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Abstract. We study the existence of weak solution for unsteady fluid-
structure interaction problem for shear-thickening flow. The time dependent
domain has at one part a flexible elastic wall. The evolution of fluid domain
is governed by the generalized string equation with action of the fluid forces.
The power-law viscosity model is applied to describe shear-dependent non-
Newtonian fluids.

1. Mathematical model.

Consider a two-dimensional fluid motion governed by the momentum and the con-
tinuity equation

pov + p(v - V)v — div[2u(le(v)|)e(v)] + Vr =0
dive =0 (1.1)

with p denoting the constant density of fluid, v = (vi,v2) the velocity vector, 7 the
pressure, e(v) = (1/2)(Vv + VoT) the symmetric deformation tensor and u the viscosity
of the fluid. We assume that fluid is obeying the non-Newtonian shear-dependent model,
cf. [23], [28], [29], [39]. A typical example is the following power-law model

ple(v)]) = p(1 + le(v) Y272 p>1, (1.2)

see also Section 3.1 for a more general description of the considered non-Newtonian
model. Note that according to the parameter p, the non-Newtonian fluid is either shear-
thinning (p < 2) or shear-thickening (p > 2). Models for fluids with the shear-dependent
viscosity are used in many areas of engineering science such as geophysics, glaciology,
polymer mechanics, blood or food rheology. For p > 2 this model is an analogy of the
so-called Ladyzhenskaya’s fluid, for p = 3 it yields the Smagorinskij model of turbulence.
In our recent article [23], where numerical simulations of blood flow has been presented,
the shear-thinning model of Carreau has been used in order to model blood flow.

2010 Mathematics Subject Classification. Primary 76D03, 74F10; Secondary 35D30, 76 A05, 35Q30.
Key Words and Phrases. non-Newtonian fluids, fluid-structure interaction, shear-thinning fluids,
shear-thickening fluids, hemodynamics, existence of weak solution.


http://dx.doi.org/10.2969/jmsj/06810193

194 A. HUNDERTMARK-ZAUSKOVA, M. LUKACOVA-MEDVIDOVA and S. NECASOVA

Let us refer to several previous works on the existence of weak solution to the power-
law-viscosity models. Ladyzenskaya and Lions proved in the late sixties the existence
of non-steady weak solution with the use of classical compactness theory and theory of
monotonous operators for p > 2 in two dimensions and p > 11/5 in three dimensions,
see [25], [26]. This result is valid for power-law models for space periodic as well as the
Dirichlet boundary value problem. The most difficult part of proof of the existence of
weak solution is the limiting process in the nonlinear viscous term having p-structure
arising from the power-law for viscosity (1.2). There are several approaches to overcome
this difficulty. Malek, Necas, Ruzicka [28] proved the existence of unsteady weak solu-
tion in d dimensions for p > 3d/(d + 2) for space periodic case using fractional higher
differentiability, see also [27], [24] for related results for the Dirichlet problem. Further
results were obtained by Frehse, Mélek, Steinhauer [17] or by Wolf [40] using the L°°-
truncation method and the Lipschitz truncation method [12], [16]. Diening, Ruzicka
and Wolf used in [11] the Lipschitz truncation method and the local pressure method to
prove the existence of weak solution in L?(0,T; WP(Q)) for p > 2d/(d + 2).

We follow with the description of the mathematical model. The two dimensional
computational domain

Q(’I](t)) = {(Il,l‘g) O<a < L 0<xy < Ro(l’l) +7](£L’1, )}, O<t<T

is given by a reference radius function Ry(z1) and the unknown free boundary function
n(z1,t) describing the domain deformation. The fluid and the geometry of the compu-
tational domain are coupled through the following Dirichlet boundary condition on the
deformable part of the boundary T, (¢)

on(xy,t
olar, Roen) + (e, 0.0) = (0. 220 ). (1.3
where I, (t) = {(z1,22); 2 = Ro(x1) +n(z1,t), 1 € (0,L)}. The normal component of
the fluid stress tensor T ¢n and the outside pressure P,, provide the forcing term for the
deformation equation of the free boundary 7, that is modeled by the generalized string
equation.

0%n 82 0%n 0’Ry

- b =2

Ploe "0z 0T o100t o2
=g(—- T} - PT)n™/ e, onTY,. (1.4)

Here [(T'; T — preflynref](z7ef) = [(T; — P,Dn|(z), = € Ty(t), 27 € 19, T; =
—nl+ Qu(\ (v)])e(v), m is the unit outward normal on ', (¢), n|n| = (=0, (Ro +n), )T
and 'Y := T',,(t)|¢=o is the initial position of the deformable part of the boundary. The
coefficient g = (Ro +1)\/1 + (0, (Ro + 1))2/(Ro+/1 + (9, Ro)?) arises from the trans-
formation from the Eulerian frame of the fluid forces into the Lagrangian formulation of
the string. Equation (1.4) is equipped with the following boundary and initial conditions
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§0.0=n(L.1) =0 and 9, 0) = Ta,,0) =0,

Ny (0,8) = 7, (L, t) = 0. (1.5)
Positive coefficients E, a, b, ¢ appearing in (1.4) are given as follows [23],

~ |0 | £
E = pyh, a= b= — ¢>0,
(1+ (0Ro/021)?) (Ro +n)Ro

where £ is the Young modulus, A the wall thickness, p,, the density of the vessel wall
tissue, the coefficient ¢ = v/(pywh), v positive constant. |o,| = Gk is the longitudinal
stress, kK = 1 is the Timoshenko’s shear correction factor and G is the shear modulus,
equal to G = £/2(1 + o) with ¢ = 1/2 for incompressible materials. Note that the
coefficients a, b are non-constant, however, according to the assumption (2.1) below they
are upper- and down-bounded. In what follows, we linearize the term b = £/((Ry+n)Ro)
by €/(pwR3) and for the sake of simplicity we work with constant coefficients a, b, c.
The equation (1.4) can be transformed as follows.

9%y 0% 9% 0’Ry
Ep| L0 _ o2 1y, — o T (gt
PlaE g U St ~ a2 |1l
= [~ Tyn|n| ez — Py (a1, Ro(x1) +n(z1,1), ), (1.6)

x1 € (0,L). Here E = E\/1+ (05, Ro)?. We assume that F is bounded.
We complete the system (1.1) with the following boundary and initial conditions:
on the inflow part of the boundary, which we denote I';,,, we set

U2(07$27t) = Oa (17)

(2u(|e(v)|)§zi — 7+ Py, — g|U1|2) (0,24,t) =0 (1.8)

for any 0 < 29 < Rg(0), 0 < t < T and for a given function P, = Pi,(z2,t). On the
opposite, outflow part of the boundary I'y,:, we set

7)2(L7£L'2,t) = 0, (19)

ovy P

(%(Ie('v)l)&%1 — 7+ Pout — 2|v1|2) (L, z2,t) =0 (1.10)

for any 0 < z9 < Ro(L), 0 < t < T and for a given function P,,; = Pyy(x2,t). Note
that we require here that the so-called kinematic pressure is prescribed on the inflow and
outflow boundary. This implies that the fluxes of kinetic energy on inflow and outflow
boundary will disappear in the weak formulation. Finally, on the remaining part of the
boundary, I'., we set the flow symmetry condition
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va(x1,0,t) =0, u(|e(v)|)a—m2(x1,07t) =0 (1.11)

for any 0 < z1 < L, 0 <t <T. The initial conditions read
v(z1,22,0) =0 forany 0 <z <L, 0 < x2 < Ro(z1). (1.12)

Our main goal in this paper is to show global existence in time of weak solution of
fully unsteady fluid-structure interaction problem, see Theorem 1.1. In fact we will be
able to show that a weak solution of the coupled fluid-structure interaction problem exists
until a contact of the elastic boundary with a fixed boundary part. For the simplicity of
presentation we will consider here only the case of shear-thickening fluids, i.e. p > 2. The
generalization for shear-thinning fluids is a goal of our future research. It may be done in
an analogous way as here, but using an appropriate techniques for shear-thinning fluids,
e.g. technique of Wolf [40] by using the local pressure method and the Minty theorem
for monotone operators as well as the results of Diening, Ruzicka and Wolf [11].

The problem (1.1)—(1.12) is also a generalization of the problem studied in [15]
or [41], where the Newtonian flow was considered, see also [5], [6], [7], [9], [10], [19],
[20], [32], [36], [37] for other theoretical results on fluid-structure interaction problems
or related problems. Note, however, that in the previous works of one of the author
[15], [41] the third order term 7., has been used in order to regularize string model,
see also [35], [34]. In this paper we were inspired by work of Grandmont, Desjardin,
Esteban, Chambolle [9], where the authors used a different model for structure equation
having regularization of the form 7,.... As far as we know, the question of existence
of weak solution of fully unsteady fluid-structure interaction problem with the original
generalized string model of Quarteroni [35], [34], i.e. using a regularization of the form
Ntee for generalized Newtonian fluids is still an open problem.

The proof of the main result formulated in Theorem 1.1 will be realized in several
steps:

e approximation of the solenoidal spaces on a moving domain by the artificial com-
pressibility approach: e-approximation (2.7)

e splitting of the boundary conditions (1.3)—(1.4) by introducing the semi-pervious
boundary: k-approximation (2.5), (2.6)

e assuming a given, sufficiently smooth free boundary deformation §(x1,t) and actual
radius h(t) := Ry + 6(t) we transform the weak formulation on a time dependent
domain Q(h(t)) := Q(d(¢)) to a fixed reference domain D = (0, L) x (0, 1), cf. (2.8):
h-approximation

e limiting process for e — 0, Kk — o0

e fixed point procedure for the domain deformation n(x1,t).

The present paper is organized as follows: In the next section we will define weak
solution of the fully coupled unsteady fluid-structure interaction and introduce suitable
functional spaces. In the Section 2 we will formulate (k, e, h)-approximate problem, trans-
form it to a fixed domain and present its weak formulation. The Sections 3 and 4 deal
with the existence of a weak solution to our approximate problem. Here we firstly show
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the existence of weak solutions of stationary problems obtained by time discretization,
cf. Section 3. Furthermore, we derive suitable a priori estimates for piecewise approxi-
mations in time. By using the compactness arguments due to the Lions—Aubin lemma
and the theory of monotone operators we finally show the convergence of time approxi-
mations to its weak unsteady solution. Thus we obtain the existence of a weak solution
to the (k,e, h)-approximate problem. The Section 5 deals with the limiting processes
for k,e in (2.13). First of all we show the limiting process in ¢ — 0 since necessary
a priori estimates obtained in Section 4 are independent on e. In order to realize the
limiting process in k; k — 00, we however need new a priori estimates and show the
equicontinuity in time, cf. Section 5.2. Thus, letting ¢ — 0 and K — oo we obtain the
h-approximate problem depending only on the approximation of the domain deforma-
tion h(z1,t) = Ro(z1) + d(x1,t). The final step regarding the geometric nonlinearity
of the fluid-structure interaction problem will be realized by the Schauder fixed point
arguments in Section 6. We will show, that the weak solution 7 of the generalized string
equation is associated with the deformation of the free boundary of the moving domain.
This finally yields the existence of at least one weak solution of the fully coupled un-
steady fluid-structure interaction between the non-Newtonian shear-dependent fluid and
the elastic string.

1.1. Weak formulation.

In this subsection our aim is to present the weak formulation of the problem (1.1)—
(1.12). Assuming that 7 is enough regular (see below) and taking into account the results
from [9] we can define the functional spaces that gives sense to the trace of velocity from
WLP(Q(n(t))) and thus to define the weak solution of the problem. We assume that
Ry € Cg (O, L)

DEFINITION 1.1 (Weak formulation). We say that (v,n) is a weak solution of
(1.1)=(1.12) on [0,T) if the following conditions hold

- v € LP(0, Ts WHP(Q(n(t)))) N L(0,T; L2(Q(n (1)),

- e Whe(0,T; L2(0, L)) N HY(0,T; H2(0, L)),

- dive =0 a.e. on Q(n(t)),
= (0,m;) for a.e. x € Ty (t), t € (0,T), vo

0,

"’|rw(t) TinUloueUTe

’ a(p 2 81}j
/0 /Q(n(t)) { —pv- 5+ 2u(e(v)e(v)e(p) +p > viazigoj}da: dt

i,j=1

T prRo(L) p
+/ / (PUUt - 2|U1|2>@1(L7$2,t) de dt
0 0

T (Ro(0) p
- / / (Pm - U1|2>S01(071'2,t) dzo dt
0o Jo 2

T L 92R,
+/ / Pypa(xy, Ro(w1) +n(21,1),t) —a—F—-§dry dt
o Jo O0x7
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3 2
/ / _onos O 078 O 08 e dt = 0 (1.13)

ot ot ‘0120t 922 "9z, 0
for every test functions
p(x1,19,t) € HY(0,T; WHP(Q(n(t)))) such that dive = 0 a.e on Q(n(t)),

1 . 2 _
902‘Fw(t) €H (OvTv HO (Fw(t)))7 ®2 DinUloui Ul S01|Fw(t)

&(x1,t) = Eppa(xr, Ro(z1) + n(x1,t),t). (1.14)

=0 and

THEOREM 1.1 (Main result: existence of a weak solution). Let p > 2. Assume that
the boundary data fulfill P, € LP (0,T;L*(0, Ry(0))), Pour € L¥ (0,T; L*(0, Ro(L))),
P, e Lp,(O,T; L?(0,L)), 1/p+1/p' = 1. Furthermore, assume that the properties (3.1)—
(3.4) for the viscous stress tensor hold. Then there exists a weak solution (v,n) of the
problem (1.1)—=(1.12) such that
i) veLP(0,TsWHP(Q(n(t)))) N L0, T5 L*(Q(n(t)))),

n € Whee(0,75 L*(0, L)) N H' (0, T; H§ (0, L)),

ii) v|1““,(t) = (0,n;) for a.e. x € Ty, (t), t € (0,T), va [y ULl = 07
iii) v satisfies the condition dive =0 a.e on Q(n(t)) and (1.13) holds.

