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Abstract. We introduce a generalized coderivation from a bicomodule
to a bicomodule over corings, which is a generalization of a coderivation. For
each (D,C)-bicomodule N over corings C and D, we construct the universal
generalized coderivation vy : U(IN) — N such that every generalized coderiva-
tion from a (D, C)-bicomodule M to N is uniquely expressed as vy o f with
some (D,C)-bicomodule map f : M — U(N). U(N) is isomorphic to the
cotensor product of N and U(D ®g C). We show that a coring C is cosep-
arable if and only if, for any coring D, all generalized coderivations from a
(D, C)-bicomodule to a (D, C)-bicomodule are inner.

1. Introduction.

A coderivation of a coalgebra was introduced by Doi [3] and Nakajima [8]. This
notion was extended by Guzman [5] to a cointegration from a bicomodule to another
bicomodule over corings. Recently, a generalized coderivation of a coalgebra was intro-
duced by Nakajima [10], which is a dual notion of a generalized derivation of an algebra
defined by Nakajima [9]. In [6] the author of this paper extended a generalized deriva-
tion to a map from a bimodule to a bimodule. Dualizing this notion, we can extend the
definition of a generalized coderivation to a map from a bicomodule to a bicomodule over
corings.

In this paper, we investigate this new generalized coderivation. The definition is
given in Section 2. In Section 3, we construct a universal generalized coderivation. For
each (D, C)-bicomodule N over corings C and D, there exists a (D, C)-bicomodule U(N)
and a generalized coderivation vy : U(N) — N such that every generalized coderivation
from a (D,C)-bicomodule M to N is uniquely expressed as vy o f with some (D,C)-
bicomodule map f : M — U(N). Moreover, in Section 4, we show that U(N) is isomor-
phic to NOpeorg ,cU(DRRC) as (D, C)-bicomodule. Finally, in Section 5, we characterize
a coseparable coring. A coderivation was introduced in the context of cohomology theory
of coalgebras in [3], and it was proved that a coalgebra is coseparable if and only if all
coderivations are inner. This result was extended in [5] for cointegrations. We prove a
corresponding result for our generalized coderivations.

Throughout this paper, R denotes a commutative ring with an identity element,
every algebra is an associative R-algebra with an identity element, and every module is
unitary. Every coring has a counit and every comodule is counitary. Notations are based
on [2]. For an R-algebra A, the category of right A-modules is denoted by M 4. For
R-algebras A and B, the category of (B, A)-bimodules on which right and left actions
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of R coincide is denoted by pM 4. If X, Y € My, then the set of all (B, A)-bimodule
maps from X to Y is denoted by zHom 4 (X,Y"). For a coring C, its coproduct is denoted
by Ag¢, its counit is denoted by e¢, and the category of right C-comodules is denoted by
MC. For corings C and D, the category of (D, C)-bicomodules is denoted by PMC. For
M € PMC, the right and left coactions on M are denoted by p™ and M), respectively,
and we set o™ = (My @ Ic) o pM. If C is an A-coring and D is a B-coring, then, for
M, N € PMC, PHom®(M, N), zHom® (M, N), and PHom 4 (M, N) denote the set of all
(D, C)-bicomodule maps, the set of all right C-comodule left B-module maps, and the
set of all left D-comodule right A-module maps from M to N, respectively. The identity
map of a set X is denoted by Ix.

2. Definition of generalized coderivations.
In this section, A and B will represent R-algebras, C an A-coring, and D a B-coring.

DEFINITION 2.1.  For each M, N € PMC¢, we shall define an R-linear map
Qum.N : gHom 4 (M, N) — gHom (M, D®pg N @4 C).
For f € gHom 4 (M, N), we can consider the following diagram:

M®uC el N®,C

N\ "/
M—I N
M@Ie Mpl le Mpele
DM —Dxg N

Ip®f
/ Ip®p™ ID®pN\

D@pMOAC—— =D& N @4 C

Using maps appeared in this diagram, we set

Qun(f)=Up@p")o pof—(Ip@p")o(Ip® f)o™p

—(Mp@Ie)o(fole)op™ +(Ip® f@le)o (Mp@lc)op™.

