{\mathcal{C}}) - I_{M_{\mathcal{C}}}$$

This yields that

$$\operatorname{Ker}\left(I_{\mathcal{D}} \otimes \omega \otimes I_{\mathcal{C}}\right) \subseteq \operatorname{Im}\left(I_{\mathcal{D}} \otimes {}^{M} \rho^{M} \otimes I_{\mathcal{C}}\right). \tag{4.3}$$

By the equations (4.2) and (4.3), we have

$$\operatorname{Im}\left(I_{\mathcal{D}}\otimes{}^{M}\rho^{M}\otimes I_{\mathcal{C}}\right)=\operatorname{Ker}\left(I_{\mathcal{D}}\otimes\omega\otimes I_{\mathcal{C}}\right).$$

Therefore the middle column and the right column of the diagram (4.1) are exact. Hence the left column of (4.1) is also exact.

By Lemma 4.1, $U = \mathcal{U}(\mathcal{D} \otimes_R \mathcal{C})$ is an $(\mathcal{F}, \mathcal{F})$ -sub-bicomodule of $V = \mathcal{D} \otimes_B \mathcal{D} \otimes_R \mathcal{C} \otimes_A \mathcal{C}$. The right \mathcal{F} -comodule isomorphism $T_1 : \mathcal{D} \otimes_B M_1 \otimes_A \mathcal{C} \to M \otimes_{\Lambda} V$ defined by $T_1(d \otimes d' \otimes m \otimes c \otimes c') = m \otimes (d \otimes d' \otimes c \otimes c')$ yields the diagram

$$0 \longrightarrow \mathcal{U}(M_{1}) \xrightarrow{\iota_{M_{1}}} \mathcal{D} \otimes_{B} M_{1} \otimes_{A} \mathcal{C} \xrightarrow{E_{M_{1}}} \mathcal{D} \otimes_{B} M_{1} \otimes_{A} \mathcal{C}$$

$$\varphi \downarrow \qquad \qquad \downarrow T_{1} \qquad \qquad \downarrow T_{1}$$

$$0 \longrightarrow M \otimes_{\Lambda} U \xrightarrow{I_{M} \otimes_{L}} M \otimes_{\Lambda} V \xrightarrow{I_{M} \otimes E_{\mathcal{D} \otimes_{D} \mathcal{C}}} M \otimes_{\Lambda} V$$

with commutative right square, where $\iota: U \to V$ is the inclusion map. Since top row is exact in \mathbf{M}_{Λ} and ι is a section in \mathbf{M}_{Λ} by Lemma 3.2 (4), the bottom row is exact in \mathbf{M}_{Λ} . Therefore, there exists a right Λ -module isomorphism $\varphi: \mathcal{U}(M_1) \to M \otimes_{\Lambda} U$ such that the left square is commutative. We consider the right \mathcal{F} -comodule map

$$h = T_1 \circ \iota_{M_1} : \mathcal{U}(M_1) \to M \otimes_{\Lambda} V.$$

By Lemma 3.2 (4), $M \otimes_{\Lambda} U$ is isomorphic to a pure Λ -submodule of $M \otimes_{\Lambda} V$. Therefore, by Lemma 3.4, φ is a right \mathcal{F} -comodule map. Similarly, the right \mathcal{F} -comodule isomorphism $T_2 : \mathcal{D} \otimes_B M_2 \otimes_A \mathcal{C} \to M \otimes_{\Lambda} \mathcal{F} \otimes_{\Lambda} V$ defined by

$$T_2(d \otimes d' \otimes d'' \otimes m \otimes c \otimes c' \otimes c'') = m \otimes (d'' \otimes c) \otimes (d \otimes d' \otimes c' \otimes c'')$$

yields the commutative diagram

with exact rows in \mathbf{M}_{Λ} and with a right \mathcal{F} -comodule isomorphism $\psi : \mathcal{U}(M_2) \to M \otimes_{\Lambda} \mathcal{F} \otimes_{\Lambda} U$.