2. Formulation of the (k, e, h)-problem.

In what follows we will formulate a suitable approximation of the original problem
(1.1)—(1.12). We will call this approximation the (k, e, h)-problem.

First of all we approximate the deformable boundary I',, by a given function h =
Ro+6,6 € HY0,T; HZ(0,L)) N W1°°(0,T; L?(0, L)), Ro(x1) € C?[0, L] satisfying for
all 1 € [0, L]

T 2
0<a<h(z,t)<al, ‘W‘JF/ ah(gtl’t)‘ dt <K (2.1)
0

81‘1

We look for a solution (v, 7, n) of the following problem

p(?)t + p(v - V)v = div[2u(le(v)])e(v)] = Vrr in Q(h(t)), (2.2)

and for all ; € (0,L), see (1.6), 0 <t < T

0%y 0%n 0%y 0%Ry
‘E%aﬂ‘”mg+w+”m&ﬁ—“aﬁ]@h”

o ) R Ry KL R R E R
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Mmﬂ:<ag%m¢0, (2.4)

T = (301, h(l‘l,t))
Furthermore, in the analysis of problem (1.1)—(1.12) the boundary condition (1.3)—
(1.4), cf. (2.3)—(2.4), is splitted in the following way, see [15]

u(le(@)))d — %?+g% §§+2%? — 7+ Py |(,1) (2.5)
1 2 1 2

oh 0
~ s (vat.0) - Ghte0.0)) = | G )~ wa(ant)|
and
0%n 0%y 0%n 0%Ry _|om _
—F {aﬁ - GBTU% + 1)77—&—68756%411 — a@:r%} (z1,t) =k [Bt(xht) - vg(x,t)} (2.6)
with x > 1.

We will show later, that the approximation with « is reasonable. One of the possible
physical interpretations for introducing finite x comes from the mathematical modeling
of semi-pervious boundary, where this type of boundary condition occurs. In our case,
the boundary I, seems to be partly permeable for finite x, but letting kK — oo it becomes
impervious. In fact, we prove the existence of solution if kK — oo and thus we get the
original boundary condition (2.3)—(2.4).

Furthermore, we overcome the difficulties with solenoidal spaces by means of the
artificial compressibility. We approximate the continuity equation similarly as in [15]
with

5(6(;-: - AT(E) +dive. =0 in Q(h(t)), t € (0,T),

% =0, on 0Q(h(t)), t € (0,T), m(0)=0in Q(h(0)), >0. (2.7)
By letting e — 0 we show that v. — v, where v is the weak solution of (1.1). For fixed
e, due to the lack of solenoidal property for velocity, we have the additional term in
momentum equation (1.1); (p/2)v; divw, see also [38].

Our approximated problem is defined on a moving domain depending on the function
h =Ry + 0, cf. (2.1). Now we will reformulate it to a fixed rectangular domain. Set

def
u(ylay27t) = ’U(ylah(yht)yQat)

def _
q(y1,y2,t) = p~'w(ys, h(yr, t)ys. t) (2.8)

def @

U(ylvt) = ot

(yb t)
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forye D={(y1,92); 0<y1 <L, 0<ya <1} 0<t<T.

We define the following space

V={wecW"(D): w;=0o0n S, and wy = 0 on S, U Sous US.},
Sw =1{(1,1): 0 <y1 < L}, Sin = {(0,92) : 0 < yg < 1}, (2.9)
Sout = {(L,y2) : 0 < yg < 1}, Se ={(y1,0): 0 <yy < L}.

Let us introduce the following notations:

divy v 4 0 92 Oh Our | 10up
h 6y1 h 83/1 8y2 h@yg’

[ ([L( 00 _mon 0\] 0
ai1(g, ¢) = /D{|:h<8y1 h Oy 81/2>} oy
. [1 dq oh (861 y2 Oh Oq )} 0¢ }dy7

hoys ~ Py \Oyr  h oy 0y

2.10
99s (2.10)

viscous term

((uv"/’)):/DhTij(é(’u))éij(l/J)dy, where

“p(le(uw))ei(u),  éu) =

b, — (3_1/23}‘3)’ b=+ 2 (2.11)
convective term

B 0z yy Oh 0z 0z h .
b(u,z, ) = /D <hu1<8y1 h o 8y2> + Uy 8y2) P+ 5 z - divpudy

1 [t 1 [t
7”—5/ Rouiz191 (L,yz)dy27“+§/ Rouiz191 (0,y2) dyo
0 0

1 (L
— */ ugz2t2 (y1,1) dy1. (2.12)
0

2

REMARK. Since the terms defined in (2.10), (2.11) and (2.12) are dependent on
the domain deformation h, it will be sometimes useful to denote this explicitly, e.g.,

b(’l,l,, Zaw) = bh(u7 Z,’l,b).

DEFINITION 2.1 (Weak solution of (k,e,h)-approximate problem). Let u €
LP(0,T;V) N L=(0,T;L3(D)), ¢ € L2(0,T;HY(D)) N L®(0,T;L*(D)) and o €
L>(0,T; L?(0,L)) N L?(0,T; H3(0,L)). A triple w = (u,q,0) is called a weak solution
of the regularized problem (1.1)—(1.12) if the following equation holds
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_ /OT <8(§tu)’ ¢> 0

//( o o )U’er(uauﬂl’)hqdivh¢>dy+((u,¢))dt

oty
L

/< * uza? (“2_0))1/’2 (y1,1,t) dyrdt

-i-s/ <3((;;q) ¢>dt

L t qoutwl (L Y2, ) (0 t)‘]m¢1 (0 Y2, )ddet

//( qu)¢+ (,¢)+hdivhu¢>)dydt
h
+%/ / %(yl,t)qcb(yul,t)dyldt
cd* 0 [ 3
//< 5y18y1+a8y1/00(y1’ )dsal

¢ 2
+ b/o oy, s)ds & — aa@gﬁof + %(0 - u2)§> (y1,t) dyrdt  (2.13)

for every (1, ¢,&) € HE(0,T;V) x L*(0,T; HY (D)) x L*(0,T; H2(0, L)). Here we remind
1+ (9y, Ro)?. For simplicity and without lost of generality we assume in what
follows that E, a, b, ¢ are constant, cf. (2.1).

3. Existence of stationary solution.

3.1. Preliminary properties for the shear-dependent model.

Let us first specify the shear-dependent fluids that will be considered in this paper.
We assume that there exists a potential U € C?(R?*?2) of shear stress tensor 7, such that
for some 1 < p < o0, C1, Co > 0 we have for all n, £ € Rﬁ;ﬁ and i, j, k, I € {1,2}, cf.
28],

aU(n)

oni; = 7ia(1) (3.1)
aU(0
o) = 5% =0 (32)
U
%%Smfm > C1(1+ [n)P2|¢)? (3.3)
‘anijankl < Co(1 4 [nl)™ (3.4)
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Note, that the stress tensor 7;; = 2p~!u(|é(u)])é;;(u) with u(|é(u)|) defined in (1.2)
satisfies (3.1)—(3.4).

In what follows we show some suitable properties, that will be needed in order to
obtain a priori estimates. We use notations | - ||, :== || - || Lr(p), | -

p = |- llwe o).

LEMMA 3.1 (Interpolation inequality). Let ¢ be any function in H*(D) such that
©=0o0nS, orS.. Then there exists a constant C' = C(p,0) such that

p—2
lelly < cllVelslielz™  for — S0<l p>2 (3.5)

PRrROOF.  See the Nirenberg-Gagliardo inequality [22] and [28]. O

LEMMA 3.2.  Denote S = Sin U Sout U Sy USe. Let ¢ be any function in WHP(D)
such that ¢ =0 on Sy, or Se. Then for any 1 < r < co we have

1—1/r 1/r
lellzrcs) < eIVl leli p)- (3.6)

PROOF. Analogous to the proof of Proposition 3.2 in [41]. O

LeEmMmA 3.3 (Ellipticity of the form a;(-,-)). Let the assumptions (2.1) on h(x1,t)
be satisfied. Then

@ 2
>_@ d :
01(0,9) 2 377 /DIVqI y (3.7)

for any q € H' (D), the form a1 (-,-) is given by (2.10).
PRrROOF. The proof can be found in [15], [41]. O

LEMMA 3.4 (Coercivity of the viscous form).  The viscous form defined in (2.11)
satisfies for any 2 < p < oo the following estimates. There exists 6 = §(K,a) > 0 such
that

1) ((w,w) = 8llullf, +dlullf

2) ((u' u! —u?) — ((u?,u' —u?)) > 5/D le(ul) — é(?)|* + le(u’) — é(u?)[”

PROOF. Assertion 1). We have

() = [ (et /‘/dwijumm>

O2U( . . (3.3) 1 ) ) )
- [0 [ D) hsenwie L cua [ [ sty ras e
i kl pJo
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(A+sle))r 2>(1+(s lenr=2)/2
> Cl()é// 1+ p 2ds|é(u)|2

s=1
Cla/‘ )2+ 0104 )/Dsil’_l|é(u)|p |é(u)|
J?Ld”” el

s=0
Now we apply the generalized Korn’s inequality, see [21], [30], [31], [33]. Indeed, é(u)
could be written in the form:

é(u) = VuF(y1) + (VuF(y1))T € R2X? where

sym»

1 0
F(y)=F(h,y)=% Y2 Oh(yi,t) 1 : (3.8)
h(y1,t) O h(y1,t)

Since F : D + R2?*2 has a bounded inverse mapping, detF(y) = 1/h and u € V
(vanishing on some open subset of 9D), according to Neff [31, Theorem 6] we get

[ el = o) [ vur. (3.9)

We should point out that the proof of this generalization of Korn’s inequality with vari-
able coefficient in [33], [31] could be performed also for w vanishing on S component-
wisely, a.e. u; =0 on Sy, us =0 on Sy U S U Sin.

Assertions 2), 3) are proven in [28, Lemma 1.19]. Note that applying (3.9) we obtain
norms [lu' —u?|?,, [[u' —w?||f , on the right hand sides of assertion 2). O

LEMMA 3.5 (Boundedness of the viscous form). Letu, v € V, then for2 < p < oo
it holds

((u,v)) <

SHlvllp+Collu

lLpllvllie,  Co>0. (3.10)

Proor. We have

((w.) = [ hrigte(ui(o /‘/dngumm)
/ /azljaeekl éxi(u) ds €;5(v)

(?@AAwHMWﬂmwmw

Now, we can estimate the right hand side of the above inequality as follows.
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[ [0 setwny2ieca s = - [ 10+ e - 1iew)

pfl (letw)l” o le(w))le(v)

Sc( / |é<u>|p)(p_1)/p( / |é<v>f’)1/p+c( / |é<u>|ﬂ/@—1>)(p_l)/p( / é(v)V’)l/p

”vlll,p + CHUHl,p”'U”Lp

Here we have used the fact, that for # > 0 it holds (14 z)?~* — 1 < ¢12P~! + cox, which
can be proven easily, see also [28, Chapter 5]. O

LEMMA 3.6 (Continuity of the viscous form).  For ui,us € V, v € C! following
estimate holds

(', 0)) = () < ClL |l - lu' — 2?1 p]vllcr,
where Ip, == fol(l + [sé(u' — u?) + é(u?)|)P~2ds is bounded in LP/P=1) (D).