In other words, using the maps M — D ®p N ®4 C appeared in the above diagram, we
set

Qum.n(f) = (a map through f) — (a map through Ip ® f)
— (a map through f ® I¢) + (a map through Ip ® f ® I¢).

If f is a (D, C)-bicomodule map, then the above diagram is commutative. Hence we
get the next
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LEMMA 2.2. Let A and B be R-algebras, C an A-coring, D a B-coring, L, M,
N € PMC, and f € gHom (M, N). Then

(1) Qr.n(fog)=Qun(f)og for all g € PHom® (L, M).
(2) Qu.r(hof)=(Ip@h®Ic)oQun(f) for all h € PHom (N, L).

The next is an immediate consequence of Lemma 2.2.
COROLLARY 2.3. @ is a natural transformation.

DEFINITION 2.4. We define the functor
PGCoder : (PM)™ x PMC — My

as the kernel of the natural transformation @, i.e., PGCoder® is the subfunctor of
pHomy : (PMC)” x PMC — Mp, determined by PGCoder® (M, N) = Ker Qp,n for M,
N € PMC. An element of PGCoder®(M, N) is called a generalized coderivation.

THEOREM 2.5. Let A and B be R-algebras, C an A-coring, and D a B-coring. Let
M = [1,c; M; be a coproduct in PMC with the structure maps v; : M; — M (i € I) and
N =l;e; Nj a finite product in PMC with the structure maps m; : N — N; (j € J).
Then, the R-linear map

PGCoder®(M,N) 3 f — (mjofou)e H PGCoder® (M;, N;)
(i,4)€IXJ

is an isomorphism.

Proor. It is well-known that the R-linear map

pHom (M, N) > f = (mjofou)e [[ pHom,(M;, Ny)
(i,7)eIxJ

is an isomorphism. Let f € gHom 4 (M, N). Then, by Lemma 2.2, we have
Qum, N;(mjofor)=Up@m®@Ic)oQun(f)ot
for all ¢ € T and j € J. Since Ip ® m; ® I¢c (j € J) are the structure maps of the

finite product D @p N ®4 C = [[;c, D ®p N;j ®a C, Qu,n(f) = 0 is equivalent to
Qum, N, (mjo for)=0forallieand j € J. Hence, we get the assertion. O

DEFINITION 2.6. For each M, N € PMC, we set
D C _ C D
GInCoder” (M, N) = gHom" (M, N) + “Hom 4 (M, N).

An element of PGInCoder® (M, N) is called a generalized inner coderivation.
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We can easily see the next
LEMMA 2.7.  PGInCoder® (M, N) ’s determine a subfunctor of PGCoder®.

We shall show that our generalized coderivation is a generalization of a generalized
coderivation introduced in Nakajima [10].

Let M € ®MC€. According to [5], a map f in ,Hom 4 (M,C) is called a coderivation
if Acof=(f@le)op™+(Ic®f)oM. Amap fin ,Hom ,(M,C) is called a Nakajima’s
generalized coderivation if Ac o f — (f @ Ic)opM — (Ic ® f) o M is a (C,C)-bicomodule
map.

THEOREM 2.8. Let A be an R-algebra, C an A-coring, M € °MC, and f €
sHom 4 (M,C). Then f € CGCoderC(M,C) if and only if f is a Nakajima’s general-

ized coderivation.