Next, we define right Λ -module maps $\omega_{M,V}: M \otimes_{\Lambda} V \to M \otimes_{\Lambda} \mathcal{F} \otimes_{\Lambda} V$ and $\omega_{M,U}: M \otimes_{\Lambda} U \to M \otimes_{\Lambda} \mathcal{F} \otimes_{\Lambda} U$ by setting $\omega_{M,V} = \rho_{\mathcal{F}}^{M} \otimes I_{V} - I_{M} \otimes {}^{V}\!\rho_{\mathcal{F}}$ and $\omega_{M,U} = \rho_{\mathcal{F}}^{M} \otimes I_{U} - I_{M} \otimes {}^{U}\!\rho_{\mathcal{F}}$. Then in the diagram

all the subdiagrams except the outer rectangle are commutative. Since ι is a section in \mathbf{M}_{Λ} by Lemma 3.2 (4), $I_M \otimes I_{\mathcal{F}} \otimes \iota$ is also a section. Hence the outer rectangle is commutative. Thus we get the exact sequence

$$0 \longrightarrow \mathcal{U}(M) \xrightarrow{\varphi \circ \mathcal{U}(^{M}\!\rho^{M})} M \otimes_{\Lambda} U \xrightarrow{\omega_{M,U}} M \otimes_{\Lambda} \mathcal{F} \otimes_{\Lambda} U$$

in \mathbf{M}_{Λ} . Since $\varphi \circ \mathcal{U}({}^{M}\rho^{M})$ is a right \mathcal{F} -comodule map, $\mathcal{U}(M)$ is isomorphic to $M \square_{\mathcal{F}} U$ as a right \mathcal{F} -comodule.

5. Coseparable corings.

According to [7] and [5], an A-coring \mathcal{C} is said to be *coseparable* if the coproduct $\Delta_{\mathcal{C}}: \mathcal{C} \to \mathcal{C} \otimes_A \mathcal{C}$ of \mathcal{C} splits as a $(\mathcal{C}, \mathcal{C})$ -bicomodule map.

Theorem 5.1. Let A be an R-algebra and C an A-coring. Then the following conditions are equivalent:

- (1) C is a coseparable A-coring.
- (2) ${}^{\mathcal{D}}GCoder^{\mathcal{C}} = {}^{\mathcal{D}}GInCoder^{\mathcal{C}}$ for any R-algebra B and any B-coring \mathcal{D} .
- (3) ${}^{\mathcal{C}}GCoder^{\mathcal{C}}(M, M) = {}^{\mathcal{C}}GInCoder^{\mathcal{C}}(M, M) \text{ for all } M \in {}^{\mathcal{C}}\mathbf{M}^{\mathcal{C}}.$
- (4) ${}^{\mathcal{C}}GCoder^{\mathcal{C}}(M,\mathcal{C}) = {}^{\mathcal{C}}GInCoder^{\mathcal{C}}(M,\mathcal{C}) \text{ for all } M \in {}^{\mathcal{C}}\mathbf{M}^{\mathcal{C}}.$

PROOF. (1) \Rightarrow (2). We use the separability of the forgetful functor $\mathbf{M}^{\mathcal{C}} \to \mathbf{M}_A$ which was proved in [1, Corollary 3.6]. Let B be an R-algebra, \mathcal{D} a B-coring, and M, $N \in {}^{\mathcal{D}}\mathbf{M}^{\mathcal{C}}$. By [5, Corollary 1.3], there exists a $(\mathcal{D}, \mathcal{C})$ -bicomodule map

$$\nu: N \otimes_A \mathcal{C} \to N$$

such that $\nu \circ \rho^N = I_N$. We define the R-linear map

$$\Phi: {}_{B}\mathrm{Hom}_{A}(M,N) \to {}_{B}\mathrm{Hom}^{\mathcal{C}}(M,N)$$

by setting $\Phi(f) = \nu \circ (f \otimes I_{\mathcal{C}}) \circ \rho^{M}$ for $f \in {}_{B}\mathrm{Hom}_{A}(M,N)$. For any $f \in {}_{B}\mathrm{Hom}^{\mathcal{C}}(M,N)$, we see that

$$\Phi(f) = \nu \circ (f \otimes I_{\mathcal{C}}) \circ \rho^{M} = \nu \circ \rho^{N} \circ f = f.$$

Hence, we have

$$_{B}\mathrm{Hom}_{A}(M,N) = _{B}\mathrm{Hom}^{\mathcal{C}}(M,N) \oplus \mathrm{Ker}\,\Phi.$$

It follows that

$${}^{\mathcal{D}}\mathrm{GCoder}^{\mathcal{C}}(M,N) = {}_{B}\mathrm{Hom}^{\mathcal{C}}(M,N) \oplus ({}^{\mathcal{D}}\mathrm{GCoder}^{\mathcal{C}}(M,N) \cap \mathrm{Ker}\,\Phi). \tag{5.1}$$

For any $f \in {}_{B}\text{Hom}_{A}(M, N)$, we consider the following diagram.