PROOF. We have using (3.4) and the Holder inequality

(u',v)) = ((v*,v)) = /D hlmij(e(uh)) = 7i;(é(u)]éi; (v)

4 OU(se(w) + (1= 9)e(w)
/ / Dés; ds é;;(v)
U —s5)é(u?
/ / ad ae”a(elkl ) (ri(u') — éx(u?)) ds é55(v)

(3.4)

s 02// (14 |sé(ud — u?) + e(u?)|)P~2 dslé(ul) — é(u?)||é()|

< CHIpHp/(pfl)Hu —u?

l1pllvller O

LEMMA 3.7 (Nonlinear convective term b(u,z,%)). For the trilinear form
b(u, z,%) defined in (2.12) the following properties hold

Dot 7, ) = 3 Blu, 2,9) — 3 Blu, 9, 2),

0z Y2 Oh 8z> 8z>
here Bl(u, z, ) = h Fug—= ) - apdy. 3.11
where Blu, z,%) /D < " <5y1 ‘h 9y Dys "2 By, wdy (3:11)

Moreover for p > 2 we have

|B(u, z,9)| < cllulluplzllpl[9]h,p-
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PROOF. The assertion (3.11) is obtained by integration by parts in the first integral
term of (2.12) (in the term (1/2)B(u,z,)), see also [15], [41]. The last property
follows easily from the Holder inequality and the imbedding W?(D) — L"(D) for any
1<r<ooand?2<p<oo. O

3.2. Stationary problem.

In this section we approximate the problem (2.13) by a sequence of stationary prob-
lems obtained by the implicit time discretization and show the existence of weak solution
for one discrete time step. Thus let us approximate time derivatives by means of first
order backward finite differences

a(hu) N hiut — Bl 1 (c)(hq) ~ hiqi _ hi—lqi—l do N ot — g1
at At et At oot At

where u?, ¢* and o' denote appr0x1mat10ns of unknown wu, ¢ and o at time instance
iAt, e.g., u'(y) = u(y,iAt). We replace fo ) ds by Zk , o%At. Moreover, for given
functions we use the following notations

4 ' 1 [iat
() = hiy,iAt), and g, (1) = / Gin (Y2, 8) ds,
(i—-1)At
similarly ¢, ¢&.
Let us introduce the following space
V=V x HY(D) x H}(0,L). (3.12)

After the time discretization the following variational problem is obtained from (2.13).
Find w! = (u’,¢*,0%) € V such that

a'(w', @) + B (w', w', @) = L'(w) Voo €V, (3.13)

where @ = (w,v,9) and BY(w’, w?, @) := by: (u’, u’,w), see also (2.12). Further

1. a'(-,-) : V x V — R is the following form on V'

a'(w', =) = ((u',w)) + cai(q’, v+—/hluw+qv)d

0%0t 929 ot 99 1
+ + aA + [ — +bAt )69 |d
/0 ( ay? oy} Dy 01 (At ) ) ”

Wt — pi—1 a(yQuz) Ly  pi_pi-t
_ P LA 1
/D A oy YW / g2 ap w2y Ddn

hi _ hi—l a(qu ) hl hi—l )
_ " g 1
8/D At oy VW 2/0 Ar v ldy
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L Y
b o) () )
0
—|—/ (B vdivyiu' — hig' divyiw)dy,
D

see also (2.10) and (2.11).

2. The trilinear form Bi(-,-,-) : V. x V. x V. — R is defined by (2.12). Note that
Bi(w', w, w') = by: (ul, u’, u’) = 0, see Lemma 3.7, (3.11).

3. Finally, L(-) is the linear functional on V, such that
Li(w) = L/ R Hu'tw+e gt o) dy + = /L o' dyy
At Jp At fy
1
[ 0O n 0) = H(D)ahun (L)) o
0

L i—1 k 2
: do* v 8°R,
+/0 (_qu2 (ylal)_z (a8+bakﬁ>At+a(’)gJ2ﬁ> dyl

=1 Oy1 Oy1 1

3.2.1. Existence of finite-dimensional solution.

The existence of stationary solution is the consequence of coercivity of the viscosity
form ((-,-)) and of a;(-,-), see Lemma 3.4, Lemma 3.3, the continuity of these forms, see
Lemma 3.6, and of the following lemma.

LEMMA 3.8. LetY be a finite-dimensional Hilbert space with the scalar product
(+,+) and the norm || -||. Let P be a continuous mapping from Y into itself, such that for
a sufficiently large o > 0,

(P(C),() >0 Y( €Y such that ||<|| = o. (3.14)

Then there exists ( €Y, ||C]| < o such that P({) = 0.
PROOF. See [38, Lemma 2.1.4]. O

The proof of existence of the finite-dimensional solution to (3.13) is analogous to
the proof given in [15] or [41, Theorem 4.1]. In our case the finite-dimensional Hilbert
space Y = ¥™ = span{&1,...,&n}, & € C? is equipped with the norm || - |[1,2 and P is
a continuous mapping from Y into itself given by

(P(¢).z) =a'(C,2) + B'(¢,¢,2) — Li(z) VzeY.

From Lemmas 3.5, 3.6 and 3.7 it is easy to see, that the assumption of continuity of P is
fulfilled. By means of Lemmas 3.3 and 3.4 we obtain the property (3.14) as follows. For
¢ = (u',q", Ec?) one can verify that
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a'(¢,¢) = ((u',u)) +car(q', ¢")
K 1R RN, .
+/D [At + 2At](lu [ +elg'l?) dy

L i
+E/c
0

Using coercivity of the forms ((+,-)) and a1 (-, -), we have for sufficiently small At < a/K,
cf. (2.1)

0?0
oy}

00

oy

2 2
1 ,

At — + bAt ) |6?dy,.
+a ’ +(At+ )|a Y1

NI e i i i
(P(¢);¢) = d|u |i2+m”q 1.2+ cE|lo ||§,2*L )
> CcoeTCHC”%,Q - CL||C||1,2- (3-15)

Thus (P(¢),¢) > 0 for e.g., ¢ such that [[{|l12 = 0 = CL/Ceoerc-
Now we use Lemma 3.8 and obtain the existence of stationary weak solution to
problem (3.13) w™ = (u™,¢™,c™), (written without temporal index 1)

Cr
CCO@TC

w" = Zc?fk € Y™, such that |w™[12 < o= (3.16)

k=1

In order to get further a priori estimates in W1?(D) for w and in H?(0, L) for o,
we test (3.13) by w™ = (u™, ¢™, Ec™) and come to

a'(w™,w™) = L' (w™) Yw™e ™. (3.17)

Similarly as above using the coercivity property we obtain from (3.17) for sufficiently
small At

Crllw™ |12 = ollw™|}, +ollu™ |7, + "3 2 + cEllo™ |13 5.

ea
PRl
Considering (3.16) we get consequently
[, + o™ 115, < C- (3.18)

The boundedness in the reflexive Banach space W?(D), WY%(D), H?(0,L) and
the compact imbedding arguments, see [38, Theorem 1.1],

W'P(D) € L"(D), oo >r>1, (3.19)

imply the following convergences
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u™ — win L"(D), co>r>1,
q™ — qin L"(D), oo >r>1,
o™ —oin L"(0,L), co>r>1,
Vo™ — Vo in L?(0, L),

u™ — u in WHP(D),
g™ — ¢ in WH2(D), (3.20)
o™ — o in H*(0, L).

In view of the results (3.20) we pass to the limit for m — oo and obtain the solution
of infinitely dimensional stationary problem. The details of the limiting process are
omitted here, cf. [15]. In order to pass to the limit in the nonlinear viscous term the
technique of monotone operators is used, cf. also Section 4.

Let us summarize the main result of the Section 3 in the following theorem.

THEOREM 3.1 (Stationary solution). Leti € {1,2,...,n} andw’ € V forj <i—1
be given. Assume (3.1)—(3.4) and (2.1) hold; i.e. there are non-negative constants a, K,
independent on 1, such that

2
At < K

n hz _ hi—l
)

0<a<hi(y)<al d
o <hm) <ot and |F )

=0

for all 0 < y; < L and i = 1,2,...,n. Moreover, assume that q.,, q*., € L*(0,1),

qi, € L*(0,L). Then the problem (3.13) has at least one solution.

4. Existence of unsteady solution.

4.1. A priori estimates.

In this section we derive suitable a priori estimates for the sequence of piecewise
constant and piecewise linear approximations in time of the weak solution. Since our ul-
timate goal is to let the parameter xk — oo, we would like to obtain estimates independent
on K.

We first rewrite (2.13) for piecewise constant u, g, o, replace time derivative in (2.13)
with backward difference and replace integration in time by sum over i = 1,2,...,r, r <
n. This yields

i / hiui o hifluifl B hz o hifl 8(2/2’1141) "
o (Oul y, OR 8ui> »Bui> ho ,
+ | h'u} - == — | +ub— Jw+ — v'wdivyut
( ' <3y1 h* Oy Oyo 2 Oy 2 h
+ ((u,w)) +eai(q',v) — h'q* divyiw

e hiqi _ hi—lqi—l B hz _ hi—l a(y2qi)
At At 8y2

) v+ dthiUiU}dy

i _|u§|2 _ i _|uli|2
+ [ Ro(L)( qout 5 w1(L,y2) — Ro(0) | gj, 5 w1(0,y2) dya




On the coupled fluid-structure interaction problem for non-Newtonian shear-dependent fluid 209

L [ i—1
i L( i h-=h
(RS TPRE AP

L i i—1
. eh*—h )
+ -7 1)d
+/0 </<;(u2 )w2 5 AL qv> (y1,1) dy;

L ¢ i _i-1 2 i 92 k
+/ {0’ o 19_'_680819 N tzaa ov
0

At dyi Oyi Oy1 Oy
- 82 019+bAt Z B9+ 2ot —ui)d Sy dyy |[At =0 (4.1)
8y o i) o — Uy Y1) dy1 = .

k=1

for any w = (w,v,9) € V.
We test the above identity with (u’, ¢¢, Ec?), find out that b(u’, u’,u’) = 0 (Lemma
3.7), multiply with 2 and perform the following discrete calculus.

9 hzuz . hi*luifl uzd
2/, y
. . 2 hi_l . . .
/ hr‘u ‘ dy—l—Z/ { |hz i hz—lul—l‘ + - (hz _ hz—l)|uz—12}dy7
rooL _ _ L T L _
22/ (0 — o' o' dy, :/ lo"|?dy, + Z/ lo* — o' 2dyy,
i=170 0 i=170
wtost, _a f* ’8U’” 2 }
alt =— dyy,
Z/ oy 8y1 . 2 /o { Oy n
~ [t b 12
A () — T 1 17— 42
b t;/o U'o' dy, 2/ {|U|dy1+ZU U |}dy1 (4.2)

=1

Uz 1)

Here U’ denotes Ut := Y4 _ oFAt, U0 =0, and (U — U'~1) /At = o'

Using (4.2)1_4, the coercivity and ellipticity properties of the forms ((-,-)) and a; (-, -)
(Lemma 3.4, Lemma 3.3), the Holder inequality, the boundary imbedding (3.6) and
Young’s inequality we get

L
/ W (2 4 elg ) dy + E / o 2y
D

JrAtZ/ 26| Vu'l|P 4 K2|Vq |2dy+20EAtZ/
i=17D

L 2
our
+ aF
/o ‘ Oy

2

82 7
dy:

+bE|UT]? + QKZAtZ[O'i — ub]? dy,
i=1
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<AtZH1/ hi(|ut]? + elq’)? )dy+ClAtZP’ V'],

=1
+mz/zE iy, s
where
- Thi+1 1 i 2 i hz _ hifl
i = ms, | - o]+ g ) T = g
Pt o= lldinllz20.1) + bl 20,1y + 1kl 20,2y (4.4)

Constant C; comes from (3.6) and the compact imbeddings W?(D) € L?(D), cf. (3.19).
By applying Young S mequahty in terms on the right hand side of (4.3) with appro-
priate constants 6, C(0), & = 6(K, a) from Lemma 3.4 we obtain

' E L
3 +Z/5\VU P+ KQIVquy+2/O
+/LC£ aUr2
o 2 0y

< AtiHigijLAtzT:f", (4.5)
1=1 =1

2

2 1
00 dyl At

82

bE " S
7|U7"|2 + 22/{[01 — ub]?dy, At

i=1

where
E L
€=/ﬁmwﬁmwm@+§/|ww%
2CF
= Ml +29E [

and M = C1((p—1)/p)(C1/pd)/ @D ' = p/(p —1). After omitting positive terms on
the left hand side of (4.5) we obtain " < At>"7_ | H'¢' + At ._, f and applying the
discrete Gronwall inequality [13] we get

2

62RZ
dy:

y1

€ < AT AN (4.6)

i=1

Consequently the right hand side of inequality (4.5) can be estimated with use of (4.6)
by (1+He™)AtY " | f, H:=At> " | H'" and we obtain the first a priori estimate:
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E L
I. max / hr(|ur|2—|—€|qr|2)dy+§/ 0”2 dy,
0

1<r<n Jp

+AtZ/5|Vu|p Ve Py +—/

+ ma /LaE U’
1§r§Xn 0 2 8y1

+ Z/ |h7, % hi—lui—1|2 +€|hiqi _ hi—lqi—1|2 dy

2

(‘92 7
dy1

bE T2 = r 7 712
- U] +ALY 26 | o' — ubPdy
i=1 0

n L n
+ AtZ/ Elo’ — o' '’dy; < MALY " f, (4.7)
i=170 i=1

where M = (1+He™), H < C(a) S IThE 0,00+ ||Thi||20[O7L}At is bounded and f?
depends only on the given data Ry, Gin, out, Gw- Note that constant M does not depend
on k. We will see later in Section 5 that the continuous analogy of this estimates will be
useful to prove convergence of the approximate solution for e — 0 and k — oco.