Proor. We set
h=Acof—(f&le)op™ —(Ic®f)o"p.
Then we see that

(Ie®Ac)oh=(Ic ®Ac)oAco f—(Ie®Ac)o (f®Ie)op™

—(Ie®Ac)o (Ie® f)op (2.1)
and
(h@Ic)op™
=(Ac®le)o(f@le)op™ —(fole®Ic)o(pM @ Ic)op™
—(Ie@fol)o (M@)o pM. (2.2)

By definition we have

Que(f)=UIc®Ac)oAco f—(Ic®Ac)o(le® f)o™p
—(Acele)o(fele)opM +(Ic@ fol)o(M@le)op™.  (23)

The commutative diagram

M I
M 2 Mo c—'2 sca,c
le/ l/IM®AC \LIC®AC
M®ACWM®AC®ACWC®AC®AC

shows that
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(Ie®Ac)o(f@Ic)op™ = (felc®lc)o(pM @ Ic)op™. (2.4)
Combining the equations (2.1), (2.2), (2.3), and (2.4), we get
Que(f)=Tc®Ac)oh— (h® Ic)o pM.

Hence f € CGCoderC(M, C) if and only if h is a right C-comodule map. Similarly f €
¢GCoder® (M,C) if and only if h is a left C-comodule map. O

Let M € *MC. We consider well-known R-isomorphisms

Ry : 4 Hom 4 (M, A) — 4Hom®(M,C) and

Lar 2 4Hom 4 (M, A) — “Hom 4 (M, C).
For ¢ € ;Hom (M, A), R (€) is the composition map

canonical isom.

M
ML Mo aa,c c

and £7(€) is the composition map

Ic®§ canonical isom.

M*p>C®AM*>C®AA C.

Usually R (€) and £/(€) are represented by (€@ Ic) o p™ and (I¢ ®&) o M, respectively.
According to [5], a map of the form PR (§) — £m(§) with some £ € ,Homy (M, A) is
called an inner coderivation. Obviously every inner coderivation is a generalized inner
coderivation.

3. Universal generalized coderivation.

In this section, we construct the universal coderivations. We will use the following
notations. Let A and B be R-algebras, C an A-coring, D a B-coring, and M € PMC.
We denote by eM the composition map

Iy ®ec canonical isom.

MUuC———— M@ A

Similarly, we denote by e the composition map

ep®In canonical isom.

DM —Bg M M.

We denote by MM the composition map

canonical isom.

ep®Inm Rec BogM®a A M.

DR M®4C
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Usually, eM, Mz and McM are represented by Ins ® ¢, ep ® Iy, and ep ® Iy @ ec,

respectively. We set

M = pM oM My My Mo g MM _ MM o MM
DEFINITION 3.1. Let A and B be R-algebras, C an A-coring, and D a B-coring. We

define the natural transformation £ : DRp ( )®4C — DRp()®4C of (B, A)-bimodule
maps by setting

EM:ID®BM®AC_ID®6M_M€®IC+MM

for every M € PMC. We define the functor ¢ : PMC¢ — gMy as the kernel of the
natural transformation E. For each M € PMC, let

oy UM) = M

denote the restriction map of MM to U(M).

By definition, for any M, N € PMC and f € DHomC(M, N), the diagram of (B, A)-
bimodule maps

inclusion

0 —=U(M) 2SO0 o M @sC Doy M®4C
u(f)l Ip®f®lcl/ l]p@f@]c
04>U( )4>D®BN®AC4>D®BN®AC

inclusion

is commutative and two rows are exact.

LEMMA 3.2. Let A and B be R-algebras, C an A-coring, and D a B-coring. For
every M € PMC, there hold the following.

(1) Me @ I and Ip ®@ eM are commuting idempotents in the endomorphism ring
pHom, (D ®p M @4 C, Dep M ®4C) and MeM = (Me @ Ic) o (Ip ® M) holds.

(2) Ex = (Ipgsmeac —Me® Ie) o (Ipgsmeac — Ip ® eM).

(3) EpoEyn = Eu.

(4) U(M) is a direct summand of D ®@p M ®4 C as a (B, A)-bimodule.

(5) Exr = Qposmaac, m(MeM).