We can see the following.

$$(I_{\mathcal{D}} \otimes \nu) \circ (I_{\mathcal{D}} \otimes \rho^{N}) \circ {}^{N}\!\rho \circ f = {}^{N}\!\rho \circ f$$

$$(I_{\mathcal{D}} \otimes \nu) \circ (I_{\mathcal{D}} \otimes \rho^{N}) \circ (I_{\mathcal{D}} \otimes f) \circ {}^{M}\!\rho = (I_{\mathcal{D}} \otimes f) \circ {}^{M}\!\rho$$

$$(I_{\mathcal{D}} \otimes \nu) \circ ({}^{N}\!\rho \otimes I_{\mathcal{C}}) \circ (f \otimes I_{\mathcal{C}}) \circ \rho^{M} = {}^{N}\!\rho \circ \nu \circ (f \otimes I_{\mathcal{C}}) \circ \rho^{M} = {}^{N}\!\rho \circ \Phi(f)$$

$$(I_{\mathcal{D}} \otimes \nu) \circ (I_{\mathcal{D}} \otimes f \otimes I_{\mathcal{C}}) \circ (I_{\mathcal{D}} \otimes \rho^{M}) \circ {}^{M}\!\rho = (I_{\mathcal{D}} \otimes \Phi(f)) \circ {}^{M}\!\rho$$

Combining these equations, we get

$$(I_{\mathcal{D}} \otimes \nu) \circ Q_{M,N}(f)$$

$$= {}^{N}\!\rho \circ f - (I_{\mathcal{D}} \otimes f) \circ {}^{M}\!\rho - {}^{N}\!\rho \circ \Phi(f) + (I_{\mathcal{D}} \otimes \Phi(f)) \circ {}^{M}\!\rho.$$

If f belongs to ${}^{\mathcal{D}}GCoder^{\mathcal{C}}(M,N) \cap Ker \Phi$, then we have ${}^{N}\!\rho \circ f = (I_{\mathcal{D}} \otimes f) \circ {}^{M}\!\rho$, and

hence $f \in {}^{\mathcal{D}}\mathrm{Hom}_A(M,N)$. By the equation (5.1), we conclude that ${}^{\mathcal{D}}\mathrm{GCoder}^{\mathcal{C}}(M,N) = {}^{\mathcal{D}}\mathrm{GInCoder}^{\mathcal{C}}(M,N)$.

- $(2) \Rightarrow (3)$ is trivial.
- (3) \Rightarrow (4). Let $M \in {}^{\mathcal{C}}\mathbf{M}^{\mathcal{C}}$ and $f \in {}^{\mathcal{C}}\mathbf{GCoder}^{\mathcal{C}}(M,\mathcal{C})$. Set $N = M \oplus \mathcal{C}$ and define $\tilde{f} \in {}_{A}\mathbf{Hom}_{A}(N,N)$ by setting $\tilde{f}(m,c) = (0,f(m))$ for $m \in M$ and $c \in \mathcal{C}$. By Theorem 2.5, \tilde{f} belongs to ${}^{\mathcal{C}}\mathbf{GCoder}^{\mathcal{C}}(N,N)$. By the assumption, \tilde{f} can be written as $\tilde{f} = g + h$ with some $g \in {}_{A}\mathbf{Hom}^{\mathcal{C}}(N,N)$ and $h \in {}^{\mathcal{C}}\mathbf{Hom}_{A}(N,N)$. Let $\iota : M \to N$ denote the injection map and $\pi : N \to \mathcal{C}$ the projection map. Then, we have $f = \pi \circ g \circ \iota + \pi \circ h \circ \iota$. Since $\pi \circ g \circ \iota \in {}_{A}\mathbf{Hom}^{\mathcal{C}}(M,\mathcal{C})$ and $\pi \circ h \circ \iota \in {}^{\mathcal{C}}\mathbf{Hom}_{A}(M,\mathcal{C})$, f is a generalized inner coderivation.
- $(4) \Rightarrow (1)$. Let $M \in {}^{\mathcal{C}}\mathbf{M}^{\mathcal{C}}$ and $f: M \to \mathcal{C}$ be a coderivation. Let $\varepsilon_{\mathcal{C}}^{(2)}$ denote the composition map

$$\mathcal{C} \otimes_A \mathcal{C} \xrightarrow{\varepsilon_{\mathcal{C}} \otimes \varepsilon_{\mathcal{C}}} A \otimes_A A \xrightarrow{\text{canonical isom.}} A.$$