Now we are ready to show suitable properties of time differences of the weak solution.
We first show that the time difference of the domain deformation velocity is bounded
in L?((0,T) x D) with some constant dependent on k. To prove it, we test (4.1) with
P! = (0, 0, EYco?). This yields

L ‘ 251 927 i ‘ _
AtZ/ E|To? ca ol 910’ + k(0" —u2) Yo"
i=170

oy7  Oy3
Yot : , 2R
+Ea —At +Eb kAt)Tl—Ea 9Yo! dy; =0. (4.8
( < Oyt )51/1 (,;U ’ a7 5

Using the discrete integration by parts in time (4.2), Young’s inequality and the previous
estimate (4.7) lead to the second a priori estimate:

2

62 r
oy}

B
At + max CT

II. a).
1<r<n

< CHMXH: fiAt. (4.9)

i=1

Since the term >_!_, OL K2(0" — ub)?dy; At is bounded using (4.7) with xM 37" | fiAt,

this a priori estimate depends on k.

Let us define

Using the sequences {U'}7,, {Q*}r_, {o?}7_,, {h*}?_, we construct the piecewise con-
stant step functions
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uy (U, 1), 4n(y,t), Un(y,t), Qu(y,t), on(yr,t), hylyr,t)

and the piecewise linear approximations of the weak solution and of h(y1,t)
Un(y, 1), an(y,t), Un(y,t), Qu(y,t), on(y1:t), hnly,t).

We show now a priori estimate for the time derivative of piecewise linear approximation
of the weak solution. To this goal we test (2.13) with (¢,0,0), ¥ € LP(0,T;V). From
(2.13) we have

T ou, T
_/0 <8t’¢>dt:"'/o ((una"/’))+b(un,un71/))...dydt.

We concentrate only on particular terms that yield some restrictions. Estimates for
other terms do not lead to additional difficulties. According to Lemma 3.7 we have
2b(wp, Up, ¥) = B(up, p, ) — B(un, ¥, u,). Now, using the Holder inequality, imbed-
ding of the space W?(D) into L*/(P=2)(D) for p > 2 we have

T T
/()B(un,un,tb)SC(K,a)/o [wnllpllwnll2l®llzp/ -2

T
SC@MMWNW@@N@»AH%WmWMm

< C(K, O‘)”“n”L‘”(O,T;L%D))”unHLT’(&T;leP(D))

< 1l Lo 0, rwrr (D)) (4.10)

which is bounded for all p > 2 due to the a priori estimate (4.7) for all ¢ € LP(0,T; V).
Analogously the term fOT B(up, ¥, u,) is bounded, which leads to

/T b(Up, Un, P) < C(K,a) for p € (2,00). (4.11)
0

For p = 2 this estimate is valid for ¢ € LP(0,T; V) N L*((0,T) x D), cf. [15].
Further, using Lemma 3.5 we get

A?mmw>

l1pllenllp

T T
SﬂK@AIWMNWH?+%AIW
< C(K, a)||YllLeo.rwr0 (D)

X (Hun”i;(loj;wl,p(l))) + Hun||Lp(07T;W1,p(D))). (4.12)

Thus, the viscous term fOT((un,i/J)) is bounded for any v € LP(0,T; W'P(D)). Conse-
quently we have proved the second a priori estimate for velocity
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o,
ot
ou
ot

IL. b). € LP (0, T; V*) for p € (2,00),

" e LP(0,T;V*) & LY3((0,T) x D) for p = 2, (4.13)

where p’ is given by 1/p’+1/p = 1. This estimate is analogously as the estimate for 9o,
dependent on k.

By testing (2.13) with (0,¢,0) we obtain after standard calculation that
ﬁ) (VE(0Q,/0t), >H1 < C(1/4/¢), i.e., the second a priori estimate for pressure

IL. c). € L*(0,T; (HY(D))*), (4.14)

OQn
ot
which is dependent on ¢.
Let us summarize the above results in the following lemma.

LEMMA 4.1 (A priori estimates).  Let us assume that h € W1°°((0,T), L*(0, L)) N
HY((0,T); H3(0, L)) and the assumptions (2.1), (3.1)—(3.4) hold. Then we have for the
approximate sequences of piecewise constant and piecewise linear functions the following

results
{us}oo o, {USYe,, {UL2, € LP(0,T; V)N L®(0,T; L*(D)), (4.15)
{0U,}2 5 € LY (0,T; V*) forp € (2,00),
{2, € LP (0, T; V*) @ L*3((0,T) x D) for p =2, } (4.16)
(a3 1020 AQn 00 {@n )00 € L2(0, T; WH2(D)) N L(0, T; L*(D)), (4.17)
{0:Qn}nlo € L*(0,T; H™Y(D)), (4.18)
{05322, {0n)5%, € L?(0,T; HZ(0, L)) N L>(0,T; L*(0, L)), (4.19)

{Ohon}se € L2((0,T) x (0, L)), } (4.20)

{on}52, € L=(0,T; HZ(0,L)).
The estimates (4.16), (4.20) depend on r, (4.18) depends on ¢.
PROOF. These results follow from a priori estimates (4.7), (4.9), (4.13), (4.14). O
Consequently we have following convergences.

LEMMA 4.2.  There exists a subsequence of {h%, hy, us, wn, U Un, G5, Gn, 05, 0,352 4
and functions w € LP(0,T; V)NL>(0,T; L*(D)), ¢ € L?(0,T; H*(D))NL>(0,T; L*(D))
and o € L?*(0,T; H3(0,L)) N L>=(0,T; L*(0,L)) (we denote the subsequence again by
{RS, byl un UL U, G5, Gn, 05,0002 1), such that
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hp — h *weakly in W*(0,T; L*(0, L)), (4.21)

hE, hn — h strongly in  L>°(0,T;C*[0, L]), (4.22)

U, U, — hu, u’ — u weakly in L?(0,T;V), (4.23)
U,, U — hu, uS — u *weakly in L°°(0,T; L*(D)), '

u,, U, — hu | strongly in L?((0,T) x D), (4.24)
ud, u, — u strongly in L"((0,T) x S), co>r > 1, '

n, @5 — q weakly in L*(0,T; H'(D)),
qn, q¢ — q strongly in L*((0,T) x D), (4.25)
In, @& — q *weakly in L*°(0,T; L?(D)),

Q. — hq weakly in H(0,T; H (D)), (4.26)
on — o weakly in L*((0,T); H*(0, L)),

on — o *weakly in L>=(0,T;L?(0,L)), (4.27)
on — o strongly in L*(0,T; H'(0, L)),
040, — Oy weakly in L*((0,T) x (0,L)) (4.28)

asn — oo. The convergence (4.24), (4.27)3, (4.28) is dependent on , (4.25)2 and (4.26)
depend on €.

PROOF. The convergence (4.21) follows from the Taylor expansion of h;, integra-
tion by parts in time and the boundedness of h; in L°°(0,T;L?(0,L)). The proof of
(4.22), (4.26), (4.27), (4.28) can be found in [15] or [41, p.47]. The assertion (4.27)3 fol-
lows from the imbeddings H?(0, L) € H'(0,L) C L?(0, L) and the Lions—Aubin lemma.
This convergence depends on k.

In the following we only prove the strong convergences of U,,, U, , Q,, QS in the
corresponding spaces, cf. (4.24), (4.25). Consider p > 2, for proof of (4.24); for p = 2
we refer to [15, Lemma 6.1]. Note that

WhP(D) € LP(D) ¢ (WHP(D))*,

where imbedding W (D) into LP(D) is compact, imbedding LP(D) into (W17 (D))* is
continuous and WP (D) and (WP(D))* are reflexive spaces (p # o0), see [1]. According
to the Lions—Aubin lemma, the imbedding of the space X := {U,, € L?(0,T;V), OU,, €
LY (0,T; V*)} into LP(0, T; LP(D)) is compact, where 1/p’+1/p = 1. This, together with
(4.22) implies that

U, — hu strongly in LP(0,T; L*(D)), (4.29)
dependently on x. The first part of the result in (4.24) is now proven.

It remains to show the strong convergence of piecewise constant sequence {U. }.
Since |U,, —U| < |hiu' — P ™Y for t € ((i — 1)At,iAt), we have from the first a
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priori estimate (4.7)

n 1/2
||l,{n _quHLZ((O,T)xD) = VAt(Z/ |hzuz o hz1u11|2> < C’(a)Atl/Q.
i=17/D

Moreover, Lemma 3.1 (with § = (p — 1)/p) and the Holder inequality implies

T
e = U0y 0 |90 = VUt =3
< ea|Un — U, ||lLr0,1522(D))-

The constant cz depends on |||VU, |+ VU, ||| 1»0,1;22 (D)) and it is bounded, see (4.15).
The term U, — U} ||Lr(0,7;02(D)) can be upper bounded with

1 s 1
03||U -Uu; HL/ZIE(OT ><D)|||u |+ |u |||[f)°°(3/71’)L2(D))

Since [|U,, — U | 22((0,7)x D) < C(a)At'/?, we obtain from the previous estimate that
Uy — uZ”II);P(O,T;LP(D)) < C4(Q)At1/2p

and thus with use of (4.29) we get
U; — hu strongly in LP((0,T) x D). (4.30)

To complete the proof of (4.24) we consider the boundary integrals. By means of
Lemma 3.2 for r = p and the Holder inequality we get

T
245, — il oy < € / IV @, — b [55, — hu
< clHZ’lfL - huHLP(O,T;leP(D))Hqu - huHIE,;(lDX(o,T))

which tends to zero due to (4.30). This result together with (4.29), (4.30) implies the
assertion (4.24).

Analogously as above we prove the strong convergence of ¢, g5 — ¢ in L?(D x
(0,7)) for fixed e, cf. (4.25). In this case, we obtain from the Lions—Aubin lemma
using the imbeddings W?(D) € L*(D) c (W2(D))* the strong convergence of g, in
L2(0,T; L*(D)). Since |Q, — Q3| < |higt — hi=tqi~Y| for t € ((i — 1)At,iAt) we have
from (4.7) also

1/2 AR\ /2
1@n — Qullz2((0.7)%x D) (AtZ/ |h'q" — il 12) SC(E)
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Letting n — oo we get the strong convergence of ¢ in L?(0,T; L*(D)). 0

4.2. Limiting process.

Now we are ready to let n — oo and by means of Lemma 4.2 to prove the existence
of unsteady weak solution to our problem defined in (2.13).

Consider first smooth test functions ¢ € C'([0,7] x D), ¢ € C(0,T; H(D)),
¢ € C(0,T; H3(0,L)). Then construct piecewise constant and piecewise linear approxi-
mations in time b, ., ¢n, ¢, £5. It is easy to verify that

Yo, — in H'(0,T;V), Y, — 1 in L=(0,T;CY(D)),
¢, — ¢ in L*(0,T;H'(D)) and & — & in L(0,T; Hy(0,L)) (4.31)
as n — oQ.

In the identity (4.1) with r = n we put w = 9" = ¥(y,iAt) € V, v = ¢' € H (D),

¥ =& e HE(0, L) and replace
. T 0
dy by —/ / U (t— AY)
atJp

~ 5]
A
t;/p

for all 4, € H'(0,T; V) such that 4,,(T') = 0. This yields

/Zt/ U (t— A) - w"d dt = /OT((ufl,zpr))dt

ahn 8 y2u ) s s s s
/ / { Ot Oys ¥y, — hyq;, diveg wn}dy +b(u;,, uy,, ;) dt

aQn s ah a(qun) s s
{6< Y ,¢n>+/D o O —5 ¢ +ea(qy, on)dy

t” (t) dy dt

+/ div hsu ¢ dy+/ RO QOust ln (L yQ)dyQ
D

v n,s ume 3hn
W~

1
- / Ro(0)q% 45, (0,y2) dy + /

0 0

L eoh, . .
+/0 (“(Uzn o )5, + 2m€2¢%>(91a1)dy1}dt
[0 D200 0% ¢,
+/0/0 TG By (/ oy, YT dT)ayl

LR ‘
o [ az<y1m>dr)fz+j;(oz—ugmsz}(yl)dyl o
(4.32)

)%2 (1. 1) dyn

Now we let n — oo in (4.32). We will show only the convergence of some chosen
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terms. The limiting process other terms is analogous.
We have from (4.24), (4.26) and (4.31)

/:/Du;(t—At)-a;” dydt—>/ /h t) dy dt,
f G, dHAWWt

Next, we prove convergence in the nonlinear term b(-,-,-) defined in (2.12). Let us

estimate

| /OTb(u i 2) ~ b )

T T
< / b, 5, 5) — bl 455t + / bt 2, 455) — bk, 1, )|

0

1 [11]
According to Lemma 3.7, the term [I] = (1/2) fOT B(uf,us, ¢s) — B(us, s, us) —
B(u,u, 1) + B(u, s, u)dt can be estimated as follows

T
2 / Ib(aa, e ) — (o, w, 5|t
0

T
< [ 1B - )]+ (Bl - )
0

+ |B(u; - uvuiw"/’:z” + |B(uvufz - ’LL71/JZ)|dt

< oK / IR

oh?s ou?, ou
+ YT 54 dydt
/0 p oy y2(3y 8y2> Yt dy

< C(K, )9 oo (0,101 @y 1en = vl o oy Ilun] + Vg |+ |ulll Lo @r)

oh?, ou?, ou
s s -dy dt.
/ / U1 Y2 ( ay 3y2 > 1/1 Y

Here Q7 := ((0,T) x D) and 1/p+1/p’ = 1.