PROOF. (1) Since eM o pM = I, Me o Mp = I}y, and MeM o MpM = [}, we have

eMoeM =M Mg o Mg = Mg and MeM o MM — MM Ty the commutative diagram
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I‘D®EM

. T

I M T M
DogMosC—22 Doy M -2 . Doy MoiC

M6®Icl MM iMe \LM€®IC
M M
Me®]c M ®A C M M ®A C NIE®IC

€ P
M M
Mp@ki i%p\ lMp®Ic

DM @)C—DRpM —DRp M®4C,
D EM I’D® M

Ip®eM

the commutativity of the outer rectangle and the diagonal shows that
MM — (Mo @ Ie) o (Ip @ €M) = (Ip @ eM) o (Me ® I¢).

(2) is immediate from (1) and the definition of Ey;.
(3) is clear by (1) and (2).

(4) is clear by (3) and the definition of U (M).

(5) We consider the following diagram.

MM,
DRpM®ACRAC M®aC
w@IM(X)Ac pl‘/
MM
DRpM®aC M
ApRIN®Ic®Ic \LAD®IAI®IC Mpl M Ie
D®3D®BM®AC W D@BM
Ip®"e
IpRIpRIMRAc Ip@pM
DRIpDRXIgMR4CR 4C — DRpM® AC
Ip®“e™" ®lIc

Then we see that

(Ip @ pM) 0 My o McM — MM MM _ MM

(Ip @ pM) o (Ip @ M) o (Ap @ I © I¢)
=(Ip@pM)o(IpoeM)=Ip®e,

(Mpele)o (MM @ Ie)o (Ip® In @ Ac)
=Mel)oMwle)=Me®Ie, and

(Ip @ MM @ Ic) o (Ap @ Iy ® Ie ®Ic) o (Ip @ Ing ® Ac) = Ipgymeac-

Combining these equations, we get the assertion. O
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In Definition 3.1, U is a functor from PMC to gM 4. The next theorem shows that
U is a functor from PMC to PMC.

THEOREM 3.3. Let A and B be R-algebras, C an A-coring, and D a B-coring. Then
U is a subfunctor of the functor D ®@p () ®4C: PMC — PMC, and vy, ’s determine the
natural transformation v : U — Ipyc.

To prove Theorem 3.3, we use the well-known fact that every bicomodule can be
viewed as a one-sided comodule. Let A and B be R-algebras, C an A-coring, and D a
B-coring. Consider the coring F = DP ®g C over the R-algebra A = B°? g A, where
B°? is the opposite algebra of B and D°? is the opposite B°P-coring of D defined in [4,
Opposite coring 1.7]. Then, by [4, Proposition 1.8], a (D, C)-bicomodule is no other than
a right F-comodule. Actually, for M € PMC, the right coaction p¥ of F on M is the
composition map

M M

M- Doy MoiC—t> Moy F,

where ¢ is defined by t((d ® m ® ¢) = m ® (d ® ¢). Similarly, for N € *MP, the left
coaction Ypr of F on N is given by the composition map

N_ N 7
N—L>CoisN®sD—>F®, N,

where ¢’ is defined by t'(c®@n ® d) = (d ® ¢) @ n.
We prepare an easy lemma.

LEMMA 3.4. Let A be an R-algebra, F a A-coring, and h : M — N a morphism
in M7, Let N’ be an F-subcomodule of N with h(M) C N'. If N’ is an F-pure A-
submodule of N, then the map h' : M > x — h(x) € N’ is an F-comodule map.

ProOOF. Let ¢: N’ — N denote the inclusion map. Then, in the diagram

M
M ! M @\ F
x h®Ii/
N
R N-L2>Ne,F R @IF
/7 L®I;\
N’ N' @p F

’
o

all subdiagrams except the outer rectangle are commutative. Since ¢ ® I £ is an injective
map, the outer rectangle is commutative. O