We can see that $\varepsilon_{\mathcal{C}}^{(2)} \circ \Delta_{\mathcal{C}} = \varepsilon_{\mathcal{C}}, \, \varepsilon_{\mathcal{C}}^{(2)} \circ (f \otimes I_{\mathcal{C}}) \circ \rho^{M} = \varepsilon_{\mathcal{C}} \circ f$, and $\varepsilon_{\mathcal{C}}^{(2)} \circ (I_{\mathcal{C}} \otimes f) \circ {}^{M} \rho = \varepsilon_{\mathcal{C}} \circ f$. It follows that $\varepsilon_{\mathcal{C}}^{(2)} \circ (\Delta_{\mathcal{C}} \circ f - (f \otimes I_{\mathcal{C}}) \circ \rho^{M} - (I_{\mathcal{C}} \otimes f) \circ {}^{M} \rho) = -\varepsilon_{\mathcal{C}} \circ f$. Hence $\varepsilon_{\mathcal{C}} \circ f = 0$. Since f belongs to ${}^{\mathcal{C}}GCoder^{\mathcal{C}}(M,\mathcal{C})$ by Theorem 2.8, there exist $g \in {}_{A}Hom^{\mathcal{C}}(M,\mathcal{C})$ and $h \in {}^{\mathcal{C}}Hom_{A}(M,\mathcal{C})$ such that f = g + h. Then we have

$$f = \mathfrak{R}_M \circ (\mathfrak{R}_M)^{-1}(g) + \mathfrak{L}_M \circ (\mathfrak{L}_M)^{-1}(h) = \mathfrak{R}_M(\varepsilon_{\mathcal{C}} \circ g) + \mathfrak{L}_M(\varepsilon_{\mathcal{C}} \circ h).$$

Since $\varepsilon_{\mathcal{C}} \circ g + \varepsilon_{\mathcal{C}} \circ h = \varepsilon_{\mathcal{C}} \circ f = 0$, we have $f = \mathfrak{R}_M(\varepsilon_{\mathcal{C}} \circ g) - \mathfrak{L}_M(\varepsilon_{\mathcal{C}} \circ g)$. Hence, f is an inner coderivation. By [5, Theorem 3.10], \mathcal{C} is a coseparable A-coring.

ACKNOWLEDGMENTS. The author would like to express his gratitude to the referee for his valuable comments.

References

- T. Brzeziński, The structure of corings, Induction functors, Maschke-type theorem, and Frobenius and Galois-type properties, Algebr. Represent. Theory, 5 (2002), 389–410.
- [2] T. Brzeziński and R. Wisbauer, Corings and Comodules, Cambridge University Press, Cambridge, 2003.
- [3] Y. Doi, Homological coalgebra, J. Math. Soc. Japan, 33 (1981), 31–50.
- [4] J. Gómez-Torrecillas and A. Louly, Coseparable corings, Comm. Algebra, 31 (2003), 4455–4471.
- [5] F. Guzman, Cointegrations, relative cohomology for comodules, and coseparable corings, J. Algebra, 126 (1989), 211–224.
- [6] H. Komatsu, Generalized derivations of bimodules, Int. J. Pure Appl. Math., 77 (2012), 579–593.
- [7] R. G. Larson, Coseparable Hopf algebras, J. Pure Appl. Algebra, 3 (1973), 261–267.
- [8] A. Nakajima, Coseparable coalgebras and coextensions of coderivations, Math. J. Okayama Univ., 22 (1980), 145–149.
- [9] A. Nakajima, On categorical properties of generalized derivations, Sci. Math., 2 (1999), 345–352.
- [10] A. Nakajima, On generalized coderivations, Int. Electron. J. Algebra, 12 (2012), 37–52.

Hiroaki Komatsu

Faculty of Computer Science and Systems Engineering Okayama Prefectural University Kuboki 1-1-1, Soja Okayama 719-1197, Japan

 $\hbox{E-mail: komatsu@cse.oka-pu.ac.jp}$