From (4.15), the weak convergences in LP(0,T;V), cf. (4.23) and the strong con-
vergences cf. (4.24), (4.22) we deduce [I] — 0. The second term [II] can be estimated in
the following way

8

|us |u —u|dydt
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T
| b))
0

T
< O(K, a) / /D ful [Vl [, — ] + [uaf? V5, — Vapldy
0
< C(K, @) (Jll o IVl o @y + N1l (0185 — Bl 1500 -

Thus, from (4.31) we get also the convergence of the term [II] — 0.
Now we show the convergence in the viscous term

T T o
/ (s 42)) — / (w,9p)) Vo € C([0,T] x D). (4.33)
0 0

By means of the Minty—Browder argument [3] we prove the convergence fOT((ufw P)) —

fOT((u, 1)), the limiting process fOT((qu, Pi)) — fOT((ufl, 1)) is straightforward and fol-
lows from (4.31). We know that u, € L?(0,7;V) and u} — w in LP(0,T;V), é(u?)
— é(u) in LP(0,T;LP(D)). Let us define the operator A : LP(0,T;LP(D)) —
LP(0,T; L7 (D)), 1/p+1/p/ =1 in the following way

(Attw). o) = [ ) | hristetwnesw) = [ (. ))

Yw,yp € LP(0,T;V), see also (2.11).

From the weak formulation (4.32) and the corresponding boundedness, cf., e.g., (4.11),
(4.12), it follows, that A(é(u?)) is bounded. Thus, it converges weakly A(é(us)) — f

in LP (0,T; L” (D)). Lemma 3.4, assertion 3, see also [28, Lemma 1.19], implies the
monotonicity of operator A. From the monotonicity of the operator A we have

0 < liminf (A(é(u)) — A(é(u)), é(uy) — é(u))

n—00

— timinf {(A(e(u}), e(ud)) — (A(e(u)), é(uy) — éu)) — (A(e(u}), ()}

n—oo

and thus liminf, . (A(é(u)), é(us)) > (f,é(u)). Limiting in the rest terms of the
weak formulation (4.32) for test functions ¥ = uf — u, ¢5 =0, £ = 0, using available
weak and strong convergences we moreover get lim, .o (A(é(us)), é(us) — é(u)) = 0.
This implies that lim, .o (A(é(us)),é(us)) = (f,é(u)). According to the Minty Trick

we get f = A(é(u)), ie.
A(é(w;)) = A@E(w) in L7 (0, T; (L7 (D)),
which implies (4.33).

Letting n — oo in (4.32) we obtain the weak formulation (2.13) with smooth test
functions w = (1, ¢,£). Due to the standard approximation argument of the Sobolev
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functions by smooth functions we can conclude that (2.13) holds for any 4 € H(0,T; V),
¢ € L2(0,T; H'(D)) and € € L?(0, T; H2(0, L)).

The limiting process in (4.32) for n — oo is now completed. Note that instead of
the term — fOT<8t(hu),¢>W1,p we have fOT Jp hudp.

4.2.1. Weak time derivative.
It remains to show that the limit of 0,(U,,) is 0;(hu). We show it for p > 2, for the
case p = 2 see, e.g., [15]. From the previous section we obtained

/T/ hu.%ﬁ /T (6v), Yy e HY(0,T;V), ¢(T) = 0. (4.34)
o Jp L 0

Here x is the weak limit of U, see (4.13),

O(hpuy,)

5 — x weakly in Lp/(O,T; V).

Since hu € L?(D), it can be identified with an element in L?(D)* by Riesz’ representa-
tion. Further, using the embeddings W'?(D) C L*(D) = L*(D)* ¢ W1P(D)*, cf. [14],
[38], it is possible to represent the duality between W1?(D) and (W1P(D))* by means
of the scalar product in L?(D). Thus, for the left hand side in (4.34) we can write

_/OT/Dhu'(?;f _ _/OT <hu a;tp>wm (4.35)

Choose 9 = w(x)£(t) such that w € V, € € CL(0,T). Insert it in (4.34) and (4.35) and
obtain

T T
- / (hu, w)v e (1) = / (o w)vE(t).

Consequently we get that x is the time derivative in distributive sense

_8(hu) in L (0,T;V*), and

/ / OT <8(gt“) , ¢>V (4.36)

for every ¢ € H}(0,T;V).
Moreover, for 0 < t < T the above distributive time derivative fulfill the equality

/ot (Or(h), ¢ ds‘/ / ’W*dyds—/Dhu(ty)i/)(t,y)dy. (4.37)

This can be easily proven using test function ¥ = ((y,s)pc(s), where ¢ €
HY0,T; X), p(s) = max{0, min{1, (¢t + € — s)/e} } and passing € — 0, cf. [41].
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Analogously as in [15, Lemma 6.2] using the property (4.37) for the special test
function ¥ = [u]a¢, cf. (5.7), we obtain the following property of the distributive time

derivative
b/ 0(hu) > 1/f/ 5 Oh 1/ 5
U == ul®— + - ul“(t)h(t 4.38
[(5) =5 [ [ S5 [ mone (139

for the pairing between W?(D) and (WP(D))*.
Let us summarize the existence result of this section in the following theorem.

THEOREM 4.1 (Existence of (k, €, h)-approximate weak solution). Lete, & be fized.
Assume (3.1)~(3.4), (2.1), @in, Gour € L? (0,T; L?(0,1)), qu € L¥'(0,T; L*(0, L)).

Then there exists an approzimated weak solution of problem (1.1)—(1.12) transformed
to the fized domain, in the sense of integral identity (2.13). Moreover,

LPI(O,T; V*) for2 < p < oo,

a(gt“) e { LV (0,T; V*) @ LY3((0,T) x D), ag;q) € L*(0,T; H-1(D)),
forp=2,
such that

T/ o(hu) T )
,'¢>dt=—/ /hu- dy dt
and the properties (4.37), (4.38) hold.

5. Problem with e =0, Kk = cc.

We have proved the existence of weak solution, which is depending on the parameters
€, k. Passing to the limit for ¢ — 0, K — co we obtain the weak solution of the original
problem (1.1)-(1.12) for Q(n®)) for a fixed k. By this procedure we will prove the
existence for one iteration with respect to the domain deformation n(*). We realize the
limiting process by passing to the limit in both parameters at once, taking x = e~*
letting kK — oo.

We point out the dependence of weak solution on the parameters in the following
way Uy, s, 0x- Analogously as in Section 4.1 we obtain the first a priori estimate by
testing (2.13) with (w, gx,0x) and using property (4.38).

and

L
ws [ KOl + elaP)Ody + 5 [ ool

0<t<T [p

T L 2
~ 20
S|Vu,|P + ——|Vq,.|?dy + E
Jr/o/p‘u|+2+K2|q|er/oc

O0u " gy dt

2
oy?
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2
ds ox(s
891
/ / 2k|0 — U] dyldt<M/ pr’ +c1

where ¢; = Cl(p7 E7 a, C)7 M = M(pa K7 Oé), see (47) and P := ||QinHL2(O,1)+HQOut||L2(O,1)+
lqwllz2(0,z), cf. (4.4). Note that the right hand side is independent on ¢, &.

dy1

Ry ||

dt, 5.1
ai‘/l ( )

L2(0,L)

5.1. Limiting process k =e¢~! — oo.

First of all we would like to point out, that the estimate (5.1) implies the weak
convergence of

(s, \/quﬂ 0x) = (u,q,0)
in LP(0,T;V) x L*(0,T; H (D)) x L*(0,T; H*(0, L)) (5.2)

as k — 00. Moreover, after inserting test functions (0, ¢,0) into (2.13) for sufficiently
smooth ¢ we obtain

T
/ / he divy, uy,
0 D

< VeC|IVequllL20,7;m1 (0)) (101l 20,7501 () 10: D | L2 ((0,7)x D)) - (5.3)
Using the boundedness of \/zg, in L?(0,T; H'(D)) and letting ¢ = k~* — 0 we get
divpbu =0 a.e. on (0,T)x D.

This fact allows us to confine later the space of test functions to the solenoidal space, i.e.
divpp =0 ae. on D.

As pointed out before, using the same techniques as in Section 4.1 we get estimates
of time derivatives Qyu, Oroy, (4.13), (4.9), which depend on k. Therefore in the limiting
process for kK — oo we cannot use the Lions—Aubin lemma as in Lemma 4.2 in order to
obtain strong convergences in appropriate spaces for (u,, o) — (u,0).

In fact, we have to use another argument to obtain the strong convergence. We
follow the lines of [15, Section 8] and use the equicontinuity in time as in Alt, Luckhaus
cf. [2, Lemma 1.9]. We show that

T—1
/O /D (B (t + 7) — (R ) (B) + el (hau) (t + 7) — (hae) (1) Pdydt

—I—/O /0 |(hoy)(t 4+ 7) — (ho)(t)|Pdy dt < C(K,a)T, (5.4)

where C is a positive constant independent on 7, k,e. To obtain (5.4) we test (2.13) with
separable test functions (x*w, x*p, x* Ev), where x*(¢) is a smooth approximation of the
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characteristic function of interval (¢,¢ + 7) and (w(y),p(y),v(y1)) € V, cf. (3.12). We
put

w(y) = 0/ (huy), ply) = (hax), o(y1) = 0/ (ho),

where 0] f := f(t+ 1) — f(t), use the property (4.37) and integrate with respect to t over
(0,7 — 7). We arrive at

T—71 L
/ / 107 ()2 + 107 () Py + E / HOF (0,0) 2y, dt
0 D 0

_E /0 o /O 07 (0)07 by dt
. /OT’ / t”{(mK(s),a;(huK)))— /D B(8)qe(s) divi, OF () dy
L

1
+ / h(s)divy, w(s)0] (hgs) + -+ -dy + / cedyy + / - -dyg}ds dt. (5.5)
D 0 0

The property (5.3) implies, that the right hand side of (5.5) does not depend on e.
Moreover, it does not depend on x, since the corresponding boundary term is bounded

T—1
KT/O /0 (U2, — 0x]r(t)0F (R(u2x — 0k))dyrdt < CT (5.6)

independently on . Here the notation for the so-called Steklov average is used

t4r
0l (t) = - / 6(s)ds. (5.7)

Indeed, it holds |[[¢];||z2(0,7—r)xD) < I@]lL2((0,7)x D), Which implies (5.6) with a use of
(5.1), see also [15, Section 8].
In what follows we will use the following property

i (e(w)] < Cs(1+ [e(w))P~, (5.8)
which is derived from (3.1), (3.4), cf. [28, Lemma 1.19].
Now we concentrate on the new viscous term ((u,(s), 9f hu,;)) on the right hand side

of (5.5) and show, that it is bounded with C'r. Indeed, we get (for the sake of simplicity
we omit indices k)

T—1 1 t+1
7'/ / ;/ Tij(é )ds{e” (hu(t + 7)) — é;;(hu(t }dydt
0

(58) T—1
< 057'/ / 1+ |é(w)|P~ 1] t){éij(hu(t + 7)) — é;;(hu(t)) }dy dt
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< er|[[L+ le(w) P~ (1)

|e(u(t + 7)) + [e(u(t)) (5.9)

HLP’(QT_,.) ‘HLP(QT_,.)’

where p’ = p/(p — 1) and Qr—, = (0,7 — 7) x D. For the Steklov average it is not
difficult to show

@) llzr 0. 7—m)xD)y < 9llLr(0,7)xD) V7 > 1. (5.10)

Since H|u(t)|p*1||Lp/((07T)XD) = \|u(t)||i;(1(07T)XD) we conclude from (5.9) and (5.10) that

T—1 t+7
/ / ((uy(s), 0l huy)) ds dt < er.
0 ¢

Estimates of other terms on the right hand side of (5.5) has been done in [41] and [15]
and we omit them here. The proof of estimate (5.4) is now complete.

The estimate (5.4) and the compactness argument from [2, Lemma 1.9] imply the
following strong convergences for k — oo

u, —w in L'((0,T) x D), 0. — o in L'((0,T) x (0,L)).

Using the standard interpolations of spaces L"(Qr) and L*(St), Q7 = (0,T) x D, Sg =
(0,T) x (0, L) and boundedness of u,o in L*(Qr), L°(St), respectively, we obtain

u, — w in L"((0,T) x D), o, — o in L*((0,T) x (0,L)),

where 1 <r <4, 1 <s <6 for k — co.
Now let us consider test functions ¥ € LP(0,T;X), ¥(T) = 0,

X = {4 € Vas 92|y € H§(0,L)},
Vaiw ={f €V, divyf =0 a.e. on D}, cf. (2.9) (5.11)

and & = Ey
are canceled.

Now, we can pass to the limit as K — oo in (2.13), where K = e 1. We use the weak
convergences of u, in LP(0,T; Vaiy), vq. in L?(0,T; H(D)), o, in L?(0,T; H?(0, L)),
see (5.2), the strong convergence of hu, for in L"((0,T) x D), 0 < r < 4 and the Minty
Trick for the viscous term. The limiting process in the viscous term is analogous to the

s, 10 (2.13). With this choice of test functions the boundary terms with

limiting process for n — oo in Section 4.2.