PROOF OF THEOREM 3.3. Let M € PMC¢. Asamap DR M ®4C — D ®p
M ®4C®4C, we see that
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(Ip@Iy@Ac)oMewle)=Mex Ae = (Me@ I @1Ic) o (Ip @ Iy @ Ac).
Since Ejs o (Me® Ic) =0 by (1) and (2) of Lemma 3.2, we have
(Ex@1Ic) o (Ip @ Iny @ Ac) o (Me @ Ie) = 0. (3.1)
By composing (3.1) with Ip ® e on the right, and using Lemma 3.2 (1), we get
(Ey @1c) o (Ip ® Ing @ Ac) o MeM = 0. (3.2)
On the other hand, as a map M @4 C - M ® 4 C ®4 C, we see that
(M ®@Ic)o (In @ Ac) = (pM @ Ic)o (Y @ Ic) o (In © Ag) = pM @ Ic (3.3)
and
(PM@Ic)oeM = (pM @Ic)opMoeM = (I @ Ac) o pM o™ = (I @ Ag) 0 eM. (3.4)
Combining the equations (3.3) and (3.4), we have
(M @1Ic)o(Iny @A¢)oeM = (Iny @ Ac)oeM,
and hence
(Inrg acoac — €M @ 1Ic) o (Inf @ Ac) o e = 0.
It follows that
((Ipgsmesc —Ip@eM)@Ic) o (Ip @ Iy @ Ac) o (Ip @ M) = 0.
By (1) and (2) of Lemma 3.2, we have
(Ex @ 1) o (Ip @ Iy @ A¢) o (Ip @ €M) = 0. (3.5)
By the equations (3.1), (3.2), and (3.5), we have
(Epyy@Ic)o (Ip @Iy @ Ac) o (Ipgpmeac — En) = 0. (3.6)
Noting (3) and (4) of Lemma 3.2, the equation (3.6) means that (Ip ® Ins @ A¢)(U(M))
is contained in U(M) ® 4 C. Hence, U(M) is a right C-subcomodule of D ®p M ®4 C.
Similarly, U (M) is a left D-subcomodule.

Let M, N € PMC€ and f € DHomC(M, N). Let h denote the composition map

. . I I
U(M)M)D(@BM@AC%D@BN@AC
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of (D, C)-bicomodule maps. We consider the coring F = D“P @ C over the R-algebra
A = B°? @p A. Then, h is an F-comodule map and U(N) is a pure A-submodule of
D®p N®4C by Lemma 3.2 (4). Therefore, by Lemma 3.4, U(f) is an F-comodule map.
Hence U is a functor from PMC¢ to PMC. 0

THEOREM 3.5. Let A and B be R-algebras, C an A-coring, D a B-coring, and M,
N € PMC. Then the R-linear map

PHom® (M, U(N)) 3 f — vy o f € PGCoder® (M, N)

is a natural isomorphism. In particular, vy belongs to ®GCoder® (U(N), N).

PrOOF. As is well-known, the R-linear map
PHom®(M, D@ N @4 C) 3 f — NeN o f € gHom, (M, N)

is an isomorphism with the inverse map g — (Ip®g®Ic)o™™. Let f € PHom® (M, DRp
N ®4 C). By Lemma 2.2 (1) and Lemma 3.2 (5), we have Qu n(Ye¥ o f) = Ex o f.
Therefore, NeN o f € PGCoder® (M, N) is equivalent to f(M) C Ker Exy = U(N). Noting
Lemma 3.4, we get the assertion. O

4. A property of the functor U.

Let A and B be R-algebras, C an A-coring, and D a B-coring. Consider the coring
F = D P ®pr C over the R-algebra A = B°? p A. Asusual, V =D RgDRrC®4C
is a (D, C)-bicomodule, and hence V' is a right F-comodule. We can consider V' as an
(A, B)-bimodule, with left action of A on the first C factor, and right action of B on
the second D factor. As such, it is (A, B)-isomorphic to V° = C ®4 C @ D ®p D via
the twist map V3d®d ®@c®c — c®cd @d®d € V°. We can transfer the (C, D)-
bicomodule structure of V° to V, making it into a left F-comodule. It is clear that V is
an (F,F)-bicomodule. Under these notations, we have the next

LEMMA 4.1. U(D ®RrC) is an (F,F)-sub-bicomodule of V.