The convergence of the convective term for v € H'(0,7; X) can be obtained for
all p > 2 in following way For case p = 2 see [15, Section 8]. In order to ob-
tain fOT b(w, s, ) — fo u,u, 1) one needs to show that fo |B(w, — w,u, )| —
0, fOT |B(u,u — uy,¥)| — 0. Indeed, using the Holder inequality and imbedding
L#/(=2)(D) — WP(D) we have
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T

T
/ 1By — u, up 9)| < C(K, @) / et — e
0 0

1pl1¥l2p)(p—2)

< C(K, )| g o,r:wrr (o)) [[te — | 20,7y x D) |k || Lo 0, 75w 19 (DY) - (5.12)

Thus fOT |B(u,; — u,u,, )| — 0. Further fOT |B(u,u — u,,1)| — 0 due to the weak
convergence of u,, in LP(0,T; Vgiy).

The convergence of the terms containing /eq. can be realized by the weak con-
vergence in the corresponding spaces. The term fOT I} p haedivptp is canceled due to the
solenoidal test functions.

Finally, after the limiting process k — oo in (2.13) using above considerations for
all p € H}(0,T; X) we arrive at

INACE s = RIT

:/O {(( )+ b (1, 99)

1
Jr/o h(L)qout (Y2, )11 (L, y2,t) — h(0)qin (Y2, t)1b1 (0,y2,t) dy2

L 10h
—|—/O ( 25—%“2)1/’2 (y1,1,t) di

L 2 ¢
o0& 9% 0 f 0 o€
+ | o +e taq— 8)ds —
/o 7ot W3 oy? o Jo o(y,9) oy

a R ¢
8y2°g+b/o o(y1,8)ds E(y1, t) dyl}dt. (5.13)

In order to investigate the meaning of the left hand side of the above equality we define
the ALE-type time derivative 0

d(hu)  Oh19d(y2hu)
ot oth Oys (5.14)

5t(hu) =

Note that 0;(hu) = hdjw, where 0} := (0/0t — Oh/Ot - yo/h - 0/Dys) denotes in fact the
time derivative transformed to the rectangle domain D, i.e., in coordinates (y1,y2).
The right hand side of (5.13) is bounded for every @ € M,

M={we LP(0,T; X) for p > 2;
w e LP(0,T; X) N L*((0,T) x D) for p = 2}. (5.15)
Thus it can be identified with some functional y € M*. Then using integration by parts

with respect to ys on the left hand side, backward transformation from D to the moving
domain Q(h(t)) and the separation of variables it can be shown that x = 0,(hu) €
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¥ (0,T; X*), see Appendix A for more details. Thus we can replace

/ /{ 4 S ¢}dydt=—/oT<8t(hu),¢>X.

Finally, we transform (5.13) from the rectangle D to the moving domain Q(h(t))
and obtain the existence of a weak solution to our original problem (1.1)—(1.12) with the
Dirichlet boundary condition dyn = va|r,, (n(t)) for a prescribed domain deformation h.

THEOREM 5.1 (Existence of weak solution for ¢ = 0, kK = 00).  Assume that h €
HY(0,T; H3(0,L)) N Whe°(0,T; L*(0, L)) satisfies (2.1). Let the boundary data fulfill
Gins Qout € LP(0,T;L2(0,1)), qu € L¥'(0,T;L3(0,L)), 1/p + 1/p = 1. Furthermore,
assume that the properties (3.1)—(3.4) for the wviscous stress tensor hold. Then there
exists a weak solution (v,n) of the problem (1.1)—(1.12), such that

) () € [LP(0,T5 V)< H(0,T; H(0, L) NLo(0, T; L3(D)) x W (0, T; L2(0, L),
where w is defined in (2.8),

ii) the time derivative 8;(hu) € L (0,T; X*) for p > 2 and 8;(hu) € L¥ (0,T; X*) &
LY3((0,T) x D) forp =2,

RO T P

where Oy(hu) = d(hu) /0t —1/h-0h/0t-O(y2hw)/ys = hdjw, for every test function
P e MNH0,T; X),

ili) v satisfies the condition div v = 0 a.e on Q(h(t)), va(x1, h(z1,t),t) = On(ay,t) for
a.e. z1 € (0,L), ¢t € (0,T)

and the following integral identity holds

/OT/Q(h(t)){_pv %2 4 oule(w)e(w)elsy +pzvza %}dxdt

1,7=1

T ,Ro(L) p
"‘/ / <Pout — |U1|2><,01(L,x2,t) dxzo dt
o Jo 2
T ,Ro(0) p
7/ / (Pzn 2|v1|2>901(0,l'2,t) dxo dt
/ / ( *1}2 (v2 — ?Z))gog(xl,h(xht),t) dxy dt

onog O 0% oy 0¢
//_8t8t o R

R,
+/ / "oz e+ bpédey dt =0
0 0
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for every test functions @(x1,x9,t) = P(x1,x2/h(21,1),t) such that

P € Hy(0,T;V), |y € Hy(0,T; H3(0,L)),
dive =0 a.e. on Q(h(t)),
and  &(z1,t) = Eppa(zr, h(z1,1),1).
Note that the structure equation is fulfilled in a slightly modified sense,

85’)7 _ a62R0
ot? 0z? otoxy Oz?

[
= [ —(Ty+ P,I)n|n|-ex + gam(am - 8th)] (x1, h(z1,1),1)

a.e. on (0,T) x (0, L), compare (1.6).

6. Fixed point iterations.

Until now we have proved the existence of weak solution of the original problem in
a domain given by a known deformation function, i.e., h(x1,t) = Ro(z1) + 8(z1,t), § €
HY(0,T; H3(0, L)) N W1°°(0,T; L*(0, L)), Ro(x1) € C?[0,L]. The aim of this section
is to show the existence of the weak solution of (1.13), which implies, that the domain
deforms according to the function n(x1,t), i.e., h = Ry + n. To this end we apply the
Schauder fixed point theorem and we obtain the final result: existence of weak solution

for a fully coupled fluid structure interaction problem (1.1)—(1.12).

Let us denote the space Y = H'(0,7;L?(0,L)). For each test function 1 €
L?(0,T;X), ¥ (T) = 0, recalling (5.11), and for any h = Ryg+4 € Y, such that (2.1) holds
we construct solution (w, 1) of the following problem defined on the reference domain D,

o =0m
T —
7/0 <8t(hu),'¢,b> dt

_ /OT {((u,w))h + by (u, w, )

1
4 /0 B(L)qout (2, D)1 (L g2, £) — 1(0)gon (g2, £)0n (0, g, £) dy

L 10h
+/0 <Qw + 28t0>w2 (y1,1,t) din

L 9292 t
0%c 04¢ 0 ¢
+ (040, +/ Co575 Fa— ,8)ds——
(9:04) o Oyioyi  In Jo o1, 9) o
0?R, t
—aia 20§+b/ o(y1,s)ds&(yr,t) dyl}dt.
Y1 0

(6.1)
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Further, let the ball B, x be defined by

B = {5 YVilblly < C(a ), 0< o< Bolyn) +00.0) < 2™

06(y1,t
’((93/;7)’ <K, (5(:[/1,0) =0, Yy, € [O,L], Vit € [O,T],
1

T
/
where C(a, K) is a suitable constant large enough with respect to K, « and the data.

By choosing 6 € B, i the following energy estimate holds for all 2 < p < oo
uniformly in 6,

2
P00 e < i v € 0,11},

1 2o 0,722y + wll T 0 2w (DY)
2 2 2
+ el 200 0,722 (0,)) + 1Ml 220,75 820, 1)) + 1011220 (0,717 (0,1)

< o, K, ) (1P oy + [ Rol2opo 1)) (6.2

This estimate is obtained by multiplying (6.1) by ¥ = w and £ = Fus|s, = En, cf. (5.1).
Now, let us define the following mapping by (6.1),

F:Byk —Y;
F(©)=mn, (6 ="h~—Ro).

Our aim is to apply the Schauder fixed point theorem and prove that the mapping F has
at least one fixed point. This implies the existence of the weak solution to our problem
(6.1).

First we have to check that F (B, k) C Bo k. Note that our a priori estimate (6.2)
yields ||ny, loo,mx(0.2)) < K, 1nellz2(0.1:c00,27) < K and [|nfly < C(a, K) for given data
Pin, Pout, Puw, Ro, given K, o; a < Rpin := miny, ¢jo,z] Ro(y1) and for sufficiently small
time 7. Moreover, since HY0,T; H*(0, L)) — C(0,T;C[0, L]) and n(y1,0) = 0, there
exist a maximal time T}, .y, such that

1) HUHOO = ||n||C([0,Tmax]><[07L]) < Rmin — Q.
This yields that minye (o 7,,,,) Miny, eo,z) (Ro +7) > Rmin — [|7]lcc > @. Thus we can
avoid a contact of the regularized deforming wall with the solid bottom.
ii) Further, we require that the domain deformation is bounded from above, || Ryg+7||c <
a"l.
Having i), the condition ii) is satisfied if Rpin — @ < ™! — Ryax. Thus, for instance if
a_l 2 Rmin + Rmax~ B
Consequently, F(By k) C Bux as far as t < T* := min{Tjnax, T’} for given data
qop, Ro, K and a such that o < min{Rpuin, 1/(Rmin + Rmax) }-
Secondly, we need to verify that F(d) = n is relatively compact in Y. Let us consider
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a sequence {6(k)}k 1 in By k- Let us denote by u®) and n¥) = F(§(*)) the weak solution
of (6.1) for h = h*) := Ry + §*). Due to the a priori estimate (6.2) we have the weak
convergences of n(k), u(k) in corresponding spaces. In order to obtain strong convergences
of n®) in Y (and of u® in L?(0,T; L?(D))) we use the result on the equicontinuity in
time. For the formulation in the Eulerian coordinates this yields

T O T o, e
/ R R el / /ynt t+7) — P
By

< C(K,a)(r'/P 4+ 71/%). (6.3)

Here By € R? is the fixed rectangle domain (0, L) x (0,M), M > a~1, cf. (9.1), such
that Q(h*)(t)) C By for all k, ng) is the characteristic function of Q(h*)(¢)) on By,
and ©®) is an extension of the weak solution v(¥) to the Bjs defined in (9.2). Note,
that the constant C(K,a) does not depend on k. This estimate can be obtained using
a suitable extension of the weak solution to a fixed domain Bj; and specific divergence
free test functions. The proof of (6.3) is realized in analogous way as in [9, Lemma 9],
the details can be found in Appendix B, Lemma 9.1.

Consequently, the Riesz—Fréchet—Kolmogorov compactness argument [4, Theorem
IV. 26] based on (6.3) implies the relative compactness of 9;1n*), 8*) in L2(0, T; L?(0, L)),
L?(0,T; L?(Bys)), respectively. Additionally, the standard interpolations give us the
compactness of o) in L"((0,T) x By), 1 < r < 4 and 9™ in L((0,T) x (0, L)),
1 <s<6.

Finally, we need to check that the mapping F is continuous with respect to the
strong topology in Y. We have to prove that for any convergent subsequence §) ¢
Bar, 6% —5inY

F(oW) =n® — F(8) =

As already shown above n¥) converges strongly to some 7 in Y, i.e., we have n*) — n
in H(0,T;L?(0,L)) as k — co. Due to the boundedness of 1 from the a priori estimate
(6.2) and the imbeddings in one dimension we have even stronger result—the uniform
convergence of d,, 7" in C([0,T] x [0, L]). Indeed,

L=(0,T; H*(0, L)) N W>(0,T; L*(0, L)) — C*'=#(0,T; H**(0, L)) (6.4)

for 0 < B < 1. From the continuous imbedding of H2?(0,L) into H*/~¢(0,L) and
the Arzeld—Ascoli Lemma we conclude that a subsequence of (%) converges strongly in
C([0,T); H*(0,L)), 0 < s < 2. Since for s > 3/2 we also have continuous imbedding
H*(0, L) — C[0, L], we can conclude, that n¥) — 5 strongly in C(0,T;C*[0, L]).
Before we start the limiting process in (6.1), let us summarize available convergences.

u®) — u weakly in LP (0, T; WhP (D)),

o®) — & strongly in L"((0,T) x By), 1 <r <4,
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u® — a strongly in L"((0,T) x D), 1 <r < 4,
n®) — n weakly in H'(0,T; H*(0, L)),

) —* 5 weakly* in L>=(0,T; L*(0, L))

n(k) — 7 uniformly in C(0,T;C*(0, L]),

™) — dym strongly in L*((0,T) x (0,L)), 1 < s <6. (6.5)

We have to verify, that the limit 7 from (6.5) is the weak solution associated with ¢ and
thus F(d) = .

Limiting process. Now we let k¥ — oo in (6.1). First of all we have to realize, that
due to the solenoidal property, which depends on h(¥), the test functions are implicitly
dependent on k. This fact present a difficulty when we pass with & — oco. Nevertheless we
can construct sufficiently smooth test functions 1(y, t) = @(x, t), which are independent
on k and divergence free in Q(h), h = Ry+6 (i.e. divy % = 0). They are also well defined
on infinitely many approximate domains Q(h(’“)) and dense in the space of admissible
test functions LP(0,T;X), cf. (5.11). Such a test functions ¢ can be constructed on
(0,T) x By as algebraic sum, see [9, Remark 3]

$ = @0+ 1,

where ¢g is a smooth function with compact support in Q(h), divey = 0 on Q(h)
and (g is extended by 0 to (0,7) x By. Further, having ¢ € H(0,T; HZ(0,L)) we
define ¢4 def (0,&(x1)/E) on Bp\Ba, Ba = (0,L) x (0,a) € R?, the constant E comes
from (1.14). Note that divep; = 0 on Bys\B,. Moreover, ¢, such that faBa p1-n =
Jo @l(L,x2,t) — ©1(0, 22, t)dzy + fOL(E/E)(xht)dxg = 0 can be extended into B, by a
divergence-free extension, whereas remaining boundary conditions on I';,, I'pyt, I'e are
preserved, see e.g., [18, p.144]. Note, that due to the uniform convergence of 7(*) the
function ¢y is defined on each Q(h(N)) for sufficiently large N. Moreover ¢ is defined on
Q(h™*)) for each k. For more details on this construction we refer a reader to [8, Section
7, pp. 35-36], compare [9].
Having v (y, t) = 9 (x1, xo/h(x1,t),t) = @(x,t), = € Q(h), y € D, let us construct
the set of admissible test functions 4*) by transformation of ¢ from Q(h(®)) into D,

L2

(k) — b . =
d" <y17y27t) _¢(x1’h,(k)($1,t)7t) QD(l'l,ZCQ,t),

zeQnr®), yeD. (6.6)
The test functions (6.6) have the following property

P® D SR divw P =0, Epd (y,1,8) = £y, 1), and
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(k) _ 4
v #, - } uniformly on (0,7) x D.
e(p™) — e()

This property follows from the special construction of ¢, the property (3.8) and the
uniform convergence of §*) and 9,,6*) that follows from (6.4).

Thus it is enough to consider test functions ¢ = 4, which are independent on k and
smooth enough. The limiting process in the test functions follows afterwards using the
uniform convergence 1*) and é(’l/J(k)).

In the following lines we will present the limiting process for k — oo in chosen
nonlinear terms. Let us first consider the convective term and show

T
/ (bh(k)(u(k)au(k)ad)) - bh(uauv"p))dt — 0.
0

Recalling (3.11), the following terms appear in the above expression

T
/ B (u, u® — wu, ) 4+ By (u® —u,u® ) + B(h(k)_h)(u,u(k),ft,b)dt.
0

To show the convergence of above integrals, we restrict ourselves only to the terms
containing dy;h(¥), convergence of terms with A*) is analogous. Let us consider

u®)  ou oh  ou® (k) Onk)
+ “pluy T —u
/ / < 0ya 3y2) wu 183/1 0y ¥ (w ) oy
(k) (k)
Ou . <8h —ah>ugk)dydt.
y2 Oy O

The convergence of the first term is obvious due to the weak convergence of u(*) in
LP(0, T; W'?(D)). The strong convergence of u*) in L' ((0,T) x (D)) and the uniform
convergence of aylh(k) imply the convergence in the remaining two terms.

In what follows we denote é) := (&), & := (&)n, cf. (2.11), (3.8). The limiting
process in the viscous term will be realized as follows.

T
/«M)WMW%(wmﬁ

= [ [ Al e ) e ]

+ [A®) = h] g (W) (w®)el () dy dt
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_ / ! / 7y (6% (u®)) [6) () — 45 ()] dy
0 D

)

T
+ /0 / By (6% () — 745 (6(w))] s () dy dt

D

(I

+/OT/D (05— h] i (e®) (w®)))el (p) dy dt 6.7)

(111)

It is easy to see that the term (III) goes to zero. Using the definition of é =
(&) = VuF(h,y) + (VuF(h,y))T, cf. (3.8), due to the uniform convergence of h(*)
in C(0,T;C*[0, L)) the convergence in all components of F is obvious and we obtain that
(I) —o.

In order to show the convergence in the second term (II), we will use the Minty Trick
argument. Let us denote for better readability &* := é®) (u®)), € := é(u) and ¢ := é(¥).
Now we have the operator A, A : LP((0,T) x D) — L ((0,T) x D),

(AE0) = [ [ (e ) @)yt

From Lemma 3.4 we know that the operator A is monotonous, i.e. (A(£F)—A(€),&F—¢) >
0. Thus, we have

lim inf (A(¢") — A(€), €5 — €)

k—oo

= liminf { — (A(€),€" — &) — (A(€"),€) + (A(€"),€9} 20 (68)

Further, from Lemma 3.5, assumptions (2.1) on A(*) and the fact that w,¢ €
LP(0,T; WHP(D)) we have for any k, cf. (4.12),

(A(EF), 0] < C(K, ).

Therefore A(€¥) is bounded in LP'((0,T') x D) and thus A(£%) — f.

Moreover, from the weak convergence of Vu(®) and the uniform convergence of h(*)
in C(0,T;C[0, L]) we obtain that lim infj,_, (A(£),£F =€) = 0 for €% = ¢®) (w(*)). Thus
(6.8) implies that lim infy o (A(£¥), €F) > (f,€). Moreover, analogously as in Section
4.2 we obtain by limiting in the weak formulation that limy_ o (A(£F), %) = (f,€). Thus,
the Minty Trick argument concludes that f = A(¢), i.e.

A(E) = A(€) and thus  (A(E"), ¢) — (A(€), )
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for any ¢ € LP((0,T) x D) as k — oo.

This concludes the limiting process in (6.1). We found out that F(6()) — F(§) as
k — oo and that F(d) = n, i.e. n is the weak solution of (6.1) associated with the limit
3, (h = Rg +9).

Finally, the Schauder fixed point theorem implies that there exists at least one fixed
point of the mapping F defined by the weak formulation (6.1), F(n) = n. Thus, we
obtain the existence of at least one weak solution of the original unsteady fluid-structure
interaction problem (1.1)—(1.12). The proof of the Theorem 1.1 is now completed. O

We summarize the result of this section. For all p > 2 there exists at least one weak
solution to the original fluid-structure interaction problem (1.1)—(1.12) such that

i) weLP0,T; W2 (Q(n(t)) N L>(0,T; L*(Qn(t)))),
n € WhHe(0,T; L*(0,L)) N H'(0,T; HZ(0, L)),
ii) diveo =0 a.e. on Q(n(t)),
iii) 'v|Fw(t) = (0,n;) for a.e. x € Ty (t), t € (0,7T), U2|quroutup =0,

and the following integral identity holds

/OT/W(“){_W % ¢ ou(le(w)e(w)elp +pzvzg %}dxdt

3,j=1

T Ro(L) p
+/ / (Pout - |U1|2>901(L,5E2,t) dzo dt
o Jo 2
T Ro(0) p
- / / (Pm — |v1|2> ©1(0, T2, t) dzo dt
o Jo 2

T L
+/ / Pypa(x1, Ro(x1) + n(x1,t),t) dey dt
0

dxy dt

/ / 8n8§ 0%n 62£+ On 0§

s

ot ot * 0220t 022 T “oz; 0m
for every test functions ¢ with the property (1.14).

dt =0 (6.9)

Remarks. 1) It should be pointed out that we have obtained the existence of weak
solution until some time 7™ in Section 6. We remind that this time is obtained in order to
achieve the fixed point of the mapping F and to avoid the contact of the elastic boundary
I, (t) with the fixed boundary for given data Pj,, Puut, Py, Ro and «, K. Similarly as
n [9, Grandmont et al.], we can prolongate the solution in time and even obtain the
global existence until the contact with the solid bottom.

Indeed, we can construct a non-decreasing sequence of times {7 =
Ty, ..., T 1, Tx, ...}, such that for given o, K, a < min{Rumin, 1/(Rmin+ Rmax) }, start-
ing from initial data in time 7} _;, we have the existence of weak solution for some time
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Ty .+ T :=1T}. We distinguish between two situations. Either sup7,;, = oo, which
means, that the contact with the solid bottom never happens and we obtain global exis-
tence. Otherwise sup7;s, := T™* < oo for given «. In this case we can decrease a. If the
time interval of the existence cannot be prolongated for chosen o, we have to decrease «
again. This is repeated until a reaches 0. The later represents the contact with the solid
boundary at some time 7%* + T', where T' > 0.

2) Our result on the existence of weak solution for the coupled fluid-structure inter-
action problem for shear-thickening power-law fluids is shown for the generalized string
equation (1.4) with a regularizing term of type A%n;. The same existence result can be
obtained for other regularizing terms in the structure equation. Instead of

—aAn + cA%n,  we can consider  aA%n — cAn;,.

The regularity of the domain deformation coming from the term AZ25 is essential to
obtain condition |n,,| < K, cf. (2.1). This is a necessary condition for generalized
Korn’s inequality for p # 2, see (3.8), (3.9).

In [9] the unsteady fluid-structure interaction between Navier—Stokes fluid in three
dimensions and elastic plate has been analyzed. Note, that such a condition for 7, is
not required for the Korn’s ‘equality’ for the moving domain (n) in [9]. Thus, for a two
dimensional Newtonian fluid and one-dimensional structure a less regular string model
may be used.

3) We would like to point out, that for the Navier-Stokes equations (p = 2) the
integral equicontinuity for 7, and w can be obtained by a different method than that
presented in Section 6 and proved in Appendix B. More precisely, we can follow the
method of transformation of the solution from the domain in one time instance to the
second one, previously used by Padula et al. in [19]. By this procedure the solenoidal
property of test functions is preserved. For the Navier—Stokes equations we would have
enough regularity to show then equicontinuity in time. For the non-Newtonian case
(p > 2) however the regularity of 7 is not sufficient for such an approach. In this case we
needed the construction of suitable test functions using an appropriate extension of the
solution to the fixed domain, as it has been done in Lemma 9.1. Analogous construction
was previously presented in [9], see also the reference [16] therein.

7. Conclusion.

In the present paper we have proven the existence of weak solution to the fully
nonlinear fluid-structure interaction problem for the shear-thickening fluid coupled with
viscoelastic string.

The nonlinear stress tensor satisfies the polynomial growth conditions (3.1)—(3.4).
For shear-thickening fluids (p > 2) this allows us to use the energy method and mono-
tonicity arguments based on the Minty—Browder theorem to study the existence of the
(k, €, h)-approximate solutions defined in Section 2. The existence of weak solutions on
a time-dependent domain Q(h(t)) deforming according to a given, sufficiently smooth
function h(t) has been shown by limiting k — oo and € — 0. For the limiting processes
additional compactness argument due to the integral equicontinuity in time has been
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used.

The final step regarding to the geometric nonlinearity of the fluid-structure inter-
action problem, i.e. the existence of a weak solution on the moving domain Q(n(t)) is
proved in the last section by the fixed point procedure applying the Schauder fixed point
theorem. Consequently we have obtained the existence of the weak solution to the shear-
thickening non-Newtonian fluid coupled with an elastic string membrane, the main result
is formulated in Theorem 1.1.

Our result generalizes the previous result [15] of one of the authors, where only
the Newtonian fluid have been studied. In [15] the existence of a unique weak solution
on the deforming domain Q(7(t)) with unknown interface n has been completed using
Banach’s fixed point approach only for the (k, €)-approximation of the coupled system.
Furthermore, our result also generalizes the recent result of Canié¢, Muha [8] and of
Chambolle et al. [9] for the case of non-Newtonian shear-thickening fluids.

In future we would like to study a generalization to three-dimensional geometries and
more complex structural models as well as the generalization for shear-thinning fluids.
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Appendix A (On distributive time derivative).

Our aim is to show that [ [, {hu - (94 /8t) + Oh/Ot - D(yow)/Dys - 3 }dy dt =
— fOT <5t(hu), 1,b> - Let us first recall the weak formulation of the x-approximate prob-
lem, cf. (2.13),

T Jo(huy) Oh O(y2us)
_/O< ot ’¢>+ ot oy, VU

:/ /{b(un,umw)—hqn divatphdy + (s, 9))dt

/ / (L, )doustér (Lyya, t) — h(0, )guntdr (0, yz, 1) dyadt

+/ / {Qw + %UQR% + r(uge — Un)}ih (y1,1,t) dy,dt
+5/ <8(gq“>,¢>dt

/ /{ 8h8 yiq”)‘“ al(qm¢)+hdivhun¢}d9dt
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T L
Oh
+§/ / a(ylvt)qndyhl,t)dyldt

805 0%, 0%¢ a [ %3
/ / { o ay%“‘ayl/ oxlyn, 8)ds g

9?Ry
yl

—|—b/ ow(y1,8)ds € — &+ %(a,.i —uzﬂ)f}(yl,t) dy dt.  (8.1)

The right hand side of (8.1) is bounded for each test function ¥ € M defined in
(5.15) independently on x = e~!. Thus, taking into account (4.36) we obtain

(9,5(}7/11,,.@) - 8th[ay2 (y2u#€)] = 8t(h‘uf€) —XE M* as k — o0.

In what follows we investigate the representation of the functional y. For simplicity we
restrict here on the case 2 < p < co. The case p = 2 is analogous, but we need to consider
¥ € LP(0,T; X) N L4((0,T) x D).