Proor. By Theorem 3.3, U(D®RrC) is a (D, C)-sub-bicomodule of V, i.e., U(D®Rr
C) is a right F-subcomodule of V. We use two maps

e C4C Sy Ac(x)ec(y) €eC®4C and
Pe:DopD3x®y— ep(z)Ap(y) € DRp D
defined at the first part of the previous section. By Lemma 3.2 (2), we have

Epgpe =Ty —Pe@Ic@1Ic) o (Iy — Ip @ Ip @ €°).

c

Since €€ is a left C-comodule map and e is a right D-comodule map, Epg ¢ is a (C, D)-
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bicomodule map. By Lemma 3.2 (4) and [5, Proposition 1.1 2], U(D ®% C) is a (C, D)-
sub-bicomodule of V, i.e., U(D ®g C) is a left F-subcomodule of V. O

THEOREM 4.2. Let A and B be R-algebras, C an A-coring, and D a B-coring.
Consider the coring F = D g C over the R-algebra A = B°? Qg A, where B°P is
the opposite algebra of B and DP is the opposite B°P-coring of D. Then, for every
M € PMC, U(M) is isomorphic to M O U(D @g C) as a right F-comodule.

Proor. Weset M1 =DM ®4C and My = DRIpDRIgMR4C®4C, and define
the (D, C)-bicomodule map w : M; — M, by setting w = Ip @ YoM @ Ic — Ap @ Iy ® Ac.
We consider the commutative diagram

0 0

| | |

0—=UM)—M DRy M0, C—2 Dy M®sC
u(MpM)l iu;@MpM@Ic lb@MpM@IC
0—=UM;) —2o D@p My ©4C— Doy My ©4 C
l/{(w)l l[@@w@ﬂc lID@)w@Ic

04>Z/[(M2)WD@BMQ(@ACT'D@BMQ@AC (4.1)
2

of (B, A)-bimodule maps, where ¢, tpar,, and tpy, are inclusion maps. By definition, all
rows are exact. Since M is a section in pMy, Ip @ oM @ I is also a section. The
(D, C)-bicomodule structure of M yields the commutative diagram

M_M
M————M

Mle iAD@)IM ®Ac
My ———— M.
It follows that w o ™ = 0. Hence we have

Im (Ip ® oM @ Ic) C Ker (Ip @ w @ I¢). (4.2)

It is easy to see that the diagram

Ip ®MpM ®lc
My —— M

M_M \L lDE@IM ®eC
M M M M1

is commutative. Since (Pe ® Iy ® ) o (Ap @ Iy @ A¢) = Iy, , we have
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Pe@Iny @) ow=YM oMM _
It follows that
(Ip@Pe@ly®@f@l)o(lp@wale)=Ip@MM @Ic)o(Ip@MM® Ic) — In,.
This yields that

Ker (Ip @ w ® I¢) C Im (Ip @ oM @ Ir). (4.3)
By the equations (4.2) and (4.3), we have

Im (Ip @ "M @ 1) = Ker (Ip @ w @ I¢).

Therefore the middle column and the right column of the diagram (4.1) are exact. Hence
the left column of (4.1) is also exact.

By Lemma 4.1, U = U(D ®g C) is an (F, F)-sub-bicomodule of V = D ®p D Qg
C ®4 C. The right F-comodule isomorphism 7} : D ®p M1 @4 C — M ®p V defined by
TH(dedeameecd)=m@ (ded ®c® ) yields the diagram