After the limiting process in x we obtain for all ¢ € H(0,T; X)

[ e 2 SOy [, (52)

space X is defined in (5.11). Using integration by parts with respect to y» on the left
hand side of (8.2) we obtain

Ohys 0 L oh
[ e (- g o= || Gttt

Here we denote (0/0t —Oh/0t-ya/h-0/0ys) := 07 . Note, that due to the transformation
to the domain Q(h(t)) we have dyp(x,t) = 01 (y,t), x € Q(h(t)), y € D. Moreover,
the boundary term in the above expression is bounded for any 1 € LP(0,T;X) and
can be added to the right hand side of (8.2), which we denote by a functional x?, i.e
fo X% ) x fo X, ¥ x + fOL(ah/at)uQ'(pg(yl, 1,t)dy; dt. After the transformation of
equation (8.2) to the moving domain we obtain the following equality in the Eulerian
coordinates x € Q(h(t)):

T T
—/ / pv@tgodardt:/ <hflxg,go>X dt, where
o Jamw) 0 e

Xo={peW"(Q); divp=0ae. onQ, pslr, € H;(0,L),

901|Fw =0, 902|FmUFoutUFc = O}’ Q= Q(h(t))

Since the divergence operator in the Eulerian coordinates does not depend on time,
we can consider separable test functions ¢. Using (21, x9,t) = w(z1,22)E(t), w €
Xa, &(t) € C4(0,T), we obtain from above
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T T
- [ vwiag = [

0
which yields that h~! = 0Oi(pv) in distributive sense.  Therefore it holds
fOT<h*1XZ, P)x,dt = fo fQ(h pvdipdx dt. By transformation to the fixed domain

D and using the definition of x* we get

/OT<X P) xdt = / / hudfvp dy dt — / / U21/’2 y1,1,t) dy; dt.

Using the definition of &} and the integration by parts with respect to y» we find out,
that the boundary terms on the right hand side are canceled and

/0T<X1/det // Syt

This means that x + yo - Oh/0t - Ou/dys is the distributive time derivative hd,u. Thus
the limit x equals

X =h— —ys———— = 0;(hu) = hd/u. (8.3)

Finally we have obtained y = d;(hu) € L”' (0,T; X*) and we can replace in (5.13)

/ /{ *+%8(82) 1/’}dydt by —/0T<8t(hu),¢

Since we have proven that y is the distributive ALE-type time derivative of w in
the sense of (8.3), due to ua(y1,1,t) = m(y1,t) we have also shown, that o has the
distributive time derivative

— AY
8tCT = 3t U2|Su,-

Thus, we have in (5.13) fo fo o-0E)0t = fOT 00, ).

It remains to show the property of weak time derivative analogous to (4.38). Indeed,
for fixed s using the definition of the derivative 9; (5.14), the property (4.38) and the
partial integration with respect to the y, we obtain

r 1
/O<8t(hu,€),u,.;>xdt:§/D\u,.i|2(t —7// O o[ dyr dit.

Now letting k — o0, using the strong and the weak convergences from Section 5 and the
weak limit (8.3) we obtain the desired property
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/OT (Brlhu), / [l N 7/ / -7 luz|dydt. (8.4)

Appendix B (Equicontinuity in time).

The aim of this section is to show the integral equicontinuity in time. Lemma 9.1
provides the equicontinuity result that holds independently on k. To this end we need
to find suitable divergence free test functions in order to control difference of velocity at
different time instances. In order to obtain such test functions we follow a construction
presented in [9], see also the reference [16] therein.

We introduce, in analogy to [9, Lemma 3], the following extensions of the domain
and the weak solution.

We define an extension of the moving domain Q(h®*)(t)) to a box domain

By = (0,L) x (0, M) € R? (9.1)

for some M > a~! specified later. Moreover we define an extension into Bj; of solution
u®) (y, 1) = v®)(2,1) of (6.1),

(9.2)

v

v in Q(h®) (1))
(k) —
{(o,nﬁkb in By \Q(h®)(1)).

Further, for v > 1 and any function f(x1,z2) we define f, as follows

Fy (@1, 22) = (Vfi(21,y22), fa(z1,722)).
Note that if f is divergence free, then f, is divergence free, too.

LEMMA 9.1.  For the weak solution (v(’“%n,ﬁ’“)) = (u®,o®) of the problem (6.1)

it holds
/ / o® (¢ + 1) — 5P ) + / / (4 7) — P o)
BM

< C(rY7 4 71/2), (9.3)

Here Xik) denotes the characteristic function of Q(h\¥)(t)). The constant C = C(K,a)
does not depend on k.

PRrROOF. We recall that h*) = Ry + 6), but for the sake of simplicity we omit the
superscript (k) in this proof and we denote h := Ry + 6*), 5 := %) 5 .= (),

To prove the statement of this lemma, we will use following two properties.

1. The distributive time derivative 9:
For each v € HY(0,T; X), cf. (5.11), ¥(T) = 0 it holds, cf. (4.37),
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- /T (0y(hw),vp)dt

/ / ?9? ag;:)¢dydt—/DhU(ﬁy)%b(iy)dy. (9.4)

For classical time derivative, this property is clear. For our distributive derivative 0
it can be proven analogously as in (4.37).

2. By inserting any time independent test function ¥ = 1(y) into (9.4) and subtracting
(9.4) for 7 =t + 7, and 7 = ¢ we obtain

—/HT (0w, p(x)) . ds

t+1
[ [ G e pdds [ ) - @l 05)

Here the integral on the left hand side has been transformed into Q(h(t)), ¥ = ¢ (y) =
w(x), y € D,z € Q(h(t)), Xo = Xqnr)) was defined in Appendix A.

Now, let us integrate (9.5) over fOT_T dt. The first term on the right hand side (inte-

grated over fOTiT) can be bounded with C7 independently on & for test functions (9.10)
specified later. The second term on the right hand of (9.5) can be rewritten due to the
transformation to the Q(h)

T—1
/ / (@psnt+ 7)p(xesr )da — / vz Dp(z) drdt.  (9.6)
Q(h(t+7)) (h(t))

Note, that the space coordinate z; = z(t) € Q(h(t)) depends on time, hence the test
functions ¢ implicitly depend on time, which is pointed out above.

Using the previously defined extensions of the solution © and some further manipu-
lations we can rewrite (9.6) as follows

T—1
/ / O(Ziprs b+ T)P(@esr) — (@, t)p(ae)da
0 Q(h(t))
+ / (Xt — X£)0(Tiqr, b+ T) (2447 ) d dt
Bm

T—1
/ / O (@eqr,t+7) = v(xe, )]p(@e) + [o(@14r) — P(@)]0(Ti4r, t 4+ 7)
Q(h(t))
) (11)

[ Qe = X0 t 4 D)) dot (9.7)
Bum
(I11)

Here x:, xt+r are the characteristic functions of Q(h(t)), Q(h(t + 7)), respectively.



On the coupled fluid-structure interaction problem for non-Newtonian shear-dependent fluid 239

In what follows we estimate the term (II) for any test function ¢ € LP(0,T; Xq).
Further, we take specific test functions and concentrate on the terms (I), (III).

Since § € L*(0,T; H?(0,L)) N W*(0,T; L?(0, L)), from the imbeddings in one
dimension (6.4) it follows that § € C%'/2([0,T]; H*(0,L)). Thus

[0(t +7) = 6(t)]| Loe (0,1 % (0,L)) < CVT. (9.8)

Using (9.8) we can estimate the term (II):
T—1 1/2
< [ ([ et - elefde) ol
0 Q(h(t))

T—1 zo(t47)
:/ (/ ’/ Osp(x1, 8)ds
0 Q(h(t)) | Jaa(2)

T—1 1/2
</ ( / |w|2dx|a:2<t+r>—x2<t>|2) Tl —
0 By

2 1/2
dx) 10| 2 ((n )y dt

< Nellz2orm (B 10t +7) = 6(8) | o< (0, 7)x (0,2 10 2 ((0,7) x Bar)

< OV (9.9)

Now we specify proper test functions, that will be used in what follows. For xz; =
x(t) € Q(h(t)), v > 1 and fixed ¢, T we set
p(r) = I_’W(xtJr‘rv t+7)— ’l_J,y(:,Ct, t),
§(x1) = E(Omn(z1,t + 1) — 021, 1)). (9.10)
Note that since v is divergence-free, the test function ¢ is also divergence-free!. Moreover,
taking into account (9.8), for v > 1+ C+/7/a and x2 € T',,(t) the coordinate yxo exceeds
the moving domain (h), since we have v(Rg + 0(s)) > Ro + 6(s) + [|6(t + 7) — 8(t) || 0o,

s =t,t+ 7. According to the construction, such a test function fulfill the boundary
condition

E@(x1, Ro(x1) + 6(x1,t)) = E(0,0n(z1,t +7) — Opn(z1,t)) = (0,&(x1)).

Let us estimate now the term (III). Since dyn is bounded in L*>(0,7T; L*(0, L)) in-
dependently on k, we have

L L t+7
| el = [Cieen-sop =[] [ assds
Bum 0 0 t

Thus, the term (IIT) can be bounded for ¢ from (9.10) as follows.

2
<Cr.  (9.11)

1Since @(z¢4r) = Uy (Tit2r,t + 27) — Dy (Teyr,t + 7), we have to integrate over foQT dt in the

0
estimate of the term (II), or we define p(zi1,) =0if ¢t +7 > T.
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T—1
(1) < / e — xell 2 Il 2 s ol acmandt < OV (9.12)

For the test functions from (9.10) the term (I) equals

T—1
(1) = / /Q o [P T) = 00N 1 47) = 9y ()t

T—1
/ / [B(t +7) — B(t))?
Q(h(t)) _/)—/

+ [o(t+7) — (). ([0y(t + 7) — 0(t + 7)] = [0,(t) — ©(t)]) dwdt. (9.13)

(Ib)

For the simplicity we used shorter notations here, e.g., v(t + 7) := 0(x¢4r,t + 7). The
term (Ia) appears on the left hand side of the assertion of this lemma; the term (Ib) need
to be estimated from above. We illustrate the estimate of some chosen terms of (Ib) as
follows. Estimates of other terms are analogous.

In the sequel we take v = 1+ C\/7/a and M > 2a~!. For these parameters we have
according to Lemma 9.2,

/ - / o(t +7)[0,(t) — B(t)]dxdt
Q(h(t))
< a7 / 150t + 7)Lz2 ) [0 11 3 < Ca/.

To complete the proof, the remaining terms coming from the fluid equations, i.e.,
the convective term, the viscous term, boundary terms and the equation for n have to
be estimated. We illustrate here only the calculations for the nonlinear viscous term and
omit tedious but standard calculations for other terms, previously performed also in [15].

After subtracting the weak formulation (6.1) for f; T ds — fot ds, inserting test func-
tions constructed above (independent on s) into (6.1) and integrating over fOT T dt we
obtain from the viscous term

T—1 t+7
/ / / 7ij(e[v(s)]).e[v,(t + 7) — 0, (t)|dx ds dt.
0 t Q(h(s))

For the simplicity, we set w := ©,(t + 7) or w := ©,(t). The above expression can be
bounded with use of (5.8) as follows,

</T_T/W/ " Cs(1 + [efo(s)]])?Le[w]da ds dt

T—1 t+7
<o) [ [ I Vg | T lrenon ds e
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T—7 t+r (p—1)/p .
< C(K, a)/o (/t |1 +Vv(s)||ip(ﬂ(h(s)))ds> ||Vw\|Lp(BM)T /Pt

L T (p—=1)/p ,T—71
<o ([ Vo onyds) [ IVl

< C(K, ) P14+ Vol o o i IVl L2 01520 (Bary) < CE, a) TP,

We conclude, that the estimates of remaining terms on the right hand side are
analogous as already show in the first part of the paper or in [15] and we leave them to
the valued reader. The proof of the lemma is now completed. O

Due to the (9.11) it is also easy to obtain from (9.3) that

T—71
/ / i aM ) = xPe®P @) < C 4 12), (9.14)
0 Bm

This result implies that xgk)'f)(k)(t), and consequently ©(*)(t) is relatively compact in

L2((0,T) x Bay).

LEMMA 9.2. Ify=1+Cy7/a and M > 2a~1, then for any f € HY(By) we
have

/ |f’Y — f‘zdx < CaT”f”%Il(BM)'
Q(h(1))

ProoOFr. From the definition of f, it is obvious that
|f’y - f‘ < |f($1,’yx27t) - f(ifl,l'g,t)‘ + (’7 - 1)|f($17’7$27t)| (915)

Now consider f*—a smooth approximation of f. We can write

T2 a *
/302 8.); (z1,s,t)ds

2
dx.

/ | (@1, 22, t) — f* (21, 22, 1) Pde = /
Q(h(t))

Q(h(?))

Note that z5 € Q(h(t)) < a~1. Thus, for sufficiently small 7, (o > 0) and v = 1+C/7/«
the above integral bound yzy < 2a~' = M. Hence we can estimate

/ ‘/’ywz af*
o) | e, 05

and by using the standard Sobolev approximation argument we finally get

2

(z1,s,t)ds

mguwﬁmﬂf/ V£ 2da
By

/ V@hwmﬂ—ﬂMmewwSQﬂ/ IV f[2de,
Q(h(t))

By
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The above result and (9.15) imply the assertion of the lemma. 0
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