L E
OHU(MI)L>D®BM1®AC$D®BM1®AC

: | |

\
— - >
0 MU I ®e MoaV IM®EDpg e MeaV

with commutative right square, where ¢ : U — V is the inclusion map. Since top row
is exact in M and ¢ is a section in M by Lemma 3.2 (4), the bottom row is exact in
M, . Therefore, there exists a right A-module isomorphism ¢ : U(M;) — M ®a U such
that the left square is commutative. We consider the right F-comodule map

h:TloLMl U(Ml)—>M®AV
By Lemma 3.2 (4), M®,U is isomorphic to a pure A-submodule of M®, V. Therefore, by
Lemma 3.4, ¢ is a right F-comodule map. Similarly, the right F-comodule isomorphism
To : DR My ®4C — M ®@p F @4V defined by
To(dod @d"@m@cad0d)=me(([d" @c)@ded @ o)

yields the commutative diagram

LMy Enry
0 ——U(My) DR My@aC ———2 > DR Mo@4C

y ; :

00— MRIpAFRANU W MONFRNV W MROANFRAV
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with exact rows in M and with a right F-comodule isomorphism ) : U (M) — M &
FaU.

Next, we define right A-module maps wary : M QA V — M @p F @AV and wprp -
M @x U — M @5 F @5 U by setting wayr,y = p%f @Iy — Iy @ Ypr and wyp =
p¥ @ Iy — Ing @ Yr. Then in the diagram

U(w)

U(My) U(Ms)

yll LI\/V
IpRw®lIc

DopM; ®4C———>DRp My ®4C

e l/Tl T> l/ P

MNV ——F—>MOAF\V

WM,V
A@L IM®I}';L\
M@\ U . M@y F o U,

all the subdiagrams except the outer rectangle are commutative. Since ¢ is a section
in My by Lemma 3.2 (4), Inf ® Ir ® ¢ is also a section. Hence the outer rectangle is
commutative. Thus we get the exact sequence

ool (MpM) WM, U

0 —U(M) M@y U

M@y FRAU

in M. Since ¢ o U(]MpM) is a right F-comodule map, U (M) is isomorphic to M Oz U
as a right F-comodule. O

5. Coseparable corings.

According to [7] and [5], an A-coring C is said to be coseparable if the coproduct
Ac :C — C®a4C of C splits as a (C,C)-bicomodule map.

THEOREM 5.1. Let A be an R-algebra and C an A-coring. Then the following
conditions are equivalent:
(1) C is a coseparable A-coring.
(2) PGCoder® = PGInCoder® for any R-algebra B and any B-coring D.
(3) CGCoder® (M, M) = ¢GInCoder® (M, M) for all M € CME.
(4) €GCoder®(M,C) = ¢GInCoder®(M,C) for all M € °MC.

PrROOF. (1) = (2). We use the separability of the forgetful functor M€ — M4
which was proved in [1, Corollary 3.6]. Let B be an R-algebra, D a B-coring, and M,
N € PMC. By [5, Corollary 1.3], there exists a (D, C)-bicomodule map

v:N®sC— N
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such that v o p = I'y. We define the R-linear map
® : zHom 4 (M, N) — zHom® (M, N)

by setting ®(f) = vo (f @ Ic) o pM for f € gHom (M, N). For any f € gHom® (M, N),
we see that

B(f)=vo(f@l)op™ =vopNof=]
Hence, we have
pHom 4 (M, N) = gHom® (M, N) @ Ker ®.
It follows that
PGCoder® (M, N) = zHom® (M, N) & (DGCOderC(M, N)NKer ®). (5.1)
For any f € gHom,(M, N), we consider the following diagram.

M&aC fele N®4C

N\ "/
M—I N
wore| | | |er Y
Dp M ——D®p N

Ip®f
/ID®pM ID®pN\

D®3M®AC Ip®fole D@BN@)ACWD@BN

N

We can see the following.

( )
(Ip@v)o(Ip®p")o(Ip® f)e*p=(Ip® f)op
(Ip@v)o(Pp@lc)o(f®lc)op™ Np o(f@le)op™ ="pod(f)
( v) b

Ip@v)o(Ip® f®lIc)o(Ip®pM)op= (Ip®&(f)) o™

Combining these equations, we get

(Ip ®@v) o Qum,n(f)
="of—(Ip®f)o™p—"po®(f)+ (Ip @ ®(f)) o “p.

If f belongs to DGCoderC(M7 N) N Ker ®, then we have Ypo f = (Ip ® f) o ™, and
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hence f € PHom 4(M, N). By the equation (5.1), we conclude that PGCoder® (M, N) =
PGInCoder® (M, N).

(2) = (3) is trivial.

(3) = (4). Let M € °MC€ and f € °GCoder®(M,C). Set N = M &C and define f €
Hom (N, N) by setting f(m,c) = (0, f(m)) for m € M and ¢ € C. By Theorem 2.5,
f belongs to ¢GCoder® (N, N). By the assumption, f can be written as f = g + h with
some g € 4Hom®(N,N) and h € “Hom 4(N, N). Let t : M — N denote the injection
map and 7 : N — C the projection map. Then, we have f = mrogot+ mo hot. Since
mogor € 4HomC (M, C) and mohor € Hom 4 (M, C), f is a generalized inner coderivation.

(4) = (1). Let M € M€ and f : M — C be a coderivation. Let sg) denote the
composition map

Coul ec®ec Ao, A canonical isom. A

We can see that E(CQ)OAC = ec, 5&2) o(f@lc)op™ =ecof, and E(CQ)O(IC®f)oMp =egcof.
It follows that 5(C2) o(Acof—(f®lc)opM —(Ic® f) o) = —eco f. Hence eco f = 0.
Since f belongs to ¢GCoder® (M, C) by Theorem 2.8, there exist g € ,Hom®(M,C) and
h € “Hom 4 (M, C) such that f = g + h. Then we have

=90 Rn) 9) + Laro (Enr)H(h) = Rur(ec 0 g) + La(ec o h).

Since ecog+ecoh=¢eco f =0, wehave f =Ry (ecog) — Lar(ec og). Hence, f is an
inner coderivation. By [5, Theorem 3.10], C is a coseparable A-coring. O

ACKNOWLEDGMENTS. The author would like to express his gratitude to the referee
for his valuable comments.

References

[1] T. Brzeziriski, The structure of corings, Induction functors, Maschke-type theorem, and Frobenius
and Galois-type properties, Algebr. Represent. Theory, 5 (2002), 389-410.

[2] T.Brzeziriski and R. Wisbauer, Corings and Comodules, Cambridge University Press, Cambridge,
2003.

[3] Y. Doi, Homological coalgebra, J. Math. Soc. Japan, 33 (1981), 31-50.

[4] J. Gémez-Torrecillas and A. Louly, Coseparable corings, Comm. Algebra, 31 (2003), 4455-4471.

[5] F. Guzman, Cointegrations, relative cohomology for comodules, and coseparable corings, J. Al-
gebra, 126 (1989), 211-224.

[6] H.Komatsu, Generalized derivations of bimodules, Int. J. Pure Appl. Math., 77 (2012), 579-593.

[7] R. G. Larson, Coseparable Hopf algebras, J. Pure Appl. Algebra, 3 (1973), 261-267.

[8] A. Nakajima, Coseparable coalgebras and coextensions of coderivations, Math. J. Okayama Univ.,
22 (1980), 145-149.

[9] A. Nakajima, On categorical properties of generalized derivations, Sci. Math., 2 (1999), 345-352.

[10] A. Nakajima, On generalized coderivations, Int. Electron. J. Algebra, 12 (2012), 37-52.


http://dx.doi.org/10.1023/A:1020139620841
http://dx.doi.org/10.2969/jmsj/03310031
http://dx.doi.org/10.1081/AGB-120022803
http://dx.doi.org/10.1016/0021-8693(89)90329-3
http://dx.doi.org/10.1016/0021-8693(89)90329-3
http://dx.doi.org/10.1016/0022-4049(73)90013-3

440 H. KomATSU

Hiroaki KOMATSU

Faculty of Computer Science and Systems Engineering
Okayama Prefectural University

Kuboki 1-1-1, Soja

Okayama 719-1197, Japan

E-mail: komatsu@cse.oka-pu.ac.jp





